1
|
Guo H, Xu X, Zhang J, Du Y, Yang X, He Z, Zhao L, Liang T, Guo L. The Pivotal Role of Preclinical Animal Models in Anti-Cancer Drug Discovery and Personalized Cancer Therapy Strategies. Pharmaceuticals (Basel) 2024; 17:1048. [PMID: 39204153 PMCID: PMC11357454 DOI: 10.3390/ph17081048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
The establishment and utilization of preclinical animal models constitute a pivotal aspect across all facets of cancer research, indispensably contributing to the comprehension of disease initiation and progression mechanisms, as well as facilitating the development of innovative anti-cancer therapeutic approaches. These models have emerged as crucial bridges between basic and clinical research, offering multifaceted support to clinical investigations. This study initially focuses on the importance and benefits of establishing preclinical animal models, discussing the different types of preclinical animal models and recent advancements in cancer research. It then delves into cancer treatment, studying the characteristics of different stages of tumor development and the development of anti-cancer drugs. By integrating tumor hallmarks and preclinical research, we elaborate on the path of anti-cancer drug development and provide guidance on personalized cancer therapy strategies, including synthetic lethality approaches and novel drugs widely adopted in the field. Ultimately, we summarize a strategic framework for selecting preclinical safety experiments, tailored to experimental modalities and preclinical animal species, and present an outlook on the prospects and challenges associated with preclinical animal models. These models undoubtedly offer new avenues for cancer research, encompassing drug development and personalized anti-cancer protocols. Nevertheless, the road ahead continues to be lengthy and fraught with obstacles. Hence, we encourage researchers to persist in harnessing advanced technologies to refine preclinical animal models, thereby empowering these emerging paradigms to positively impact cancer patient outcomes.
Collapse
Affiliation(s)
- Haochuan Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Xinru Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Jiaxi Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Yajing Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Xinbing Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Zhiheng He
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; (Z.H.); (L.Z.)
| | - Linjie Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; (Z.H.); (L.Z.)
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Li Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; (Z.H.); (L.Z.)
| |
Collapse
|
2
|
Aupperle-Lellbach H, Kehl A, de Brot S, van der Weyden L. Clinical Use of Molecular Biomarkers in Canine and Feline Oncology: Current and Future. Vet Sci 2024; 11:199. [PMID: 38787171 PMCID: PMC11126050 DOI: 10.3390/vetsci11050199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Molecular biomarkers are central to personalised medicine for human cancer patients. It is gaining traction as part of standard veterinary clinical practice for dogs and cats with cancer. Molecular biomarkers can be somatic or germline genomic alterations and can be ascertained from tissues or body fluids using various techniques. This review discusses how these genomic alterations can be determined and the findings used in clinical settings as diagnostic, prognostic, predictive, and screening biomarkers. We showcase the somatic and germline genomic alterations currently available to date for testing dogs and cats in a clinical setting, discussing their utility in each biomarker class. We also look at some emerging molecular biomarkers that are promising for clinical use. Finally, we discuss the hurdles that need to be overcome in going 'bench to bedside', i.e., the translation from discovery of genomic alterations to adoption by veterinary clinicians. As we understand more of the genomics underlying canine and feline tumours, molecular biomarkers will undoubtedly become a mainstay in delivering precision veterinary care to dogs and cats with cancer.
Collapse
Affiliation(s)
- Heike Aupperle-Lellbach
- Laboklin GmbH&Co.KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (H.A.-L.); (A.K.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 80333 München, Germany
| | - Alexandra Kehl
- Laboklin GmbH&Co.KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (H.A.-L.); (A.K.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 80333 München, Germany
| | - Simone de Brot
- Institute of Animal Pathology, COMPATH, University of Bern, 3012 Bern, Switzerland;
| | | |
Collapse
|
3
|
YU TW, YAMAMOTO H, MORITA S, FUKUSHIMA R, ELBADAWY M, USUI T, SASAKI K. Comparative pharmacokinetics of tyrosine kinase inhibitor, lapatinib, in dogs and cats following single oral administration. J Vet Med Sci 2024; 86:317-321. [PMID: 38281758 PMCID: PMC10963087 DOI: 10.1292/jvms.23-0448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024] Open
Abstract
Lapatinib is an orally administered tyrosine kinase inhibitor used to treat human epidermal growth factor receptor 2 (HER2) -overexpressing breast cancers in humans. Recently, the potential of lapatinib treatment against canine urothelial carcinoma or feline mammary tumor was investigated. However, the pharmacokinetic studies of lapatinib in dogs and cats are not well-defined. In the present study, the pharmacokinetic characteristics of lapatinib in both cats and dogs after a single oral administration at a dose of 25 mg/kg were compared with each other. Lapatinib was administered orally to four female laboratory cats and four female beagle dogs. Blood samples were collected over time, and the plasma lapatinib concentrations were analyzed by HPLC. Following a single dose of 25 mg/kg, the averaged maximum plasma concentration (Cmax) of lapatinib in cats was 0.47 μg/mL and achieved at 7.1 hr post-administration, while the Cmax in dogs was 1.63 μg/mL and achieved at 9.5 hr post-administration. The mean elimination half-life was 6.5 hr in cats and 7.8 hr in dogs. The average area under the plasma concentration-time curve of dogs (37.2 hr·μg/mL) was significantly higher than that of cats (7.97 hr·μg/mL). These results exhibited slow absorptions of lapatinib in both animals after oral administration. The Cmax observed in cats was significantly lower and the half-life was shorter than those observed in dogs. Based on these results, a larger dose or shorter dosing intervals might be recommended in cats to achieve similar plasma concentration as dogs.
Collapse
Affiliation(s)
- Ting-Wei YU
- Laboratory of Veterinary Pharmacology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Haru YAMAMOTO
- Laboratory of Veterinary Pharmacology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shohei MORITA
- Animal Emergency Medical Center, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryuji FUKUSHIMA
- Animal Emergency Medical Center, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mohamed ELBADAWY
- Laboratory of Veterinary Pharmacology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Elqaliobiya, Egypt
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Tatsuya USUI
- Laboratory of Veterinary Pharmacology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazuaki SASAKI
- Laboratory of Veterinary Pharmacology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
4
|
Civa PAS, Fonseca-Alves CE, Dos Anjos DS. Long-term survival of a cat with a metastatic gastrointestinal stromal tumor. JFMS Open Rep 2024; 10. [DOI: 10.1177/20551169241247442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Case summary An 8-year-old spayed female mixed-breed cat presented with a 2-year history of recurrent vomiting and hyporexia. Physical examination revealed a palpable mass in the mesogastric abdominal region without discomfort upon touch. Abdominal ultrasonography revealed an intramural mass in the small intestine (duodenum) that caused a decrease in the segment lumen. A complete blood count revealed leukocytosis with marked neutrophilia, eosinophilia and mild hypoalbuminemia. Enterectomy was performed with 3 cm margins and end-to-end anastomosis at the duodenal site of the mass. Histology revealed neoplastic elongated spindle cells that were poorly confined, originating within the muscle layers and that had a mitotic index of 2/10 high-power field (hpf) (at 400×), human epidermal growth factor receptor-type 2 (HER-2) supporting the diagnosis of low-grade sarcoma. Immunohistochemical analysis was positive for KIT, confirming a gastrointestinal stromal tumor (GIST) with a Ki67 level of 15%. Furthermore, multikinase profile biomarkers revealed that the neoplastic cells expressed HER-2 (65%), epidermal growth factor receptor-1 (50%), vascular endothelial growth factor receptor 2 (35%), platelet-derived growth factor receptor beta (15%) and c-KIT (15%). Six months after the original surgery, CT revealed presumptive hepatic, splenic and peritoneal metastases. Toceranib phosphate was prescribed at a dose of 2.75 mg/kg and progressive disease was observed at 8 weeks of follow-up. Relevance and novel information To the best of our knowledge, this is the first case report to characterize the proliferation biomarker profile of a feline GIST in veterinary oncology. However, despite KIT expression in this tumor, the target drug did not inhibit tumor proliferation, providing new insights into this rare tumor in the feline species.
Collapse
Affiliation(s)
| | - Carlos Eduardo Fonseca-Alves
- Institute of Health Sciences, Universidade Paulista (UNIP), Bauru, Brazil
- Department of Veterinary Surgery and Animal Reproduction, Universidade Estadual Paulista (UNESP), Botucatu, Brazil
| | - Denner Santos Dos Anjos
- Department of Veterinary Surgery and Animal Reproduction, Universidade Estadual Paulista (UNESP), Botucatu, Brazil
| |
Collapse
|
5
|
Žagar Ž, Schmidt JM. A Scoping Review on Tyrosine Kinase Inhibitors in Cats: Current Evidence and Future Directions. Animals (Basel) 2023; 13:3059. [PMID: 37835664 PMCID: PMC10572079 DOI: 10.3390/ani13193059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have become invaluable in the treatment of human and canine malignancies, but their role in feline oncology is less defined. While toceranib phosphate and masitinib mesylate are licensed for use in dogs, no TKI is yet approved for cats. This review systematically maps the research conducted on the expression of tyrosine kinases in neoplastic and non-neoplastic domestic feline tissues, as well as the in vitro/in vivo use of TKIs in domestic cats. We identify and discuss knowledge gaps and speculate on the further research and potential indications for TKI use in cats. A comprehensive search of three electronic databases and relevant paper reference lists identified 139 studies meeting the inclusion criteria. The most commonly identified tumors were mast cell tumors (MCTs), mammary and squamous cell carcinomas and injection-site sarcomas. Based on the current literature, toceranib phosphate appears to be the most efficacious TKI in cats, especially against MCTs. Exploring the clinical use of TKIs in mammary carcinomas holds promise. Despite the progress, currently, the evidence falls short, underscoring the need for further research to discover new indications in feline oncology and to bridge the knowledge gaps between human and feline medicine.
Collapse
Affiliation(s)
- Žiga Žagar
- IVC Evidensia Small Animal Clinic Hofheim, 65719 Hofheim am Taunus, Germany
| | | |
Collapse
|
6
|
Frénel JS, Nguyen F. Mammary carcinoma: Comparative oncology between small animals and humans-New therapeutic tools. Reprod Domest Anim 2023; 58 Suppl 2:102-108. [PMID: 37312625 DOI: 10.1111/rda.14408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/10/2023] [Indexed: 06/15/2023]
Abstract
The poor outcomes associated with mammary carcinomas (MCs) in dogs and cats in terms of locoregional recurrence, distant metastasis and survival, highlight the need for better management of mammary cancers in small animals. By contrast, the outcomes of women with breast cancer (BC) have dramatically improved during the last 10 years, notably thanks to new therapeutic strategies. The aim of this article was to imagine what could be the future of therapy for dogs and cats with MCs if it became inspired from current practices in human BC. This article focuses on the importance of taking into account cancer stage and cancer subtypes in therapeutic plans, on locoregional treatments (surgery, radiation therapy), new developments in endocrine therapy, chemotherapy, PARP inhibitors and immunotherapy. Ideally, multimodal treatment regimens would be chosen according to cancer stage and cancer subtypes, and according to predictive factors that are still to be defined.
Collapse
Affiliation(s)
- Jean-Sébastien Frénel
- Nantes Université, University of Angers, INSERM, CRCI2NA, Nantes, France
- Institut de Cancérologie de l'Ouest, Site René Gauducheau, Saint-Herblain, France
| | - Frédérique Nguyen
- Nantes Université, University of Angers, INSERM, CRCI2NA, Nantes, France
- Oniris, Nantes, France
| |
Collapse
|
7
|
Gameiro A, Urbano AC, Ferreira F. Emerging Biomarkers and Targeted Therapies in Feline Mammary Carcinoma. Vet Sci 2021; 8:164. [PMID: 34437486 PMCID: PMC8402877 DOI: 10.3390/vetsci8080164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022] Open
Abstract
Feline mammary carcinoma (FMC) is a common aggressive malignancy with a low survival rate that lacks viable therapeutic options beyond mastectomy. Recently, increasing efforts have been made to understand the molecular mechanisms underlying FMC development, using the knowledge gained from studies on human breast cancer to discover new diagnostic and prognostic biomarkers, thus reinforcing the utility of the cat as a cancer model. In this article, we review the current knowledge on FMC pathogenesis, biomarkers, and prognosis factors and offer new insights into novel therapeutic options for HER2-positive and triple-negative FMC subtypes.
Collapse
Affiliation(s)
| | | | - Fernando Ferreira
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (A.G.); (A.C.U.)
| |
Collapse
|
8
|
Tumor microenvironment of human breast cancer, and feline mammary carcinoma as a potential study model. Biochim Biophys Acta Rev Cancer 2021; 1876:188587. [PMID: 34237352 DOI: 10.1016/j.bbcan.2021.188587] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 01/21/2023]
Abstract
In recent years, the tumor microenvironment (TME) has been a research hotspot, as it is composed of distinct cellular and non-cellular elements that may influence the diagnosis, prognosis, and treatment of breast cancer patients. Cancer cells are able to escape immune control through an immunoediting process which depends on complex communication networks between immune and cancer cells. Thus, a better understanding of the immune cell infiltrate in the breast cancer microenvironment is crucial for the development of more effective therapeutic approaches. In this review article, we overview the different actors that orchestrate the complexity of the TME, including tumor infiltrating lymphocytes (TILs), natural killer cells, tumor infiltrating dendritic cells (TIDCs), tumor associated macrophages (TAMs), tumor associated neutrophils (TANs), cancer associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), distinct pro-angiogenic factors and immune checkpoint biomarkers. Additionally, we summarize the recent advances in the TME of feline mammary carcinoma (FMC). FMC has been proposed as a reliable cancer model for the study of human breast cancer, as they share clinicopathological, histopathological and epidemiological features, as well as the pathways involved in cancer initiation and progression.
Collapse
|
9
|
Leis-Filho AF, de Faria Lainetti P, Emiko Kobayashi P, Fonseca-Alves CE, Laufer-Amorim R. Effects of Lapatinib on HER2-Positive and HER2-Negative Canine Mammary Carcinoma Cells Cultured In Vitro. Pharmaceutics 2021; 13:897. [PMID: 34204236 PMCID: PMC8235449 DOI: 10.3390/pharmaceutics13060897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/19/2022] Open
Abstract
HER2 is a prognostic and predictive marker widely used in breast cancer. Lapatinib is a tyrosine kinase inhibitor that works by blocking the phosphorylation of the receptor HER2. Its use is related to relatively good results in the treatment of women with HER2+ breast cancer. Thus, this study aimed to verify the effects of lapatinib on four canine primary mammary gland carcinoma cell cultures and two paired metastatic cell cultures. Cultures were treated with lapatinib at concentrations of 100, 500, 1000 and 3000 nM for 24 h and the 50% inhibitory concentration (IC50) for each cell culture was determined. In addition, a transwell assay was performed to assess the ability of lapatinib to inhibit cell migration. Furthermore, we verified HER2 expression by RT-qPCR analysis of cell cultures and formalin-fixed paraffin-embedded tissues from samples corresponding to those used in cell culture. Lapatinib was able to inhibit cell proliferation in all cell cultures, but it was not able to inhibit migration in all cell cultures. The higher the expression of HER2 in a culture, the more sensitive the culture was to treatment. This relationship may be an indication that the expression of HER2 may be a predictive factor and opens a new perspective for the treatment of primary and metastatic mammary gland cancer.
Collapse
Affiliation(s)
- Antonio Fernando Leis-Filho
- Department of Veterinary Clinic, Sao Paulo State University-UNESP, Botucatu 18618-681, Brazil; (A.F.L.-F.); (P.E.K.)
| | - Patrícia de Faria Lainetti
- Department of Veterinary Surgery and Animal Reproduction, São Paulo State University-UNESP, Botucatu 18618-681, Brazil; (P.d.F.L.); (C.E.F.-A.)
| | - Priscila Emiko Kobayashi
- Department of Veterinary Clinic, Sao Paulo State University-UNESP, Botucatu 18618-681, Brazil; (A.F.L.-F.); (P.E.K.)
| | - Carlos Eduardo Fonseca-Alves
- Department of Veterinary Surgery and Animal Reproduction, São Paulo State University-UNESP, Botucatu 18618-681, Brazil; (P.d.F.L.); (C.E.F.-A.)
- Institute of Health Sciences, Paulista University-UNIP, Bauru 17048-290, Brazil
| | - Renée Laufer-Amorim
- Department of Veterinary Clinic, Sao Paulo State University-UNESP, Botucatu 18618-681, Brazil; (A.F.L.-F.); (P.E.K.)
| |
Collapse
|
10
|
HER2-Targeted Immunotherapy and Combined Protocols Showed Promising Antiproliferative Effects in Feline Mammary Carcinoma Cell-Based Models. Cancers (Basel) 2021; 13:cancers13092007. [PMID: 33919468 PMCID: PMC8122524 DOI: 10.3390/cancers13092007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Mammary tumors are common in cats, presenting an aggressive behavior with high tumor recurrence. Therefore, new and efficient therapeutic protocols are urgent. Monoclonal antibodies (mAbs; ADC) are widely used in human breast cancer therapy, inhibiting the HER2 dimerization and leading to cell apoptosis. Furthermore, drug combinations, with tyrosine kinase inhibitors (TKi) are valuable in patients’ therapeutic protocols. In this study, two mAbs, and an ADC, as well as combined protocols between mAbs and mAbs plus lapatinib (TKi) were tested to address if the drugs could be used as new therapeutic options in feline mammary tumors. All the compounds and the combined treatments revealed valuable antiproliferative effects, and a conserved cell death mechanism, by apoptosis, in the feline cell lines, where the mutations found in the extracellular domain of the HER2 suggest no immunotherapy resistance. Abstract Feline mammary carcinoma (FMC) is a highly prevalent tumor, showing aggressive clinicopathological features, with HER2-positive being the most frequent subtype. While, in human breast cancer, the use of anti-HER2 monoclonal antibodies (mAbs) is common, acting by blocking the extracellular domain (ECD) of the HER2 protein and by inducing cell apoptosis, scarce information is available on use these immunoagents in FMC. Thus, the antiproliferative effects of two mAbs (trastuzumab and pertuzumab), of an antibody–drug conjugate compound (T-DM1) and of combined treatments with a tyrosine kinase inhibitor (lapatinib) were evaluated on three FMC cell lines (CAT-MT, FMCm and FMCp). In parallel, the DNA sequence of the her2 ECD (subdomains II and IV) was analyzed in 40 clinical samples of FMC, in order to identify mutations, which can lead to antibody resistance or be used as prognostic biomarkers. Results obtained revealed a strong antiproliferative effect in all feline cell lines, and a synergistic response was observed when combined therapies were performed. Additionally, the mutations found were not described as inducing resistance to therapy in breast cancer patients. Altogether, our results suggested that anti-HER2 mAbs could become useful in the treatment of FMC, particularly, if combined with lapatinib, since drug-resistance seems to be rare.
Collapse
|