1
|
Cao-Luu NH, Nguyen TV, Luong HVT, Dang HG, Pham HG. Engineered polyvinyl alcohol/chitosan/carrageenan nanofibrous membrane loaded with Aloe vera for accelerating third-degree burn wound healing. Int J Biol Macromol 2025:143880. [PMID: 40324503 DOI: 10.1016/j.ijbiomac.2025.143880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/18/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
This study introduces an innovative nanofibrous membrane included polyvinyl alcohol (PVA), chitosan (CS), carrageenan (CG), and Aloe vera (AV), designed to enhance burn wound healing through a coaxial electrospinning technique. The PVA/AV@PVA/CS/CG membrane exhibited smooth surface, well-defined layered structure, and uniform nanofibers with a diameter of 180 ± 49 nm, as confirmed by SEM, TEM images. AV was efficiently incorporated into the membrane system, achieving encapsulation efficiency exceeding 80 % and loading efficiency of ~3 %. The release profile of AV followed the Fickian diffusion mechanism, described by the Korsmeyer-Peppas model, with the membrane demonstrating ~85 % delivery performance. The membrane exhibited favorable blood coagulation properties and a sufficient water vapor transmission rate. The membrane's balanced performance in boosting cell survival while also demonstrating antibacterial activity as well as anti-inflammatory effect, made it a suitable setting for wound healing. The synergistic interaction between the components significantly accelerated burn wound recovery and histological evaluation showed that less inflammation, fibroblast proliferation, and collagen deposition without formation of hypertrophic scars. The PVA/AV@PVA/CS/CG membrane showed statistically superior performance (p-values) in various experiments compared to the remaining samples. Conclusively, PVA/AV@PVA/CS/CG membrane exhibited numerous positive biochemical features, making it an excellent choice for third-degree burn wound dressing.
Collapse
Affiliation(s)
- Ngoc-Hanh Cao-Luu
- Faculty of Chemical Engineering, College of Engineering, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho 94000, Viet Nam; Composite Material Laboratory, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho 94000, Viet Nam.
| | - Tuong-Vy Nguyen
- Composite Material Laboratory, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho 94000, Viet Nam
| | - Huynh-Vu-Thanh Luong
- Faculty of Chemical Engineering, College of Engineering, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho 94000, Viet Nam; Applied Chemical Engineering Laboratory, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho 94000, Viet Nam
| | - Huynh-Giao Dang
- Faculty of Chemical Engineering, College of Engineering, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho 94000, Viet Nam
| | - Hong-Gam Pham
- Composite Material Laboratory, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho 94000, Viet Nam
| |
Collapse
|
2
|
Ni J, Chen Y, Zhang L, Wang R, Wu X, Khan NU, Xie F. Epigallocatechin gallate and vancomycin loaded poly(vinyl)-pyrrolidone-gelatine nanofibers, conceivable curative approach for wound healing. Colloids Surf B Biointerfaces 2025; 249:114506. [PMID: 39837051 DOI: 10.1016/j.colsurfb.2025.114506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/23/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025]
Abstract
During surgical procedures, skin and soft tissue wounds are often infected by resistant strains of gram-positive bacteria and gram-negative bacteria, resulting in serious obstacles to the healing of these wounds. Commercially available dressings for such wounds are still insufficient to combat resistant infections. Here, we designed vancomycin and epigallocatechin gallate (EGCG) loaded poly(vinyl)-pyrrolidone-gelatine nanofiber's membrane dressing for potential synergistic efficiency against infected post-surgical wounds. The nanofiber's membrane was physiochemically characterized by surface morphology, chemical and physical compatibilities', thermal stability, and drug release. Disk diffusion assays, Minimum inhibitor concentrations (MICs), and fractional inhibitory concentration indexes (FICI) were measured to analyze synergistic efficiency against Escherichia coli. Furthermore, Balb/c mice were used for in vivo healing studies, and to observe the healing mechanisms, histological assessments were performed. The designed system displayed excellent physical and chemical properties. The in vitro studies unveiled controlled-release patterns of vancomycin and EGCG and, at the same time, revealed 1.5-fold higher antimicrobial synergistic efficacy (FICI 0.485) than vancomycin against E. coli. The wound healing mechanisms reflected quick and mature healing processes with the promotion of collagen and angiogenesis at wound sites. The designed electrospun nanofiber technology might be personalized, rapid wound healing remedy for scientists and healthcare providers, and may enhance patients' outcomes and quality of life.
Collapse
Affiliation(s)
- Jiang Ni
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Yanhua Chen
- Department of Pharmacy, Children's hospital of Jiangnan university (Wuxi Children's Hospital), Wuxi 214000, China
| | - Lan Zhang
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Rong Wang
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Xiufeng Wu
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Naveed Ullah Khan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, China.
| | - Fen Xie
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi 214000, China.
| |
Collapse
|
3
|
Liang T, Lu C, Zhao M, Cao X, Hao J, Zhang X, Fu H, Cao Q, Li L, Jiang J. Multifunctional quercetin-hordein-chitosan nanoparticles: A non-antibiotic strategy for accelerated wound healing. Int J Biol Macromol 2025; 305:140943. [PMID: 39956225 DOI: 10.1016/j.ijbiomac.2025.140943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/26/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
Wound infections are a growing public health issue, worsened by drug-resistant strains. Quercetin (Que) has shown anti-inflammatory, antioxidant, and antimicrobial properties, but its limited bioavailability hinders therapeutic use. This study introduces a multifunctional self-assembly nanoplatform, QHCNPs, encapsulating quercetin with hordein/chitosan to enhance stability and bioavailability. Transmission electron microscopy and particle size analysis revealed that QHCNPs are spherical structures with a diameter of 435.5 ± 2.9 nm and a Zeta potential of +11.0 mV. QHCNPs demonstrated excellent stability, low cytotoxicity, and MIC values of 512 ppm against Staphylococcus aureus (S. aureus) and 256 ppm against methicillin-resistant Staphylococcus aureus (MRSA). In a bacterial wound model, QHCNPs outperformed quercetin alone by accelerating wound healing, eliminating bacteria, reducing inflammatory markers, scavenging reactive oxygen species (ROS), and promoting collagen and blood vessel regeneration. These results establish QHCNPs as a promising non-antibiotic therapy for treating drug-resistant wound infections, supporting further exploration for clinical applications.
Collapse
Affiliation(s)
- Ting Liang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Cuntao Lu
- Department of Breast Surgery, Xuzhou Central Hospital, Xuzhou 221004, Jiangsu, China
| | - Maofang Zhao
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Xiaoying Cao
- The Key Laboratory of Biotechnology for Medicinal and Edible Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Jingwen Hao
- The Key Laboratory of Biotechnology for Medicinal and Edible Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Xinyue Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Hailan Fu
- The Key Laboratory of Biotechnology for Medicinal and Edible Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Qinghe Cao
- Jiangsu Xuzhou Sweetpotato Research Center/Sweetpotato Research Institute, Chinese Agricultural Academy of Sciences, Xuzhou 221131, Jiangsu, China
| | - Ludan Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.
| |
Collapse
|
4
|
Razzaq A, Khan ZU, Saeed A, Shah KA, Khan NU, Menaa B, Iqbal H, Menaa F. Correction: Razzaq et al. Development of Cephradine-Loaded Gelatin/Polyvinyl Alcohol Electrospun Nanofibers for Effective Diabetic Wound Healing: In-Vitro and In-Vivo Assessments. Pharmaceutics 2021, 13, 349. Pharmaceutics 2025; 17:126. [PMID: 39861789 PMCID: PMC11768383 DOI: 10.3390/pharmaceutics17010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
In the original publication [...].
Collapse
Affiliation(s)
- Anam Razzaq
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Zaheer Ullah Khan
- Department of Pharmacy, COMSATS Institute of Information and Technology, Abbottabad 22060, Pakistan
| | - Aasim Saeed
- Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kiramat Ali Shah
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Naveed Ullah Khan
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Bouzid Menaa
- Department of Nanomedicine and Advanced Technologies, California Innovations Corporation, San Diego, CA 92037, USA
| | - Haroon Iqbal
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Farid Menaa
- Department of Nanomedicine and Advanced Technologies, California Innovations Corporation, San Diego, CA 92037, USA
| |
Collapse
|
5
|
Zhao Y, Chen J, Zhou M, Zhang G, Wu W, Wang Z, Sun J, Zhong A. Desferrioxamine-Laden Nanofibrous Scaffolds with Efficient Angiogenesis for Accelerating Diabetic Wound Healing. Int J Nanomedicine 2024; 19:10551-10568. [PMID: 39435042 PMCID: PMC11492907 DOI: 10.2147/ijn.s477109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/06/2024] [Indexed: 10/23/2024] Open
Abstract
Background Delayed diabetic wound healing is one of the clinical difficulties, the main reason is the limited angiogenesis ability. Deferriamine (DFO) is an iron chelating agent that can induce angiogenesis, but its application is limited due to its short half-life. Increasing the load and slow release performance of desferriamine is beneficial to accelerate diabetic wound healing. Materials and Methods In this study, we developed collagen (Col)-graphene oxide (GO) and (1% w/w) DFO-loaded nanofiber electrospinning scaffolds (DCG) using the electrospinning technique. We tested the physicochemical properties, drug release performance, and vascularization biological function of the scaffolds, and finally evaluated the promotion of full-thickness wound healing in the diabetic rat models. Results The results showed that DCG scaffolds have good mechanical properties and water-holding capacity and can release DFO continuously for 14 days. In vitro, the novel DCG scaffold exhibited good biocompatibility, with the up-regulation at the gene level of VEGF and its regulator HIF-1α, promoters of angiogenesis. This was verified in vivo, as the scaffold enhanced granulation tissue formation and improved neovascularization, thereby accelerating wound healing when applied to full-thickness defects on the back of diabetic rats. Conclusion The DCG nanofiber scaffold prepared in this study has good biocompatibility and vascularization ability, and improves the microenvironment in vivo, and has a good application prospect in diabetic wound repair.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People’s Republic of China
| | - Jialong Chen
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People’s Republic of China
| | - Muran Zhou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People’s Republic of China
| | - Guo Zhang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People’s Republic of China
| | - Wenhao Wu
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People’s Republic of China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People’s Republic of China
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People’s Republic of China
| | - Aimei Zhong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
6
|
Khan NU, Chengfeng X, Jiang MQ, Khan ZU, Razzaq A, Ullah A, Ni J, Abdullah, Iqbal H, Jin ZM. Obstructed vein delivery of ceftriaxone via poly(vinyl-pyrrolidone)-iodine-chitosan nanofibers for the management of diabetic foot infections and burn wounds. Int J Biol Macromol 2024; 277:134166. [PMID: 39084444 DOI: 10.1016/j.ijbiomac.2024.134166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Superficial skin injuries especially burn injuries and unhealed diabetic foot open wounds remain troubling for public health. The healing process is often interrupted by the invasion of resistant pathogens that results in the failure of conventional procedures outside the clinical settings. Herein, we designed nanofibers dressing with intrinsic antibacterial potential of poly(vinyl-pyrrolidone)-iodine/ poly (vinyl)-alcohol by electrospinning with chitosan encapsulating ceftriaxone (CPC/NFs). The optimized electrospun CPC/NFs exhibited smooth surface morphology with average diameter of 165 ± 7.1 nm, drug entrapment and loading efficiencies of 76.97 ± 4.7 % and 8.32 ± 1.73 %, respectively. The results displayed smooth and uniformed fibers with adequate thermal stability and ensured chemical doping. The enhanced in vitro antibacterial efficacy of CPC/NFs against resistant E. coli isolates and biosafety studies encourage the use of designed nanofibers dressing for burn injuries and diabetic foot injuries. In vivo studies proved the healing power of dressing for burn wounds model and diabetic infected wounds model. Immunofluorescence investigation of the wound tissue also suggested promising healing ability of CPC/NFs. The designed approach would be helpful to treat these infected skin open wounds in the hospitals and outside the clinical settings.
Collapse
Affiliation(s)
- Naveed Ullah Khan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, PR China
| | - Xie Chengfeng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, PR China
| | - Meng-Qin Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, PR China
| | - Zaheer Ullah Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Anam Razzaq
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China
| | - Asmat Ullah
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, PR China
| | - Jiang Ni
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi 214000, PR China
| | - Abdullah
- College of Food Sciences, Zhejiang University of Technology, Hangzhou 310012, PR China
| | - Haroon Iqbal
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, PR China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China.
| | - Zhi Min Jin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, PR China.
| |
Collapse
|
7
|
Khan NU, Chengfeng X, Jiang MQ, Akram W, Khan ZU, Razzaq A, Guohua M, Rui Z, Ni J, Ullah A, Iqbal H, Jin ZM. α-Lactalbumin based scaffolds for infected wound healing and tissue regeneration. Int J Pharm 2024; 663:124578. [PMID: 39153643 DOI: 10.1016/j.ijpharm.2024.124578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Interruption of wound healing by multi-drug resistant-bacterial infection is a harmful issue for the worldwide health care system, and conventional treatment approaches may not resolve this issue due to antimicrobial resistance. So, there is an unmet need to develop scaffolds with intrinsic wound healing properties to combat bacterial-infected wounds. Inspired by the α-lactalbumin's (Lalb's) ability to promote collagen synthesis, we herein electrospun Lalb with cephalexin (CPL) and epigallocatechin (EP) to produce nanofibers (CE-Lalb NFs) to solve this issue. The CE-Lalb NFs were prepared using the electrospinning technique and subjected to physicochemical characterizations, in vitro, and in vivo assessments. The CE-Lalb NFs promoted fibroblast migration, proliferation, and collagen synthesis, while CPL/EP annihilated MRSA and E. coli infections. Physicochemical characterizations proved the successful fabrication and doping of CE-Lalb NFs. Antimicrobial assays and fractional inhibitory concentration index (FICI) declared synergistic antibacterial activity of CE-Lalb NFs against MRSA and E. coli. The in vivo and immunohistochemical data evidenced its exceptional potential for wound healing, promoting growth factor, collagen synthesis, and reduced scar formation. The presence of mature collagen, fewer inflammatory cytokines, increased expression of blood vessels, and low expression of IL-6 at the wound site support in vitro and in vivo results. In our view, the tailored scaffold is the next step for personalized wound dressings that could meet patients with infected wounds' unmet needs by the subscription of noninvasive and easily navigable therapeutic options.
Collapse
Affiliation(s)
- Naveed Ullah Khan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, China
| | - Xie Chengfeng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, China
| | - Meng-Qin Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, China
| | - Wasim Akram
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123 China
| | - Zaheer Ullah Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Anam Razzaq
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Meng Guohua
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, China
| | - Zhang Rui
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, China
| | - Jiang Ni
- Pathology Department & Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Asmat Ullah
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| | - Haroon Iqbal
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Zhi Min Jin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, China.
| |
Collapse
|
8
|
Saleem M, Syed Khaja AS, Moursi S, Altamimi TA, Alharbi MS, Usman K, Khan MS, Alaskar A, Alam MJ. Narrative review on nanoparticles based on current evidence: therapeutic agents for diabetic foot infection. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6275-6297. [PMID: 38639898 DOI: 10.1007/s00210-024-03094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Diabetes's effects on wound healing present a major treatment challenge and increase the risk of amputation. When traditional therapies fail, new approaches must be investigated. With their submicron size and improved cellular internalisation, nanoparticles present a viable way to improve diabetic wound healing. They are attractive options because of their innate antibacterial qualities, biocompatibility, and biodegradability. Nanoparticles loaded with organic or inorganic compounds, or embedded in biomimetic matrices such as hydrogels, chitosan, and hyaluronic acid, exhibit excellent anti-inflammatory, antibacterial, and antioxidant properties. Drug delivery systems (DDSs)-more precisely, nanodrug delivery systems (NDDSs)-use the advantages of nanotechnology to get around some of the drawbacks of traditional DDSs. Recent developments show how expertly designed nanocarriers can carry a variety of chemicals, transforming the treatment of diabetic wounds. Biomaterials that deliver customised medications to the wound microenvironment demonstrate potential. Delivery techniques for nanomedicines become more potent than ever, overcoming conventional constraints. Therapeutics for diabetes-induced non-healing wounds are entering a revolutionary era thanks to precisely calibrated nanocarriers that effectively distribute chemicals. This review highlights the therapeutic potential of nanoparticles and outlines the multifunctional nanoparticles of the future that will be used for complete wound healing in diabetics. The investigation of novel nanodrug delivery systems has the potential to revolutionise diabetic wound therapy and provide hope for more efficient and focused therapeutic approaches.
Collapse
Affiliation(s)
- Mohd Saleem
- Department of Pathology, College of Medicine, University of Hail, 55211, Hail, Saudi Arabia.
| | | | - Soha Moursi
- Department of Pathology, College of Medicine, University of Hail, 55211, Hail, Saudi Arabia
| | - Tahani Almofeed Altamimi
- Department of Family Medicine, College of Medicine, University of Hail, 55211, Hail, Saudi Arabia
| | - Mohammed Salem Alharbi
- Department of Internal Medicine, College of Medicine, University of Hail, 55211, Hail, Saudi Arabia
| | - Kauser Usman
- Department of Internal Medicine, King George's Medical University, Lucknow, India
| | - Mohd Shahid Khan
- Department of Microbiology, Integral Institute of Medical Sciences and Research, Lucknow, India
| | - Alwaleed Alaskar
- Department of Diabetes and Endocrinology, King Salman Specialist Hospital, 55211, Hail, Saudi Arabia
| | - Mohammad Jahoor Alam
- Department of Biology, College of Science, University of Hail, 55211, Hail, Saudi Arabia
| |
Collapse
|
9
|
Sultana S, Ashwini BS, Ansari MA, Alomary MN, Jamous YF, Ravikiran T, Niranjana SR, Begum MY, Siddiqua A, Lakshmeesha TR. Catharanthus roseus-assisted bio-fabricated zinc oxide nanoparticles for promising antibacterial potential against Klebsiella pneumoniae. Bioprocess Biosyst Eng 2024; 47:1259-1269. [PMID: 38526617 DOI: 10.1007/s00449-024-03001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/13/2024] [Indexed: 03/27/2024]
Abstract
This study emphasized on the synthesis of zinc oxide nanoparticles (ZnO NPs) in an environmentally friendly manner from the extract of Catharanthus roseus leaves and its antibacterial assessment against the pneumonia-causing pathogen Klebsiella pneumoniae. This simple and convenient phytosynthesis approach is found to be beneficial over conventional methods, wherein plants serve as excellent reducing, capping, and stabilizing agents that enables the formation of ZnO NPs without the use of harmful chemicals. The formation of ZnO NPs was confirmed through several characterization techniques such as UV-visible spectroscopy, XRD, FT-IR, SEM, HR-TEM, and EDX. XRD analysis revealed high polycrystallinity with crystallite size of approximately 13 nm. SEM and HR-TEM revealed the hexagonal structure of ZnO NPs with the particle size range of 20-50 nm. The EDX shows the elemental purity without any impurity. Furthermore, the antibacterial efficacy by the technique of disc diffusion exhibited clear inhibition zones in ZnO NPs-treated discs. In addition, 125 µg/mL of ZnO NP concentration showed minimum inhibition by the microbroth dilution method. The potent inhibitory activity was further validated with trypan blue dye exclusion and fluorescence microscopy. Finally, SEM examination confirmed the efficient antibacterial potential of ZnO NPs through disruption of the intact morphology of Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Sumreen Sultana
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi Campus, Bengaluru, 560056, India
| | - Bagepalli Shivaram Ashwini
- Department of Microbiology, Shri Atal Bihari Vajpayee Medical College & Research Institute, Bengaluru, 560001, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia.
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Yahya F Jamous
- Vaccine and Bioprocessing Center, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Tekupalli Ravikiran
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi Campus, Bengaluru, 560056, India
| | | | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ayesha Siddiqua
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
10
|
Põhako-Palu K, Lorenz K, Randmäe K, Putrinš M, Kingo K, Tenson T, Kogermann K. In vitro experimental conditions and tools can influence the safety and biocompatibility results of antimicrobial electrospun biomaterials for wound healing. PLoS One 2024; 19:e0305137. [PMID: 38950036 PMCID: PMC11216574 DOI: 10.1371/journal.pone.0305137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/25/2024] [Indexed: 07/03/2024] Open
Abstract
Electrospun (ES) fibrous nanomaterials have been widely investigated as novel biomaterials. These biomaterials have to be safe and biocompatible; hence, they need to be tested for cytotoxicity before being administered to patients. The aim of this study was to develop a suitable and biorelevant in vitro cytotoxicity assay for ES biomaterials (e.g. wound dressings). We compared different in vitro cytotoxicity assays, and our model wound dressing was made from polycaprolactone and polyethylene oxide and contained chloramphenicol as the active pharmaceutical ingredient. Baby Hamster Kidney cells (BHK-21), human primary fibroblasts and MTS assays together with real-time cell analysis were selected. The extract exposure and direct contact safety evaluation setups were tested together with microscopic techniques. We found that while extract exposure assays are suitable for the initial testing, the biocompatibility of the biomaterial is revealed in in vitro direct contact assays where cell interactions with the ES wound dressing are evaluated. We observed significant differences in the experimental outcome, caused by the experimental set up modification such as cell line choice, cell medium and controls used, conducting the phosphate buffer washing step or not. A more detailed technical protocol for the in vitro cytotoxicity assessment of ES wound dressings was developed.
Collapse
Affiliation(s)
| | - Kairi Lorenz
- Institute of Pharmacy, University of Tartu, Tartu, Estonia
| | - Kelli Randmäe
- Institute of Pharmacy, University of Tartu, Tartu, Estonia
| | - Marta Putrinš
- Institute of Pharmacy, University of Tartu, Tartu, Estonia
| | - Külli Kingo
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | |
Collapse
|
11
|
Kanamori M, Hara K, Yamazoe E, Ito T, Tahara K. Development of Polyvinyl Alcohol (PVA) Nanofibers Containing Cationic Lipid/siRNA Complexes via Electrospinning: The Impact of PVA Characterization. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1083. [PMID: 38998687 PMCID: PMC11243518 DOI: 10.3390/nano14131083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
This study aimed to develop polyvinyl alcohol (PVA) nanofibers encapsulating 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)/siRNA complexes via electrospinning for the delivery of nucleic acid-based drugs. It also focused on the influence of the intrinsic properties of PVA on the efficacy of the system. PVA nanofibers, with diameters of 300-400 nm, were obtained, within which the siRNA remained intact and the DOTAP/siRNA complexes were uniformly dispersed. By incorporating DOTAP/siRNA complexes into the PVA nanofibers and assessing the impact of their RNA interference (RNAi) activity in A549-Luc cells, a stable inhibition of luciferase expression was observed. An examination of the nanofiber preparation process revealed that even when DOTAP or siRNA were added separately to the PVA solution without forming complexes, the RNAi effect was retained. The DOTAP/siRNA complexes released from the PVA nanofibers were internalized by the cells, with some PVA residues remaining on their surfaces. The significance of the degree of hydrolysis and polymerization of PVA on the performance of nanofibers was highlighted. Notably, PVA with a low degree of hydrolysis substantially enhanced RNAi effects, with luciferase expression inhibition reaching 91.5 ± 0.7%. Nanofibers made of PVA grades with anionic or cationic modifications were also evaluated, suggesting that they affect the efficacy of siRNA delivery. The insights obtained suggest avenues for future research to optimize drug delivery systems further.
Collapse
Affiliation(s)
- Miyu Kanamori
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Kouji Hara
- Laboratory of Nanofiber Technology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
- Global Food/Healthcare Department, Mitsubishi Chemical Corporation, 1-1-1 Marunouchi, Chiyoda, Tokyo 100-8251, Japan
| | - Eriko Yamazoe
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Takaaki Ito
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Kohei Tahara
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
- Laboratory of Nanofiber Technology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
12
|
Alzahrani DA, Alsulami KA, Alsulaihem FM, Bakr AA, Booq RY, Alfahad AJ, Aodah AH, Alsudir SA, Fathaddin AA, Alyamani EJ, Almomen AA, Tawfik EA. Dual Drug-Loaded Coaxial Nanofiber Dressings for the Treatment of Diabetic Foot Ulcer. Int J Nanomedicine 2024; 19:5681-5703. [PMID: 38882541 PMCID: PMC11179665 DOI: 10.2147/ijn.s460467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction Diabetes mellitus is frequently associated with foot ulcers, which pose significant health risks and complications. Impaired wound healing in diabetic patients is attributed to multiple factors, including hyperglycemia, neuropathy, chronic inflammation, oxidative damage, and decreased vascularization. Rationale To address these challenges, this project aims to develop bioactive, fast-dissolving nanofiber dressings composed of polyvinylpyrrolidone loaded with a combination of an antibiotic (moxifloxacin or fusidic acid) and anti-inflammatory drug (pirfenidone) using electrospinning technique to prevent the bacterial growth, reduce inflammation, and expedite wound healing in diabetic wounds. Results The fabricated drug-loaded fibers exhibited diameters of 443 ± 67 nm for moxifloxacin/pirfenidone nanofibers and 488 ± 92 nm for fusidic acid/pirfenidone nanofibers. The encapsulation efficiency, drug loading and drug release studies for the moxifloxacin/pirfenidone nanofibers were found to be 70 ± 3% and 20 ± 1 µg/mg, respectively, for moxifloxacin, and 96 ± 6% and 28 ± 2 µg/mg, respectively, for pirfenidone, with a complete release of both drugs within 24 hours, whereas the fusidic acid/pirfenidone nanofibers were found to be 95 ± 6% and 28 ± 2 µg/mg, respectively, for fusidic acid and 102 ± 5% and 30 ± 2 µg/mg, respectively, for pirfenidone, with a release rate of 66% for fusidic acid and 80%, for pirfenidone after 24 hours. The efficacy of the prepared nanofiber formulations in accelerating wound healing was evaluated using an induced diabetic rat model. All tested formulations showed an earlier complete closure of the wound compared to the controls, which was also supported by the histopathological assessment. Notably, the combination of fusidic acid and pirfenidone nanofibers demonstrated wound healing acceleration on day 8, earlier than all tested groups. Conclusion These findings highlight the potential of the drug-loaded nanofibrous system as a promising medicated wound dressing for diabetic foot applications.
Collapse
Affiliation(s)
- Dunia A Alzahrani
- Advanced Diagnostics and Therapeutics Technologies Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Khulud A Alsulami
- Advanced Diagnostics and Therapeutics Technologies Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Fatemah M Alsulaihem
- Advanced Diagnostics and Therapeutics Technologies Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Abrar A Bakr
- Advanced Diagnostics and Therapeutics Technologies Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Rayan Y Booq
- Wellness and Preventative Medicine Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Ahmed J Alfahad
- Waste Management and Recycling Technologies Institute, Sustainability and Environment Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Alhassan H Aodah
- Advanced Diagnostics and Therapeutics Technologies Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Samar A Alsudir
- Bioengineering Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Amany A Fathaddin
- Department of Pathology, College of Medicine, King Saud University, Riyadh, 12372, Saudi Arabia
- King Saud University Medical City, Riyadh, 12372, Saudi Arabia
| | - Essam J Alyamani
- Wellness and Preventative Medicine Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Aliyah A Almomen
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Essam A Tawfik
- Advanced Diagnostics and Therapeutics Technologies Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| |
Collapse
|
13
|
Adel Alawadi H, Andarzbakhsh K, Rastegari A, Mohammadi Z, Aghsami M, Saadatpour F. Chitosan-Aloe Vera Composition Loaded with Zinc Oxide Nanoparticles for Wound Healing: In Vitro and In Vivo Evaluations. IET Nanobiotechnol 2024; 2024:6024411. [PMID: 38863973 PMCID: PMC11111295 DOI: 10.1049/2024/6024411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Global concerns due to the negative impacts of untreatable wounds, as well as the growing population of these patients, emphasize the critical need for advancements in the wound healing materials and techniques. Nanotechnology offers encouraging avenues for improving wound healing process. In this context, nanoparticles (NPs) and certain natural materials, including chitosan (CS) and aloe vera (AV), have demonstrated the potential to promote healing effects. The objective of this investigation is to assess the effect of novel fabricated nanocomposite gel containing CS, AV, and zinc oxide NPs (ZnO NPs) on the wound healing process. The ZnO NPs were synthesized and characterized by X-ray diffraction and electron microscopy. Then, CS/AV gel with different ratios was prepared and loaded with ZnO NPs. The obtained formulations were characterized in vitro based on an antimicrobial study, and the best formulations were used for the animal study to assess their wound healing effects in 21 days. The ZnO NPs were produced with an average 33 nm particle size and exhibited rod shape morphology. Prepared gels were homogenous with good spreadability, and CS/AV/ZnO NPs formulations showed higher antimicrobial effects against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The wound healing findings showed significant wound area reduction in the CS/AV/ZnO NPs group compared to negative control at day 21. Histopathological assessment revealed the advantageous impact of this formulation across various stages of the wound healing process, including collagen deposition (CS/AV/ZnO NPs (2 : 1), 76.6 ± 3.3 compared to negative control, 46.2 ± 3.7) and epitheliogenesis (CS/AV/ZnO NPs (2 : 1), 3 ± 0.9 compared to negative control, 0.8 ± 0.8). CS/AV gel-loaded ZnO NPs showed significant effectiveness in wound healing and would be suggested as a promising formulation in the wound healing process. Further assessments are warranted to ensure the robustness of our findings.
Collapse
Affiliation(s)
- Hasanain Adel Alawadi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Kamyab Andarzbakhsh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Rastegari
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Mohammadi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Aghsami
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Saadatpour
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
14
|
Temel-Soylu TM, Keçeciler-Emir C, Rababah T, Özel C, Yücel S, Basaran-Elalmis Y, Altan D, Kirgiz Ö, Seçinti İE, Kaya U, Altuğ ME. Green Electrospun Poly(vinyl alcohol)/Gelatin-Based Nanofibrous Membrane by Incorporating 45S5 Bioglass Nanoparticles and Urea for Wound Dressing Applications: Characterization and In Vitro and In Vivo Evaluations. ACS OMEGA 2024; 9:21187-21203. [PMID: 38764625 PMCID: PMC11097359 DOI: 10.1021/acsomega.4c01102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 05/21/2024]
Abstract
This study reports the fabrication and characterization of poly(vinyl alcohol) (PVA) and gelatin (Gel)-based nanofiber membranes cross-linked with citric acid (CA) by a green electrospinning method in which nano 45S5 bioglass (BG) and urea were incorporated. Various combinations of PVA, gelatin, and BG were prepared, and nanofiber membranes with average fiber diameters between 238 and 595 nm were fabricated. Morphological, chemical, and mechanical properties, porosity, swelling, water retention, and water vapor transmission rate of the fabricated membranes were evaluated. PVA:Gel (90:10), 15% CA, and 3% BG were determined as the optimum blend for nanofiber membrane fabrication via electrospinning. The membrane obtained using this blend was further functionalized with 10% w/w polymer urea coating by the electrospray method following the cross-linking. In vitro biocompatibility tests revealed that the fabricated membranes were all biocompatible except for the one that functionalized with urea. In vivo macroscopic and histopathological analysis results of PVA/Gel/BG and PVA/Gel/BG/Urea treated wounds indicated increased collagenization and vascularization and had an anti-inflammatory effect. Furthermore, careful examination of the in vivo macroscopic results of the PVA/Gel/BG/Urea membrane indicated its potential to decrease uneven scar formation. In conclusion, developed PVA/Gel/BG and PVA/Gel/BG/Urea electrospun membranes with multifunctional and biomimetic features may have the potential to be used as beneficial wound dressings.
Collapse
Affiliation(s)
- Tülay Merve Temel-Soylu
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220 İstanbul, Türkiye
| | - Ceren Keçeciler-Emir
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220 İstanbul, Türkiye
- Faculty
of Rafet Kayis Engineering, Genetic and Bioengineering Department, Alanya Alaaddin Keykubat University, 07425 Antalya, Türkiye
| | - Taha Rababah
- Nutrition
and Food Technology Department, Jordan University
of Science and Technology, Irbid 3030, Jordan
| | - Cem Özel
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220 İstanbul, Türkiye
| | - Sevil Yücel
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220 İstanbul, Türkiye
| | - Yeliz Basaran-Elalmis
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220 İstanbul, Türkiye
| | - Dilan Altan
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220 İstanbul, Türkiye
| | - Ömer Kirgiz
- Faculty
of Veterinary, Department of Clinical Sciences, Hatay Mustafa Kemal University, 31060 Hatay, Türkiye
| | - İlke Evrim Seçinti
- Faculty
of Medicine, Department of Pathology, Hatay
Mustafa Kemal University, 31060 Hatay, Türkiye
| | - Ufuk Kaya
- Faculty
of
Veterinary, Department of Biostatistics, Hatay Mustafa Kemal University, 31060 Hatay, Türkiye
| | - Muhammed Enes Altuğ
- Faculty
of Veterinary, Department of Clinical Sciences, Hatay Mustafa Kemal University, 31060 Hatay, Türkiye
| |
Collapse
|
15
|
Soleiman-Dehkordi E, Reisi-Vanani V, Hosseini S, Lorigooini Z, Zvareh VA, Farzan M, Khorasgani EM, Lozano K, Abolhassanzadeh Z. Multilayer PVA/gelatin nanofibrous scaffolds incorporated with Tanacetum polycephalum essential oil and amoxicillin for skin tissue engineering application. Int J Biol Macromol 2024; 262:129931. [PMID: 38331079 DOI: 10.1016/j.ijbiomac.2024.129931] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Wound infection is still an important challenge in healing of different types of skin injuries. This highlights the need for new and improved antibacterial agents with novel and different mechanisms of action. In this study, by electrospinning process Tanacetum polycephalum essential oil (EO), as a natural antibacterial and anti-inflammatory agent, along with Amoxicillin (AMX) as an antibiotic are incorporated into PVA/gelatin-based nanofiber mats individually and in combination to fabricate a novel wound dressing. Briefly, we fabricated PVA/gelatin loaded by Amoxicillin as first layer for direct contact with wound surface to protects the wound from exogenous bacteria, and then built a PVA/gelatin/Tanacetum polycephalum essential oil layer on the first layer to help cleanses the wound from infection and accelerates wound closure. Finally, PVA/gelatin layer as third layer fabricated on middle layer to guarantee desirable mechanical properties. For each layer, the electrospinning parameters were adjusted to form bead-free fibers. The morphology of fabricated nanofiber scaffolds was characterized by Fourier-transform infrared (FTIR) and scanning electron microscopy (SEM). Microscopic images demonstrated the smooth bead-free microstructures fabrication of every layer of nanofiber with a uniform fiber size of 126.888 to 136.833 nm. While, EO and AMX increased the diameter of nanofibers but there was no change in physical structure of nanofiber. The water contact angle test demonstrated hydrophilicity of nanofibers with 47.35°. Although EO and AMX had little effect on reducing hydrophilicity but nanofibers with contact angle between 51.4° until 65.4° are still hydrophilic. Multilayer nanofibers loaded by EO and AMX killed 99.99 % of both gram-negative and gram-positive bacteria in comparison with control and PVA/gelatin nanofiber. Also, in addition to confirming the non-toxicity of nanofibers, MTT results also showed the acceleration of cell proliferation. In vivo wound evaluation in mouse models showed that designed nanofibrous scaffolds could be an appropriate option for wound treatment due to their positive effect on angiogenesis, collagen deposition, granulation tissue formation, epithelialization, and wound closure.
Collapse
Affiliation(s)
- Ebrahim Soleiman-Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vahid Reisi-Vanani
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samanesadat Hosseini
- Central Research Laboratories, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Phytochemistry Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vajihe Azimian Zvareh
- Core Research Facilities (CRF), Isfahan University of Medical Science, Isfahan, Iran
| | - Mahour Farzan
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Moghtadaie Khorasgani
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Karen Lozano
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA.
| | - Zohreh Abolhassanzadeh
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
16
|
Mostafa DA, Hashad AM, Abou El-Ezz D, Ragab MF, Khalifa MKA. Electrospun PVA nanofiber mat for topical Deflazacort delivery: accentuated anti-inflammatory efficacy for wound healing. Pharm Dev Technol 2023; 28:884-895. [PMID: 37830868 DOI: 10.1080/10837450.2023.2270057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE Asses the wound healing activity of Polyvinyl alcohol - Deflazacort (PVA-DEF) nanofibers mats synthesized by electrospinning technology. METHODS PVA-DEF nanofiber mats were created with various PVA polymer concentrations using an electrospinning process. The morphological features and diameter of the electrospun nanofibrous mats were investigated using scanning electron microscopy (SEM). The in vitro DEF release rate from PVA electrospun nanofibrous mats was evaluated. In addition to assessing wound healing activity in vivo, histological, and immunochemical tests were conducted. RESULTS Results revealed a uniform and smooth surface of the fiber with an average diameter of the selected fibers of 533.9 nm ± 45.83. Also, PVA electrospun nanofiber mats showed an initial burst release of more than 50% of the DEF in 1 h, and the rest of the DEF was released gradually for up to 480 min. Fickian diffusion is the main DEF release mechanism from PVA electrospun nanofiber mats. In male Wistar albino rats with 1 cm2 excision wounds, in vivo studies revealed a significant improvement in wound healing rate via modulation of tumor necrosis factor-alpha (TNF-α) and vascular endothelial growth factor (VEGF) expression. CONCLUSION PVA-DEF nanofiber mats can be used effectively for improving wound healing.
Collapse
Affiliation(s)
- Dalia A Mostafa
- Pharmaceutics Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Amira Mostafa Hashad
- Pharmaceutics Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Doaa Abou El-Ezz
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Mai F Ragab
- Pharmacology Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Maha K A Khalifa
- Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo, Egypt
| |
Collapse
|
17
|
Syed MH, Khan MMR, Zahari MAKM, Beg MDH, Abdullah N. A review on current trends and future prospectives of electrospun biopolymeric nanofibers for biomedical applications. Eur Polym J 2023; 197:112352. [DOI: 10.1016/j.eurpolymj.2023.112352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Song J, Razzaq A, Khan NU, Iqbal H, Ni J. Chitosan/poly (3-hydroxy butyric acid-co-3-hydroxy valeric acid) electrospun nanofibers with cephradine for superficial incisional skin wound infection management. Int J Biol Macromol 2023; 250:126229. [PMID: 37558042 DOI: 10.1016/j.ijbiomac.2023.126229] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/16/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
The belated and compromised incisional skin wound healing caused by the invading of methicillin-resistance staphylococcus aureus is a serious problem in clinic. Designing a new therapeutic strategy to inhibit the growth of invading bacteria at post-surgical site might be helpful in fast healing of post-surgical wounds. In this study, we developed cephradine (Ceph) encapsulated chitosan and poly (3-hydroxy butyric acid-co-3-hydroxy valeric acid, (PHBV)) hybrid nanofibers (Ceph-CHP NFs) employing an electrospinning method to revamp the Ceph bioavailability at the post-surgical wound site to prevent the growth of invading bacteria and trigger the wound healing process. The fabricated nanofibers revealed smooth and uniform surface with a diameter range of 160 ± 25 to 190 ± 55 nm, depending on Ceph concentration. Further, the electrospun hybrid nanofibers exhibited a higher entrapment efficiency (EE) and drug loading capacity (DLC) nearly 72.8 ± 5.2 % and 16.5 ± 3.2 %, respectively. Moreover, the Ceph-CHP NFs showed high swelling rate and biodegradation in presence of lysozyme in contrast to blank CHP NFs. Ceph-CHP NFs exhibited fast drug release in initial few hours followed by slow and controlled drug release drug up to 48 h with a constant rate. In-vitro antimicrobial studies indicated the heightened efficacy of Ceph-CHP NFs against MRSA clinical isolates and exhibited no visible cytotoxicity against keratinocytes, HC11 and L929 cells. Lastly, Ceph-CHP NFs showed the enhanced wound healing and bacterial clearance from post-surgical wound compared to Ceph in C57BL/6 mice skin model. Overall, our results showed that Ceph-CHP NFs might be used as a promising wound dressing material for MRSA-infected post-surgical wounds.
Collapse
Affiliation(s)
- Jinfang Song
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi 214000, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221000, China
| | - Anam Razzaq
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Naveed Ullah Khan
- Department of Pharmacy, CECOS University of IT and Emerging Sciences, Peshawar 25000, Pakistan
| | - Haroon Iqbal
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences (CAS), Hangzhou, Zhejiang 310022, China.
| | - Jiang Ni
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi 214000, China.
| |
Collapse
|
19
|
Li M, Xia W, Khoong YM, Huang L, Huang X, Liang H, Zhao Y, Mao J, Yu H, Zan T. Smart and versatile biomaterials for cutaneous wound healing. Biomater Res 2023; 27:87. [PMID: 37717028 PMCID: PMC10504797 DOI: 10.1186/s40824-023-00426-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023] Open
Abstract
The global increase of cutaneous wounds imposes huge health and financial burdens on patients and society. Despite improved wound healing outcomes, conventional wound dressings are far from ideal, owing to the complex healing process. Smart wound dressings, which are sensitive to or interact with changes in wound condition or environment, have been proposed as appealing therapeutic platforms to effectively facilitate wound healing. In this review, the wound healing processes and features of existing biomaterials are firstly introduced, followed by summarizing the mechanisms of smart responsive materials. Afterwards, recent advances and designs in smart and versatile materials of extensive applications for cutaneous wound healing were submarined. Finally, clinical progresses, challenges and future perspectives of the smart wound dressing are discussed. Overall, by mapping the composition and intrinsic structure of smart responsive materials to their individual needs of cutaneous wounds, with particular attention to the responsive mechanisms, this review is promising to advance further progress in designing smart responsive materials for wounds and drive clinical translation.
Collapse
Affiliation(s)
- Minxiong Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenzheng Xia
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi Min Khoong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lujia Huang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Hsin Liang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yun Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jiayi Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Haijun Yu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
20
|
Alshawwa SZ, El-Masry TA, Nasr M, Kira AY, Alotaibi HF, Sallam AS, Elekhnawy E. Celecoxib-Loaded Cubosomal Nanoparticles as a Therapeutic Approach for Staphylococcus aureus In Vivo Infection. Microorganisms 2023; 11:2247. [PMID: 37764091 PMCID: PMC10535980 DOI: 10.3390/microorganisms11092247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
There is a great need for novel approaches to treating bacterial infections, due to the vast dissemination of resistance among pathogenic bacteria. Staphylococcus aureus are ubiquitous Gram-positive pathogenic bacteria and are rapidly acquiring antibiotic resistance. Here, celecoxib was encapsulated into cubosomal nanoparticles, and the particle morphology, size distribution, zeta potential, entrapment efficiency, and celecoxib release were evaluated in vitro. Also, a systemic infection model in mice elucidated the in vivo antibacterial action of the celecoxib cubosomes. Cubosomes are a nanotechnology-based delivery system which can adhere to the external peptidoglycan layers of Gram-positive bacteria and penetrate them. The size distribution investigation revealed that the prepared celecoxib-loaded cubosomes had a mean particle size of 128.15 ± 3.04 nm with a low polydispersity index of 0.235 ± 0.023. The zeta potential measurement showed that the prepared cubosomes had a negative surface charge of -17.50 ± 0.45, indicating a highly stable nanodispersion formation with little susceptibility to particle aggregation. The cubosomal dispersion exhibited an entrapment efficiency of 88.57 ± 2.36%. The transmission electron micrograph for the prepared celecoxib-loaded cubosomes showed a narrow size distribution for the cubosomal nanoparticles, which had a spherical shape and were non-aggregated. The tested cubosomes diminished the inflammation in the treated mice's liver and spleen tissues, as revealed by hematoxylin and eosin stain and Masson's trichrome stain. The immunostained tissues with nuclear factor kappa B and caspase-3 monoclonal antibodies revealed a marked decrease in these markers in the celecoxib-treated group, as it resulted in negative or weak immunostaining in liver and spleen that ranged from 4.54% to 17.43%. This indicates their inhibitory effect on the inflammatory pathway and apoptosis, respectively. Furthermore, they reduced the bacterial burden in the studied tissues. This is alongside a decrease in the inflammatory markers (interleukin-1 beta, interleukin-6, cyclooxygenase-2, and tumor necrosis factor-alpha) determined by ELISA and qRT-PCR. The IL-1β levels were 16.66 ± 0.5 pg/mg and 17 ± 0.9 pg/mg in liver and spleen, respectively. Also, IL-6 levels were 85 ± 3.2 pg/mg and 84 ± 2.4 pg/mg in liver and spleen, respectively. In conclusion, the current study introduced cubosomes as an approach for the formulation of celecoxib to enhance its in vivo antibacterial action by improving its oral bioavailability.
Collapse
Affiliation(s)
- Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Thanaa A. El-Masry
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Mohamed Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11790, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Mansoura 11152, Egypt
| | - Ahmed Y. Kira
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Mansoura 11152, Egypt
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
21
|
Kumar M, Keshwania P, Chopra S, Mahmood S, Bhatia A. Therapeutic Potential of Nanocarrier-Mediated Delivery of Phytoconstituents for Wound Healing: Their Current Status and Future Perspective. AAPS PharmSciTech 2023; 24:155. [PMID: 37468691 DOI: 10.1208/s12249-023-02616-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/01/2023] [Indexed: 07/21/2023] Open
Abstract
The treatment of wounds is a serious problem all over the world and imposes a huge financial burden on each and every nation. For a long time, researchers have explored wound dressing that speeds up wound healing. Traditional wound dressing does not respond effectively to the wound-healing process as expected. Therapeutic active derived from plant extracts and extracted bioactive components have been employed in various regions of the globe since ancient times for the purpose of illness, prevention, and therapy. About 200 years ago, most medical treatments were based on herbal remedies. Especially in the West, the usage of herbal treatments began to wane in the 1960s as a result of the rise of allopathic medicine. In recent years, however, there has been a resurgence of interest in and demand for herbal medicines for a number of reasons, including claims about their efficacy, shifting consumer preferences toward natural medicines, high costs and negative side effects of modern medicines, and advancements in herbal medicines brought about by scientific research and technological innovation. The exploration of medicinal plants and their typical uses could potentially result in advanced pharmaceuticals that exhibit reduced adverse effects. This review aims to present an overview of the utilization of nanocarriers in plant-based therapeutics, including its current status, recent advancements, challenges, and future prospects. The objective is to equip researchers with a comprehensive understanding of the historical background, current state, and potential future developments in this emerging field. In light of this, the advantages of nanocarriers based delivery of natural wound healing treatments have been discussed, with a focus on nanofibers, nanoparticles, nano-emulsion, and nanogels.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Puja Keshwania
- Department of Microbiology, Maharishi Markandeshwar Institute of Medical Sciences and Research, Mullana, Ambala, Haryana, 133207, India
| | - Shruti Chopra
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|
22
|
Akram MW, Hoque MMU, Miah MS, Shahid MA, Hossain MF, Mahmud SH. Fabrication and characterization of antimicrobial wound dressing nanofibrous materials by PVA-betel leaf extract. Heliyon 2023; 9:e17961. [PMID: 37483766 PMCID: PMC10359877 DOI: 10.1016/j.heliyon.2023.e17961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
This present study involves the formation and investigation of the characteristics of a fabricated mat from a PVA-betel leaf mixture. Under ideal processing parameters, nanofibrous mat is synthesized from the PVA-betel leaf blended solution by using the electrospinning technique. Afterwards, the produced nanofibrous mat is assessed for its thermal, antibacterial, morphological, moisture management and chemical interaction behavior using thermogravimetric analysis (TGA), antibacterial assay, scanning electron microscope (SEM), moisture management tester (MMT) and Fourier-transform infrared spectroscopy (FTIR) respectively. The antibacterial action against Staphylococcus aureus and Escherichia coli bacteria has been assessed using the agar diffusion technique, which reveals the creation of zones of inhibition with a value of about 20 mm. Besides, the fabricated nanomat reveals an average diameter of 183.4 nm with improved moisture and thermal characteristics. Furthermore, the generated nanofibrous mat has all the necessary components, as evidenced by the distinctive peaks in the FTIR spectra. Hence, the recently developed nanofibrous mat exhibits promising potential as a suitable material for wound dressing applications.
Collapse
Affiliation(s)
- Md. Washim Akram
- Department of Textile Engineering, National Institute of Textile Engineering & Research (NITER), Nayarhat, Savar, Dhaka, Bangladesh
- Department of Textile Engineering, Dhaka University of Engineering & Technology (DUET), Gazipur, Dhaka, Bangladesh
| | - Mohammad Mohsin Ul Hoque
- Department of Textile Engineering, National Institute of Textile Engineering & Research (NITER), Nayarhat, Savar, Dhaka, Bangladesh
| | - Md. Sumon Miah
- Department of Textile Engineering, Dhaka University of Engineering & Technology (DUET), Gazipur, Dhaka, Bangladesh
| | - Md. Abdus Shahid
- Department of Textile Engineering, Dhaka University of Engineering & Technology (DUET), Gazipur, Dhaka, Bangladesh
| | - Md. Firoz Hossain
- Department of Textile Engineering, Dhaka University of Engineering & Technology (DUET), Gazipur, Dhaka, Bangladesh
| | - Sayed Hasan Mahmud
- Department of Textile Engineering, National Institute of Textile Engineering & Research (NITER), Nayarhat, Savar, Dhaka, Bangladesh
| |
Collapse
|
23
|
Kumar M, Hilles AR, Ge Y, Bhatia A, Mahmood S. A review on polysaccharides mediated electrospun nanofibers for diabetic wound healing: Their current status with regulatory perspective. Int J Biol Macromol 2023; 234:123696. [PMID: 36801273 DOI: 10.1016/j.ijbiomac.2023.123696] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
The current treatment strategies for diabetic wound care provide only moderate degree of effectiveness; hence new and improved therapeutic techniques are in great demand. Diabetic wound healing is a complex physiological process that involves synchronisation of various biological events such as haemostasis, inflammation, and remodelling. Nanomaterials like polymeric nanofibers (NFs) offer a promising approach for the treatment of diabetic wounds and have emerged as viable options for wound management. Electrospinning is a powerful and cost-effective method to fabricate versatile NFs with a wide array of raw materials for different biological applications. The electrospun NFs have unique advantages in the development of wound dressings due to their high specific surface area and porosity. The electrospun NFs possess a unique porous structure and biological function similar to the natural extracellular matrix (ECM), and are known to accelerate wound healing. Compared to traditional dressings, the electrospun NFs are more effective in healing wounds owing to their distinct characteristics, good surface functionalisation, better biocompatibility and biodegradability. This review provides a comprehensive overview of the electrospinning procedure and its operating principle, with special emphasis on the role of electrospun NFs in the treatment of diabetic wounds. This review discusses the present techniques applied in the fabrication of NF dressings, and highlights the future prospects of electrospun NFs in medicinal applications.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Ayah R Hilles
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Yi Ge
- INHART, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Selangor, Malaysia
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
24
|
Liu M, Wei X, Zheng Z, Li Y, Li M, Lin J, Yang L. Recent Advances in Nano-Drug Delivery Systems for the Treatment of Diabetic Wound Healing. Int J Nanomedicine 2023; 18:1537-1560. [PMID: 37007988 PMCID: PMC10065433 DOI: 10.2147/ijn.s395438] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/14/2023] [Indexed: 03/28/2023] Open
Abstract
Diabetes mellitus (DM) induced wound healing impairment remains a serious health problem and burden on the clinical obligation for high amputation rates. Based on the features of wound microenvironment, biomaterials loading specific drugs can benefit diabetic wound treatment. Drug delivery systems (DDSs) can carry diverse functional substances to the wound site. Nano-drug delivery systems (NDDSs), benefiting from their features related to nano size, overcome limitations of conventional DDSs application and are considered as a developing process in the wound treatment field. Recently, a number of finely designed nanocarriers efficiently loading various substances (bioactive and non-bioactive factors) have emerged to circumvent constraints faced by traditional DDSs. This review describes various recent advances of nano-drug delivery systems involved in mitigating diabetes mellitus-based non-healing wounds.
Collapse
Affiliation(s)
- Mengqian Liu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xuerong Wei
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yicheng Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Mengyao Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jiabao Lin
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Correspondence: Lei Yang, Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, People’s Republic of China, Tel +86-20-6164-1841, Email
| |
Collapse
|
25
|
Wang Z, Hu W, Wang W, Xiao Y, Chen Y, Wang X. Antibacterial Electrospun Nanofibrous Materials for Wound Healing. ADVANCED FIBER MATERIALS 2023; 5:107-129. [DOI: 10.1007/s42765-022-00223-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/09/2022] [Indexed: 08/25/2024]
|
26
|
Bhardwaj H, Khute S, Sahu R, Jangde RK. Advanced Drug Delivery System for Management of Chronic Diabetes Wound Healing. Curr Drug Targets 2023; 24:1239-1259. [PMID: 37957907 DOI: 10.2174/0113894501260002231101080505] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/28/2023] [Accepted: 09/07/2023] [Indexed: 11/15/2023]
Abstract
The diabetic wound is excessively vulnerable to infection because the diabetic wound suggests delayed and incomplete healing techniques. Presently, wounds and ulcers related to diabetes have additionally increased the medical burden. A diabetic wound can impair mobility, lead to amputations, or even death. In recent times, advanced drug delivery systems have emerged as promising approaches for enhancing the efficacy of wound healing treatments in diabetic patients. This review aims to provide an overview of the current advancements in drug delivery systems in managing chronic diabetic wound healing. This review begins by discussing the pathophysiological features of diabetic wounds, including impaired angiogenesis, elevated reactive oxygen species, and compromised immune response. These factors contribute to delayed wound healing and increased susceptibility to infection. The importance of early intervention and effective wound management strategies is emphasized. Various types of advanced drug delivery systems are then explored, including nanoparticles, hydrogels, transferosomes, liposomes, niosomes, dendrimers, and nanosuspension with incorporated bioactive agents and biological macromolecules are also utilized for chronic diabetes wound management. These systems offer advantages such as sustained release of therapeutic agents, improved targeting and penetration, and enhanced wound closure. Additionally, the review highlights the potential of novel approaches such as antibiotics, minerals, vitamins, growth factors gene therapy, and stem cell-based therapy in diabetic wound healing. The outcome of advanced drug delivery systems holds immense potential in managing chronic diabetic wound healing. They offer innovative approaches for delivering therapeutic agents, improving wound closure, and addressing the specific pathophysiological characteristics of diabetic wounds.
Collapse
Affiliation(s)
- Harish Bhardwaj
- Department of Pharmacy, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, C.G, India
| | - Sulekha Khute
- Department of Pharmacy, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, C.G, India
| | - Ram Sahu
- Department of Pharmaceutical Sciences, Assam University (A Central University), Silchar, Assam, India
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal-249161, Uttarakhand, India
| | - Rajendra Kumar Jangde
- Department of Pharmacy, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, C.G, India
| |
Collapse
|
27
|
Production of 3D Printed Bi-Layer and Tri-Layer Sandwich Scaffolds with Polycaprolactone and Poly (vinyl alcohol)-Metformin towards Diabetic Wound Healing. Polymers (Basel) 2022; 14:polym14235306. [PMID: 36501700 PMCID: PMC9736052 DOI: 10.3390/polym14235306] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by impaired insulin secretion, sensitivity, and hyperglycemia. Diabetic wounds are one of the significant complications of T2DM owing to its difficulty in normal healing, resulting in chronic wounds. In the present work, PCL/PVA, PCL/PVA/PCL, and metformin-loaded, PCL/PVA-Met and PCL/PVA-Met/PCL hybrid scaffolds with different designs were fabricated using 3D printing. The porosity and morphological analysis of 3D-printed scaffolds were performed using scanning electron microscopy (SEM). The scaffolds' average pore sizes were between 63.6 ± 4.0 and 112.9 ± 3.0 μm. Molecular and chemical interactions between polymers and the drug were investigated with Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Mechanical, thermal, and degradation analysis of the scaffolds were undertaken to investigate the physico-chemical characteristics of the scaffolds. Owing to the structure, PCL/PVA/PCL sandwich scaffolds had lower degradation rates than the bi-layer scaffolds. The drug release of the metformin-loaded scaffolds was evaluated with UV spectrometry, and the biocompatibility of the scaffolds on fibroblast cells was determined by cell culture analysis. The drug release in the PCL/PVA-Met scaffold was sustained till six days, whereas in the PCL/PVA-Met/PCL, it continued for 31 days. In the study of drug release kinetics, PCL/PVA-Met and PCL/PVA-Met/PCL scaffolds showed the highest correlation coefficients (R2) values for the first-order release model at 0.8735 and 0.889, respectively. Since the layered structures in the literature are mainly obtained with the electrospun fiber structures, these biocompatible sandwich scaffolds, produced for the first time with 3D-printing technology, may offer an alternative to existing drug delivery systems and may be a promising candidate for enhancing diabetic wound healing.
Collapse
|
28
|
Liu Y, Li C, Feng Z, Han B, Yu DG, Wang K. Advances in the Preparation of Nanofiber Dressings by Electrospinning for Promoting Diabetic Wound Healing. Biomolecules 2022; 12:1727. [PMID: 36551155 PMCID: PMC9775188 DOI: 10.3390/biom12121727] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic diabetic wounds are one of the main complications of diabetes, manifested by persistent inflammation, decreased epithelialization motility, and impaired wound healing. This will not only lead to the repeated hospitalization of patients, but also bear expensive hospitalization costs. In severe cases, it can lead to amputation, sepsis or death. Electrospun nanofibers membranes have the characteristics of high porosity, high specific surface area, and easy functionalization of structure, so they can be used as a safe and effective platform in the treatment of diabetic wounds and have great application potential. This article briefly reviewed the pathogenesis of chronic diabetic wounds and the types of dressings commonly used, and then reviewed the development of electrospinning technology in recent years and the advantages of electrospun nanofibers in the treatment of diabetic wounds. Finally, the reports of different types of nanofiber dressings on diabetic wounds are summarized, and the method of using multi-drug combination therapy in diabetic wounds is emphasized, which provides new ideas for the effective treatment of diabetic wounds.
Collapse
Affiliation(s)
- Yukang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chaofei Li
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhangbin Feng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Biao Han
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
29
|
Sandoval C, Ríos G, Sepúlveda N, Salvo J, Souza-Mello V, Farías J. Effectiveness of Copper Nanoparticles in Wound Healing Process Using In Vivo and In Vitro Studies: A Systematic Review. Pharmaceutics 2022; 14:1838. [PMID: 36145586 PMCID: PMC9503928 DOI: 10.3390/pharmaceutics14091838] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic wounds are defined as wounds that do not heal in an orderly and timely manner through the various stages of the healing process. Copper nanoparticles are essential in dressings for wound healing because they promote angiogenesis and skin regeneration, which hasten the healing process. This systematic investigation sought to explain how copper nanoparticles affect chronic wound healing in vivo and in vitro. We realized a systematic review of original articles studying the effectiveness of copper nanoparticles in the healing process of chronic wounds. The protocol was registered in the PROSPERO database. Several databases were searched between 2012 and January 2022 for English-language papers using MeSH terms and text related to chronic wounds, copper nanoparticles, and wound healing. Quality was evaluated using National Institute for Health and Care Excellence methodology and PRISMA guidelines. We looked at a total of 12 primary studies. Quantitative data were gathered and presented in all studies. Our results suggest that copper nanoparticles could have an excellent healing property, facilitating the liberation of growth factors that help the anti-inflammatory process of the wound and significantly improving antibacterial and antioxidant activities. In addition, copper presents a higher biocompatibility than other metallic ions, promoting regeneration and increasing skin quality.
Collapse
Affiliation(s)
- Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Gemima Ríos
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
| | - Natalia Sepúlveda
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
| | - Jessica Salvo
- Carrera de Enfermería, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4811230, Chile
- Programa de Doctorado en Ciencias Morfológicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Vanessa Souza-Mello
- Laboratorio de Morfometría, Metabolismo y Enfermedades Cardiovasculares, Centro Biomédico, Instituto de Biología, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 22775-000, Brazil
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
30
|
Optimization of Technological Parameters of the Process of Forming Therapeutic Biopolymer Nanofilled Films. NANOMATERIALS 2022; 12:nano12142413. [PMID: 35889643 PMCID: PMC9318775 DOI: 10.3390/nano12142413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/17/2022]
Abstract
The prospects of using biopolymer nano-containing films for wound healing were substantiated. The main components of biopolymer composites are gelatin, polyvinyl alcohol, glycerin, lactic acid, distilled water, and zinc oxide (ZnO) nanoparticles (NPs). Biopolymer composites were produced according to various technological parameters using a mould with a chrome coating. The therapeutic properties of biopolymer films were evaluated by measuring the diameter of the protective effect. Physico-mechanical properties were studied: elasticity, vapour permeability, degradation time, and swelling. To study the influence of technological parameters of the formation process of therapeutic biopolymer nanofilled films on their therapeutic and physico-mechanical properties, the planning of the experiment was used. According to the results of the experiments, mathematical models of the second-order were built. The optimal values of technological parameters of the process are determined, which provide biopolymer nanofilled films with maximum healing ability (diameter of protective action) and sufficiently high physical and mechanical properties: elasticity, vapour permeability, degradation time and swelling. The research results showed that the healing properties of biopolymer films mainly depend on the content of ZnO NPs. Degradation of these biopolymer films provides dosed drug delivery to the affected area. The products of destruction are carbon dioxide, water, and a small amount of ZnO in the bound state, which indicates the environmental safety of the developed biopolymer film.
Collapse
|
31
|
Awasthi A, Gulati M, Kumar B, Kaur J, Vishwas S, Khursheed R, Porwal O, Alam A, KR A, Corrie L, Kumar R, Kumar A, Kaushik M, Jha NK, Gupta PK, Chellappan DK, Gupta G, Dua K, Gupta S, Gundamaraju R, Rao PV, Singh SK. Recent Progress in Development of Dressings Used for Diabetic Wounds with Special Emphasis on Scaffolds. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1659338. [PMID: 35832856 PMCID: PMC9273440 DOI: 10.1155/2022/1659338] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/19/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
Diabetic wound (DW) is a secondary application of uncontrolled diabetes and affects about 42.2% of diabetics. If the disease is left untreated/uncontrolled, then it may further lead to amputation of organs. In recent years, huge research has been done in the area of wound dressing to have a better maintenance of DW. These include gauze, films, foams or, hydrocolloid-based dressings as well as polysaccharide- and polymer-based dressings. In recent years, scaffolds have played major role as biomaterial for wound dressing due to its tissue regeneration properties as well as fluid absorption capacity. These are three-dimensional polymeric structures formed from polymers that help in tissue rejuvenation. These offer a large surface area to volume ratio to allow cell adhesion and exudate absorbing capacity and antibacterial properties. They also offer a better retention as well as sustained release of drugs that are directly impregnated to the scaffolds or the ones that are loaded in nanocarriers that are impregnated onto scaffolds. The present review comprehensively describes the pathogenesis of DW, various dressings that are used so far for DW, the limitation of currently used wound dressings, role of scaffolds in topical delivery of drugs, materials used for scaffold fabrication, and application of various polymer-based scaffolds for treating DW.
Collapse
Affiliation(s)
- Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Omji Porwal
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University-Erbil, Kurdistan Region, Iraq
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942 KSA, Saudi Arabia
| | - Arya KR
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ankit Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monika Kaushik
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, Madhya Pradesh 474001, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No. 32-34 Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Plot No. 32-34, Knowledge Park III, Greater Noida, 201310 Uttar Pradesh, India
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, 248002 Uttarakhand, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia 7248
| | - Pasupuleti Visweswara Rao
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, 88400 Sabah, Malaysia
- Centre for International Relations and Research Collaborations, Reva University, Rukmini Knowledge Park, Rukmini Knowledge Park, Kattigenahili, Yelahanka, Bangalore, 560064, , Karnataka, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
32
|
Wang M, Yu DG, Williams GR, Bligh SWA. Co-Loading of Inorganic Nanoparticles and Natural Oil in the Electrospun Janus Nanofibers for a Synergetic Antibacterial Effect. Pharmaceutics 2022; 14:1208. [PMID: 35745781 PMCID: PMC9228218 DOI: 10.3390/pharmaceutics14061208] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 12/02/2022] Open
Abstract
Side-by-side electrospinning is a powerful but challenging technology that can be used to prepare Janus nanofibers for various applications. In this work, cellulose acetate (CA) and polycaprolactone (PCL) were used as polymer carriers for silver nanoparticles (Ag NPs) and lavender oil (LO), respectively, processing these into two-compartment Janus fibers. A bespoke spinneret was used to facilitate the process and prevent the separation of the working fluids. The process of side-by-side electrospinning was recorded with a digital camera, and the morphology and internal structure of the products were characterized by electron microscopy. Clear two-compartment fibers are seen. X-ray diffraction patterns demonstrate silver nanoparticles have been successfully loaded on the CA side, and infrared spectroscopy indicates LO is dispersed on the PCL side. Wetting ability and antibacterial properties of the fibers suggested that PCL-LO//CA-Ag NPs formulation had strong antibacterial activity, performing better than fibers containing only one active component. The PCL-LO//CA-Ag NPs had a 20.08 ± 0.63 mm inhibition zone for E. coli and 19.75 ± 0.96 mm for S. aureus. All the fibers had water contact angels all around 120°, and hence, have suitable hydrophobicity to prevent water ingress into a wound site. Overall, the materials prepared in this work have considerable promise for wound healing applications.
Collapse
Affiliation(s)
- Menglong Wang
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong 999077, China;
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | | | - Sim Wan Annie Bligh
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong 999077, China;
| |
Collapse
|
33
|
Naseri E, Ahmadi A. A review on wound dressings: Antimicrobial agents, biomaterials, fabrication techniques, and stimuli-responsive drug release. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Bibi S, Mir S, Rehman W, Menaa F, Gul A, Alaryani FSS, Alqahtani AM, Haq S, Abdellatif MH. Synthesis and In Vitro/Ex Vivo Characterizations of Ceftriazone-Loaded Sodium Alginate/Poly(Vinyl Alcohol) Clay Reinforced Nanocomposites: Possible Applications in Wound Healing. MATERIALS 2022; 15:ma15113885. [PMID: 35683183 PMCID: PMC9182010 DOI: 10.3390/ma15113885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023]
Abstract
(1) Background: Nanocomposite films are widely applied in the pharmaceutical industry (e.g., nanodrug delivery systems—NDDS). Indeed, these nanomaterials can be produced at a large industrial scale and display valuable properties (e.g., antibacterial, renewability, biodegradability, bioavailability, safety, tissue-specific targeting, and biocompatibility), which can enhance the activity of conventional marketed drugs. (2) Aim: To fabricate and investigate the in vitro properties of the antibiotic ceftriaxone sodium (CTX) once encapsulated into sodium alginate (SA)/poly(vinyl alcohol)PVA-clay reinforced nanocomposite films. (3) Methods: Different ratios of the polymers (i.e., SA, PVA) and CTX drug were used for the synthesis of nanocomposite films by solvent casting technique. Montmorillonite (MMT), modified organically, was added as a nanofiller to increase their thermal and mechanical strength. The prepared samples were physically characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electronic microscopy (SEM), and energy-dispersive X-ray analysis (EDX). The physicochemical behavior (i.e., swelling, erosion, dissolution/drug release behavior and rat skin permeation) was also assessed. Comparisons were made with the currently marketed free CTX dosage form. (4) Results: TGA of the nanoformulation showed increased thermostability. XRD revealed its semi-crystalline nature. SEM depicted a homogeneous drug-loaded SA/PVA nanocomposite with an average size ranging between 300 and 500 nm. EDX confirmed the elemental composition and uniform distribution of mixing components. The water entrapment efficiency study showed that the highest swelling and erosion ratio is encountered with the nanoformulations S100(3) and S100D15(3). Ex vivo permeation revealed a bi-step discharge mode with an early burst liberation chased by continued drug discharge of devised nanoparticles (NPs). The dissolution studies of the drug-loaded polymer nanocomposites elicited sustained pH-dependent drug release. The cumulative drug release was the highest (90.93%) with S100D15(3). (5) Conclusion: S100D15(3) was the finest formulation. To the best of our knowledge, we also pioneered the use of solvent casting for the preparation of such nanoformulations. Polymers and reinforcing agent, concentrations and pH were rate-deterring features for the preparation of the optimized formulation. Thus, CTX-loaded SA/PVA-MMT reinforced nanocomposite appeared as a promising nanodrug delivery system (NDDS) based on its in vitro physicochemical properties.
Collapse
Affiliation(s)
- Shabana Bibi
- Department of Chemistry, Hazara University, Mansehra 21220, Pakistan;
| | - Sadullah Mir
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Islamabad 22060, Pakistan;
| | - Wajid Rehman
- Department of Chemistry, Hazara University, Mansehra 21220, Pakistan;
- Correspondence: (W.R.); (F.M.)
| | - Farid Menaa
- Departments of Internal Medicine and Nanomedicine, California Innovations Corporation, San Diego, CA 92037, USA
- Correspondence: (W.R.); (F.M.)
| | - Alia Gul
- Department of Botany, Hazara University, Mansehra 21220, Pakistan;
| | | | - Ali M. Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
| | - Sirajul Haq
- Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad 13100, Pakistan;
| | - Magda H. Abdellatif
- Department of Chemistry, College of Sciences, Taif University, Taif 21944, Saudi Arabia;
| |
Collapse
|
35
|
Desai AS, Singh A, Edis Z, Haj Bloukh S, Shah P, Pandey B, Agrawal N, Bhagat N. An In Vitro and In Vivo Study of the Efficacy and Toxicity of Plant-Extract-Derived Silver Nanoparticles. J Funct Biomater 2022; 13:jfb13020054. [PMID: 35645262 PMCID: PMC9149986 DOI: 10.3390/jfb13020054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/17/2022] [Accepted: 05/05/2022] [Indexed: 02/05/2023] Open
Abstract
Silver nanoparticles (AgNPs) display unique plasmonic and antimicrobial properties, enabling them to be helpful in various industrial and consumer products. However, previous studies showed that the commercially acquired silver nanoparticles exhibit toxicity even in small doses. Hence, it was imperative to determine suitable synthesis techniques that are the most economical and least toxic to the environment and biological entities. Silver nanoparticles were synthesized using plant extracts and their physico-chemical properties were studied. A time-dependent in vitro study using HEK-293 cells and a dose-dependent in vivo study using a Drosophila model helped us to determine the correct synthesis routes. Through biological analyses, we found that silver nanoparticles’ cytotoxicity and wound-healing capacity depended on size, shape, and colloidal stability. Interestingly, we observed that out of all the synthesized AgNPs, the ones derived from the turmeric extract displayed excellent wound-healing capacity in the in vitro study. Furthermore, the same NPs exhibited the least toxic effects in an in vivo study of ingestion of these NPs enriched food in Drosophila, which showed no climbing disability in flies, even at a very high dose (250 mg/L) for 10 days. We propose that stabilizing agents played a superior role in establishing the bio-interaction of nanoparticles. Our study reported here verified that turmeric-extract-derived AgNPs displayed biocompatibility while exhibiting the least cytotoxicity.
Collapse
Affiliation(s)
- Anjana S. Desai
- Department of Applied Science, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, India; (A.S.D.); (B.P.)
| | - Akanksha Singh
- Department of Zoology, University of Delhi, New Delhi 110007, India;
| | - Zehra Edis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Correspondence: (Z.E.); (N.A.); (N.B.); Tel.: +971-5-6694-7751 (Z.E.)
| | - Samir Haj Bloukh
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Department of Clinical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Prasanna Shah
- Department of Physics, Acropolis Institute of Technology and Research, Indore 453771, India;
| | - Brajesh Pandey
- Department of Applied Science, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, India; (A.S.D.); (B.P.)
| | - Namita Agrawal
- Department of Zoology, University of Delhi, New Delhi 110007, India;
- Correspondence: (Z.E.); (N.A.); (N.B.); Tel.: +971-5-6694-7751 (Z.E.)
| | - Neeru Bhagat
- Department of Applied Science, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, India; (A.S.D.); (B.P.)
- Correspondence: (Z.E.); (N.A.); (N.B.); Tel.: +971-5-6694-7751 (Z.E.)
| |
Collapse
|
36
|
Rathinavel S, Indrakumar J, Korrapati PS, Dharmalingam S. Synthesis and fabrication of amine functionalized SBA-15 incorporated PVA/Curcumin nanofiber for skin wound healing application. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Li T, Sun M, Wu S. State-of-the-Art Review of Electrospun Gelatin-Based Nanofiber Dressings for Wound Healing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:784. [PMID: 35269272 PMCID: PMC8911957 DOI: 10.3390/nano12050784] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023]
Abstract
Electrospun nanofiber materials have been considered as advanced dressing candidates in the perspective of wound healing and skin regeneration, originated from their high porosity and permeability to air and moisture, effective barrier performance of external pathogens, and fantastic extracellular matrix (ECM) fibril mimicking property. Gelatin is one of the most important natural biomaterials for the design and construction of electrospun nanofiber-based dressings, due to its excellent biocompatibility and biodegradability, and great exudate-absorbing capacity. Various crosslinking approaches including physical, chemical, and biological methods have been introduced to improve the mechanical stability of electrospun gelatin-based nanofiber mats. Some innovative electrospinning strategies, including blend electrospinning, emulsion electrospinning, and coaxial electrospinning, have been explored to improve the mechanical, physicochemical, and biological properties of gelatin-based nanofiber mats. Moreover, numerous bioactive components and therapeutic agents have been utilized to impart the electrospun gelatin-based nanofiber dressing materials with multiple functions, such as antimicrobial, anti-inflammation, antioxidation, hemostatic, and vascularization, as well as other healing-promoting capacities. Noticeably, electrospun gelatin-based nanofiber mats integrated with specific functions have been fabricated to treat some hard-healing wound types containing burn and diabetic wounds. This work provides a detailed review of electrospun gelatin-based nanofiber dressing materials without or with therapeutic agents for wound healing and skin regeneration applications.
Collapse
Affiliation(s)
| | | | - Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (T.L.); (M.S.)
| |
Collapse
|
38
|
Development of fast-dissolving dosage forms of curcuminoids by electrospinning for potential tumor therapy application. Int J Pharm 2022; 611:121327. [PMID: 34852289 DOI: 10.1016/j.ijpharm.2021.121327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022]
Abstract
Curcuminoids (CUs) of antitumor and various other potential biological activities have extremely low water solubility therefore special formulation was elaborated. New fast dissolving reconstitution dosage forms of four CUs were prepared as fibrous form of 2-hydroxypropyl-β-cyclodextin (HP-β-CD). In the electrospinning process HP-β-CD could act both as solubilizer and fiber-forming agent. The solubilization efficiency of the CU-HP-β-CD systems was determined with phase-solubility measurements. The electrospun CUs were amorphous and uniformly distributed in the fibers according to XRD analysis and Raman mappings. The fibrous final products had fast (<5 min) and complete dissolution. In typical iv. infusion reconstitution volume (20 mL) fibers containing 40-80 mg of CU could be dissolved, which is similar to the currently proposed dose (<120 mg/m2). The in vitro cytostatic effect data showed that the antitumor activity of the CU-HP-β-CD complexes was similar or better compared to the free APIs.
Collapse
|
39
|
Costa PRA, Menezes LR, Dias ML, Silva EO. Advances in the use of electrospinning as a promising technique for obtaining nanofibers to guide epithelial wound healing in diabetics—Mini‐review. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pamela Roberta Alves Costa
- Universidade Federal do Rio de Janeiro (UFRJ) Instituto de Macromoléculas Professora Eloisa Mano (IMA) Ilha do Fundão RJ Brazil
| | - Lívia Rodrigues Menezes
- Universidade Federal do Rio de Janeiro (UFRJ) Instituto de Macromoléculas Professora Eloisa Mano (IMA) Ilha do Fundão RJ Brazil
| | - Marcos Lopes Dias
- Universidade Federal do Rio de Janeiro (UFRJ) Instituto de Macromoléculas Professora Eloisa Mano (IMA) Ilha do Fundão RJ Brazil
| | - Emerson Oliveira Silva
- Universidade Federal do Rio de Janeiro (UFRJ) Instituto de Macromoléculas Professora Eloisa Mano (IMA) Ilha do Fundão RJ Brazil
| |
Collapse
|
40
|
Superfast Synthesis of Stabilized Silver Nanoparticles Using Aqueous Allium sativum (Garlic) Extract and Isoniazid Hydrazide Conjugates: Molecular Docking and In-Vitro Characterizations. Molecules 2021; 27:molecules27010110. [PMID: 35011342 PMCID: PMC8746848 DOI: 10.3390/molecules27010110] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
Green synthesis of silver nanoparticles (AgNPs) was synthesized from fresh garlic extract coupled with isoniazid hydrazide (INH), a commonly used antibiotic to treat tuberculosis. A molecular docking study conducted with the selected compounds compared with anthranilate phosphoribosyltransferase (trpD) from Mycobacterium tuberculosis. The aqueous extract of garlic was prepared and mixed with silver nitrate (AgNO3) solution for the superfast synthesis of stable AgNPs. INH was then conjugated with AgNPs at different ratios (v/v) to obtain stable INH-AgNPs conjugates (AgNCs). The resulting AgNCs characterized by FTIR spectra revealed the ultrafast formation of AgNPs (<5 s) and perfectly conjugated with INH. The shifting of λmax to longer wavelength, as found from UV spectral analysis, confirmed the formation of AgNCs, among which ideal formulations (F7, F10, and F13) have been pre-selected. The zeta particle size (PS) and the zeta potential (ZP) of AgNPs were found to be 145.3 ± 2.1 nm and −33.1 mV, respectively. These data were significantly different compared to that of AgNCs (160 ± 2.7 nm and −14.4 mV for F7; 208.9 ± 2.9 nm and −19.8 mV for F10; and 281.3 ± 3.6 nm and −19.5 mV for F13), most probably due to INH conjugation. The results of XRD, SEM and EDX confirmed the formation of AgNCs. From UV spectral analysis, EE of INH as 51.6 ± 5.21, 53.6 ± 6.88, and 70.01 ± 7.11 %, for F7, F10, and F13, respectively. The stability of the three formulations was confirmed in various physiological conditions. Drug was released in a sustainable fashion. Besides, from the preferred 23 compounds, five compounds namely Sativoside R2, Degalactotigonin, Proto-desgalactotigonin, Eruboside B and Sativoside R1 showed a better docking score than trpD, and therefore may help in promoting anti-tubercular activity.
Collapse
|
41
|
Luo GX, Liu ML. [Application of functional materials to promote cutaneous wound healing]. ZHONGHUA SHAO SHANG ZA ZHI = ZHONGHUA SHAOSHANG ZAZHI = CHINESE JOURNAL OF BURNS 2021; 37:1005-1010. [PMID: 34794253 PMCID: PMC11917323 DOI: 10.3760/cma.j.cn501120-20210930-00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cutaneous wound is one of the common clinical diseases. Functional materials can provide targeted wound protection and promote wound healing through the structural adjustment and functional integration. Currently, functional materials have been widely used in the field of wound repair, becoming one of the important tools for clinical wound treatment. This paper summarizes the application of functional materials of following categories including hemostasis, antibacterial, anti-inflammation, vascularization, and regulation of wound microenvironment in wound repair.
Collapse
Affiliation(s)
- G X Luo
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - M L Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| |
Collapse
|
42
|
Menaa F, Wijesinghe U, Thiripuranathar G, Althobaiti NA, Albalawi AE, Khan BA, Menaa B. Marine Algae-Derived Bioactive Compounds: A New Wave of Nanodrugs? Mar Drugs 2021; 19:484. [PMID: 34564146 PMCID: PMC8469996 DOI: 10.3390/md19090484] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Marine algae are rich in bioactive nutraceuticals (e.g., carbohydrates, proteins, minerals, fatty acids, antioxidants, and pigments). Biotic (e.g., plants, microorganisms) and abiotic factors (e.g., temperature, pH, salinity, light intensity) contribute to the production of primary and secondary metabolites by algae. Easy, profitable, and sustainable recovery methods include novel solid-liquid and liquid-liquid extraction techniques (e.g., supercritical, high pressure, microwave, ultrasound, enzymatic). The spectacular findings of algal-mediated synthesis of nanotheranostics has attracted further interest because of the availability of microalgae-based natural bioactive therapeutic compounds and the cost-effective commercialization of stable microalgal drugs. Algal extracts can serve as stabilizing/capping and reducing agents for the synthesis of thermodynamically stable nanoparticles (NPs). Different types of nanotherapeutics have been synthesized using physical, chemical, and biological methods. Marine algae are a fascinating source of lead theranostics compounds, and the development of nanotheranostics has been linked to enhanced drug efficacy and safety. Indeed, algae are remarkable nanobiofactories, and their pragmatic properties reside in their (i) ease of handling; (ii) capacity to absorb/accumulate inorganic metallic ions; (iii) cost-effectiveness; and (iv) capacity of eco-friendly, rapid, and healthier synthesis of NPs. Preclinical and clinical trials shall enable to really define effective algal-based nanotherapies. This review aims to provide an overview of the main algal compounds that are nutraceuticals and that can be extracted and purified for nanotheranostic purposes.
Collapse
Affiliation(s)
- Farid Menaa
- Department of Internal Medicine and Nanomedicine, Fluorotronics-CIC, San Diego, CA 92037, USA;
| | - Udari Wijesinghe
- Institute of Chemistry Ceylon, College of Chemical Sciences, Rajagiriya 10107, Sri Lanka; (U.W.); (G.T.)
| | - Gobika Thiripuranathar
- Institute of Chemistry Ceylon, College of Chemical Sciences, Rajagiriya 10107, Sri Lanka; (U.W.); (G.T.)
| | - Norah A. Althobaiti
- Biology Department, College of Science and Humanities, Shaqra University, Al Quwaiiyah 19257, Saudi Arabia;
| | - Aishah E. Albalawi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Barkat Ali Khan
- Department of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | - Bouzid Menaa
- Department of Internal Medicine and Nanomedicine, Fluorotronics-CIC, San Diego, CA 92037, USA;
| |
Collapse
|
43
|
Behere I, Ingavle G. In vitro and in vivo advancement of multifunctional electrospun nanofiber scaffolds in wound healing applications: Innovative nanofiber designs, stem cell approaches, and future perspectives. J Biomed Mater Res A 2021; 110:443-461. [PMID: 34390324 DOI: 10.1002/jbm.a.37290] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/30/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023]
Abstract
The skin is one of the most essential tissues in the human body, interacting with the outside environment and shielding the body from diseases and excessive water loss. Hydrogels, decellularized porcine dermal matrix, and lyophilized polymer scaffolds have all been used in studies of skin wound repair, wound dressing, and skin tissue engineering, however, these materials cannot replicate the nanofibrous architecture of the skin's native extracellular matrix (ECM). Electrospun nanofibers are a fascinating new form of nanomaterials with tremendous potential across a broad spectrum of applications in the biomedical field, including wound dressings, wound healing scaffolds, regenerative medicine, bioengineering of skin tissue, and multifaceted drug delivery. This article reviews recent in vitro and in vivo developments in multifunctional electrospun nanofibers (MENs) for wound healing. This review begins with an introduction to the electrospinning process, its principle, and the processing parameters which have a significant impact on the nanofiber properties. It then discusses the various geometries and advantages of MEN scaffolds produced by different innovative electrospinning techniques for wound healing applications when used in combination with stem cells. This review also discusses some of the possible future nanofiber-based models that could be used. Finally, we conclude with potential perspectives and conclusions in this area.
Collapse
Affiliation(s)
- Isha Behere
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
| | - Ganesh Ingavle
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
44
|
Breast Cancer Inhibition by Biosynthesized Titanium Dioxide Nanoparticles Is Comparable to Free Doxorubicin but Appeared Safer in BALB/c Mice. MATERIALS 2021; 14:ma14123155. [PMID: 34201266 PMCID: PMC8229371 DOI: 10.3390/ma14123155] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 12/24/2022]
Abstract
Cancer remains a global health burden prompting affordable, target-oriented, and safe chemotherapeutic agents to reduce its incidence rate worldwide. In this study, a rapid, cost-effective, and green synthesis of titanium dioxide (TiO2) nanoparticles (NPs) has been carried out; Ex vivo and in vivoevaluation of their safety and anti-tumor efficacy compared to doxorubicin (DOX), a highly efficient breast anti-cancer agent but limited by severe cardiotoxicity in many patients.Thereby,TiO2 NPs were eco-friendly synthetized using aqueous leaf extract of the tropical medicinal shrub Zanthoxylum armatum as a reducing agent. Butanol was used as a unique template. TiO2 NPs were physically characterized by ultraviolet-visible (UV-Vis) spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscope (SEM), X-ray powder diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) as routine state-of-the art techniques. The synthesized TiO2 NPs were then evaluated for their cytotoxicity (by MTT, FACS, and oxidative stress assays) in 4T1 breast tumor cells, and their hemocompatibility (by hemolysis assay). In vivo anti-tumor efficacy and safety of the TiO2 NPs were further assessed using subcutaneous 4T1 breast BALB/c mouse tumor model.The greenly prepared TiO2 NPs were small, spherical, and crystalline in nature. Interestingly, they were hemocompatible and elicited a strong DOX-like concentration-dependent cytotoxicity-induced apoptosis both ex vivo and in vivo (with a noticeable tumor volume reduction). The underlying molecular mechanism was, at least partially, mediated through reactive oxygen species (ROS) generation (lipid peroxidation). Unlike DOX (P < 0.05), it is important to mention that no cardiotoxicity or altered body weight were observed in both the TiO2 NPs-treated tumor-bearing mouse group and the PBS-treated mouse group (P > 0.05). Taken together, Z. armatum-derived TiO2 NPs are cost-effective, more efficient, and safer than DOX. The present findings shall prompt clinical trials using green TiO2 NPs, at least as a possible alternative modality to DOX for effective breast cancer therapy.
Collapse
|
45
|
Sharma D, Satapathy BK. Optimally controlled morphology and physico-mechanical properties of inclusion complex loaded electrospun polyvinyl alcohol based nanofibrous mats for therapeutic applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1182-1202. [PMID: 33765899 DOI: 10.1080/09205063.2021.1909414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hydrophilic polyvinyl alcohol (PVA) based electrospun nanofibrous mats (ENMs) are recently being used for the designing and fabrication of active wound dressing materials. Thus, in this study an inclusion complex (IC) of curcumin (CUR) and β-cyclodextrin (β-CD) was optimally incorporated in electrospun PVA nanofibers, to obtain uniform bead-free nanofibers with minimum average diameter and variation using Taguchi's design of experiments (DOE). The optimum level parameters were ascertained using Taguchi's methodology, to obtain IC loaded PVA based bead-free ENMs, by varying IC (∼20, ∼40, and ∼60 wt.%) loading, applied voltage, solution concentration, and N, N-dimethylformamide (DMF) content in the electrospinning solution mixture. Validation experiments revealed a good agreement between the predicted and experimental values of fiber diameter, diameter-variation, and bead-numbers. Analysis of variance (ANOVA) showed a major influence of IC loading on the average fiber diameter and the number of bead defects, for IC-loaded PVA based ENMs. However, the DMF content of the solvent mixture significantly influenced the diameter variations of ENMs. The surface morphologies of ENMs were analyzed using Scanning Electron Microscopy (SEM) whereas the microstructural aspects were studied by Wide-Angle X-ray Diffraction (WAXD) and Fourier transform infrared (FT-IR) spectroscopy. The thermal properties were characterized by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) whereas the mechanical properties were measured by using uniaxial tensile testing and dynamic mechanical analysis (DMA). The variation in properties of IC loaded PVA based ENMs were correlated with neat PVA based ENMs fabricated using a similar set of optimized electrospinning process parameters. The study conceptually demonstrated the optimal designing of structurally-engineered hydrophilic IC loaded PVA based ENMs by using the Taguchi approach based on orthogonal DOE as potential drug release substrates.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|