1
|
Kopsky DJ, Vrancken AFJE, van Eijk RPA, Alvarez-Jimenez R, Szadek KM, Liebregts R, Steegers MAH. Fast Analgesic Effect in Response Test with Topical Phenytoin Cream Correlates with Prolonged Pain Relief After Extended Use in Painful Diabetic Neuropathy. Pharmaceuticals (Basel) 2025; 18:228. [PMID: 40006041 PMCID: PMC11858914 DOI: 10.3390/ph18020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Treatment of painful diabetic neuropathy (PDN) poses several challenges due to the limited effectiveness, high incidence of side effects, and potential drug interactions of oral neuropathic pain medication. Lacking systemic side effects, topical phenytoin cream offers a promising innovative approach to addressing unmet needs in neuropathic pain treatment. In this retrospective study in patients with PDN, we evaluated the analgesic effect of topical phenytoin cream in response tests and after extended use. Methods: We collected data from PDN patients who, prior to prolonged use of phenytoin 10% or 20% cream, either had an open response test (ORET), a single-blind (SIBRET), or a double-blind (DOBRET) placebo-controlled response test with phenytoin cream between November 2016 and February 2023. A positive ORET was defined as pain reduction of at least two points on the 11-point numerical scale (NRS) within 30 min after phenytoin cream application. A positive SIBRET or DOBRET required an additional pain reduction of 1 NRS point in the phenytoin treated area compared to the placebo. In patients with a positive response test, we evaluated the sustained pain reduction and the proportion of patients experiencing minimum pain relief of at least 30% (MPR30: moderate pain relief) and 50% (MPR50: considerable pain relief) after the extended use of phenytoin cream. We also assessed the correlation between the response test analgesic effect and the sustained pain relief. Results: We identified 65 patients with PDN of whom 31 (47.7%) had a positive response test. The median pain reduction in response tests was 3.0 NRS points (IQR 2.0-4.0). Extended use (median 3.3 months, IQR 1.5-12.1]) resulted in a median pain reduction of 4.0 NRS points (IQR 3.0-5.0); 26/31 (83.9%) of patients achieved MPR30, and 21/31 (67.7%) MPR50 achieved pain relief. The response test analgesic effect correlated significantly with sustained pain relief after extended use (τ = 0.72, p < 0.0001). Conclusions: In PDN patients who had a positive phenytoin cream response test, extended use of phenytoin cream provided a significant sustained pain relief.
Collapse
Affiliation(s)
- David J. Kopsky
- Anesthesiology and Pain Management, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (R.A.-J.); (K.M.S.); (M.A.H.S.)
- Institute for Neuropathic Pain, 1056 SN Amsterdam, The Netherlands
- Department of Neurology, Brain Centre University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Alexander F. J. E. Vrancken
- Department of Neurology, Brain Centre University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Ruben P. A. van Eijk
- Department of Neurology, Brain Centre University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
- Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Ricardo Alvarez-Jimenez
- Anesthesiology and Pain Management, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (R.A.-J.); (K.M.S.); (M.A.H.S.)
| | - Karolina M. Szadek
- Anesthesiology and Pain Management, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (R.A.-J.); (K.M.S.); (M.A.H.S.)
| | - Remko Liebregts
- Anesthesiology and Pain Management, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (R.A.-J.); (K.M.S.); (M.A.H.S.)
| | - Monique A. H. Steegers
- Anesthesiology and Pain Management, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (R.A.-J.); (K.M.S.); (M.A.H.S.)
| |
Collapse
|
2
|
Røikjer J, Borbjerg MK, Andresen T, Giordano R, Hviid CVB, Mørch CD, Karlsson P, Klonoff DC, Arendt-Nielsen L, Ejskjaer N. Diabetic Peripheral Neuropathy: Emerging Treatments of Neuropathic Pain and Novel Diagnostic Methods. J Diabetes Sci Technol 2024:19322968241279553. [PMID: 39282925 PMCID: PMC11571639 DOI: 10.1177/19322968241279553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is a prevalent and debilitating complication of diabetes, often leading to severe neuropathic pain. Although other diabetes-related complications have witnessed a surge of emerging treatments in recent years, DPN has seen minimal progression. This stagnation stems from various factors, including insensitive diagnostic methods and inadequate treatment options for neuropathic pain. METHODS In this comprehensive review, we highlight promising novel diagnostic techniques for assessing DPN, elucidating their development, strengths, and limitations, and assessing their potential as future reliable clinical biomarkers and endpoints. In addition, we delve into the most promising emerging pharmacological and mechanistic treatments for managing neuropathic pain, an area currently characterized by inadequate pain relief and a notable burden of side effects. RESULTS Skin biopsies, corneal confocal microscopy, transcutaneous electrical stimulation, blood-derived biomarkers, and multi-omics emerge as some of the most promising new techniques, while low-dose naltrexone, selective sodium-channel blockers, calcitonin gene-related peptide antibodies, and angiotensin type 2 receptor antagonists emerge as some of the most promising new drug candidates. CONCLUSION Our review concludes that although several promising diagnostic modalities and emerging treatments exist, an ongoing need persists for the further development of sensitive diagnostic tools and mechanism-based, personalized treatment approaches.
Collapse
Affiliation(s)
- Johan Røikjer
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Integrative Neuroscience, Aalborg University, Aalborg, Denmark
- Department Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Mette Krabsmark Borbjerg
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Integrative Neuroscience, Aalborg University, Aalborg, Denmark
| | - Trine Andresen
- Integrative Neuroscience, Aalborg University, Aalborg, Denmark
- Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
| | - Rocco Giordano
- Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
| | - Claus Vinter Bødker Hviid
- Department of Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Carsten Dahl Mørch
- Integrative Neuroscience, Aalborg University, Aalborg, Denmark
- Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
| | - Pall Karlsson
- Danish Pain Research Center, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | | | - Lars Arendt-Nielsen
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
- Mech-Sense, Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark
| | - Niels Ejskjaer
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Department Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
3
|
Li WW, Zhao Y, Liu HC, Liu J, Chan SO, Zhong YF, Zhang TY, Liu Y, Zhang W, Xia YQ, Chi XC, Xu J, Wang Y, Wang J. Roles of Thermosensitive Transient Receptor Channels TRPV1 and TRPM8 in Paclitaxel-Induced Peripheral Neuropathic Pain. Int J Mol Sci 2024; 25:5813. [PMID: 38892000 PMCID: PMC11171746 DOI: 10.3390/ijms25115813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Paclitaxel, a microtubule-stabilizing chemotherapy drug, can cause severe paclitaxel-induced peripheral neuropathic pain (PIPNP). The roles of transient receptor potential (TRP) ion channel vanilloid 1 (TRPV1, a nociceptor and heat sensor) and melastatin 8 (TRPM8, a cold sensor) in PIPNP remain controversial. In this study, Western blotting, immunofluorescence staining, and calcium imaging revealed that the expression and functional activity of TRPV1 were upregulated in rat dorsal root ganglion (DRG) neurons in PIPNP. Behavioral assessments using the von Frey and brush tests demonstrated that mechanical hyperalgesia in PIPNP was significantly inhibited by intraperitoneal or intrathecal administration of the TRPV1 antagonist capsazepine, indicating that TRPV1 played a key role in PIPNP. Conversely, the expression of TRPM8 protein decreased and its channel activity was reduced in DRG neurons. Furthermore, activation of TRPM8 via topical application of menthol or intrathecal injection of WS-12 attenuated the mechanical pain. Mechanistically, the TRPV1 activity triggered by capsaicin (a TRPV1 agonist) was reduced after menthol application in cultured DRG neurons, especially in the paclitaxel-treated group. These findings showed that upregulation of TRPV1 and inhibition of TRPM8 are involved in the generation of PIPNP, and they suggested that inhibition of TRPV1 function in DRG neurons via activation of TRPM8 might underlie the analgesic effects of menthol.
Collapse
Affiliation(s)
- Wen-Wen Li
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Yan Zhao
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Huai-Cun Liu
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Jiao Liu
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing 100191, China;
| | - Sun-On Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yi-Fei Zhong
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Tang-Yu Zhang
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Yu Liu
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Wei Zhang
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Yu-Qi Xia
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Xiao-Chun Chi
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Jian Xu
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience of Ministry of Education and Neuroscience, Peking University Health Science Center, Beijing 100191, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Jun Wang
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.-W.L.); (Y.Z.); (H.-C.L.); (Y.-F.Z.); (T.-Y.Z.); (Y.L.); (W.Z.); (Y.-Q.X.); (X.-C.C.); (J.X.)
| |
Collapse
|
4
|
Wang W, Yuan M, Xu Y, Yang J, Wang X, Zhou Y, Yu Z, Lu Z, Wang Y, Hu C, Bai Q, Li Z. Prokineticin-2 Participates in Chronic Constriction Injury-Triggered Neuropathic Pain and Anxiety via Regulated by NF-κB in Nucleus Accumbens Shell in Rats. Mol Neurobiol 2024; 61:2764-2783. [PMID: 37934398 DOI: 10.1007/s12035-023-03680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 09/27/2023] [Indexed: 11/08/2023]
Abstract
Neuropathic pain (NP) is an intractable pain that results from primary nervous system injury and dysfunction. Herein, we demonstrated in animal models that peripheral nerve injury induced enhanced pain perception and anxiety-like behaviors. According to previous reports, nucleus accumbens (NAc) shell is required for complete expression of neuropathic pain behaviors and mood alternations, we found the elevated mRNA and protein level of Prokineticin-2 (Prok2) in the NAc shell after Chronic Constriction Injury (CCI). Prok2 knockdown in the NAc shell reversed NP and anxiety-like behaviors in rats, indicating that Prok2 might play a fundamental role in NP and anxiety co-morbidity. CCI significantly enhanced Prok2 co-expression with NF-κB P-p65 in comparison with control animals. In addition to reversing the established nociceptive hypersensitivities and anxiety simultaneously, NAc microinjection of NF-κB siRNA or specific inhibitor PDTC reversed Prok2 upregulation. Besides, Prok2 was significantly decreased in vitro when co-transfected with si-NF-κB. Dual-Luciferase assay showed NF-κB directly activated Prok2 gene transcriptional activity. Overall, these findings provide new insights into the neurobiological mechanisms behind NP and comorbid anxiety. The NF-κB/Prok2 pathway could be a potential therapeutic target for NP and anxiety disorders.
Collapse
Affiliation(s)
- Wenting Wang
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, No.2, Jingba Road, Jinshui District, Zhengzhou, Henan, China
| | - Meng Yuan
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, No.2, Jingba Road, Jinshui District, Zhengzhou, Henan, China
| | - Yaowei Xu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jingjie Yang
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, No.2, Jingba Road, Jinshui District, Zhengzhou, Henan, China
| | - Xiaoling Wang
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yifan Zhou
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, No.2, Jingba Road, Jinshui District, Zhengzhou, Henan, China
| | - Zhixiang Yu
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, No.2, Jingba Road, Jinshui District, Zhengzhou, Henan, China
| | - Zhongyuan Lu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiming Wang
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, No.2, Jingba Road, Jinshui District, Zhengzhou, Henan, China
| | - Chenge Hu
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, No.2, Jingba Road, Jinshui District, Zhengzhou, Henan, China
- Institute of Neuroscience, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qian Bai
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, No.2, Jingba Road, Jinshui District, Zhengzhou, Henan, China.
| | - Zhisong Li
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, No.2, Jingba Road, Jinshui District, Zhengzhou, Henan, China.
- Institute of Neuroscience, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
5
|
Sharav Y, Heiliczer S, Benoliel R, Haviv Y. Pharmacological Topical Therapy for Intra-Oral Post Traumatic Trigeminal Neuropathic Pain: A Comprehensive Review. Pharmaceuticals (Basel) 2024; 17:264. [PMID: 38399479 PMCID: PMC10893422 DOI: 10.3390/ph17020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Background: The efficacy of topical treatments in alleviating neuropathic pain is well-established. However, there is a paucity of research on topical interventions designed specifically for intra-oral application, where the tissue composition differs from that of exposed skin. Methods: This comprehensive review endeavors to assess the extant evidence regarding the efficacy of topical treatments in addressing neuropathic pain within the oral cavity. Utilizing combinations of search terms, we conducted a thorough search across standard electronic bibliographic databases-MEDLINE (via PubMed), Embase, Google Scholar, and Up to Date. The variables under scrutiny encompassed topical treatment, local intervention, chronic oral and orofacial pain, and neuropathic pain. All pertinent studies published in the English language between 1992 and 2022 were included in our analysis. Results: Fourteen relevant manuscripts were identified, primarily consisting of expert opinions and case reports. The comprehensive review suggests that topical treatments, especially when applied under a stent, could be effective in mitigating neuropathic pain in the oral area. However, it is crucial to conduct further studies to confirm these preliminary results. The limitations of the reviewed studies, mainly the reliance on expert opinions, small sample sizes, inconsistent study designs, and a lack of long-term follow-up data, highlight the need for more rigorous research. Conclusions: Although initial findings indicate topical treatments may be effective for oral neuropathic pain, the limitations of current studies call for more thorough research. Further comprehensive studies are essential to validate the efficacy of these treatments, standardize procedures, and determine long-term results. This will provide clearer guidance for treating chronic neuropathic pain in the oral cavity.
Collapse
Affiliation(s)
- Yair Sharav
- Department of Oral Medicine, Sedation and Imaging, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (Y.S.); (S.H.)
| | - Shimrit Heiliczer
- Department of Oral Medicine, Sedation and Imaging, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (Y.S.); (S.H.)
- Oral Medicine Unit, Oral and Maxillofacial Surgery Department, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
| | | | - Yaron Haviv
- Department of Oral Medicine, Sedation and Imaging, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (Y.S.); (S.H.)
| |
Collapse
|
6
|
Basu A, Yang JY, Tsirukis VE, Loiacono A, Koch G, Khwaja IA, Krishnamurthy M, Fazio N, White E, Jha A, Shah S, Takmil C, Bagdas D, Demirer A, Master A, Natke E, Honkanen R, Huang L, Rigas B. Phosphosulindac (OXT-328) prevents and reverses chemotherapy induced peripheral neuropathy in mice. Front Neurosci 2024; 17:1240372. [PMID: 38347876 PMCID: PMC10860339 DOI: 10.3389/fnins.2023.1240372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/19/2023] [Indexed: 02/15/2024] Open
Abstract
Background Chemotherapy-induced peripheral neuropathy (CIPN), a side effect of chemotherapy, is particularly difficult to treat. We explored whether phosphosulindac (PS), a modified NSAID, could treat CIPN. Methods CIPN was induced in male C57BL/6 J mice by paclitaxel, vincristine or oxaliplatin. Mechanical allodynia was measured with the von Frey test and cold allodynia with the acetone test. To determine the preventive effect of PS, it was administered 2 days before the induction of CIPN. Mouse Lewis lung carcinoma xenografts were used to determine if PS altered the chemotherapeutic efficacy of paclitaxel. Cultured cell lines were used to evaluate the effect of PS on neuroinflammation. Results Treatment with each of the three chemotherapeutic agents used to induce CIPN lowered the mechanical allodynia scores by 56 to 85% depending on the specific agent. PS gel was applied topically 3x/day for 16-22 days to the hind paws of mice with CIPN. This effect was dose-dependent. Unlike vehicle, PS returned mechanical allodynia scores back to pre-CIPN levels. PS had a similar effect on paclitaxel-induced CIPN cold allodynia. Sulindac, a metabolite of PS, had no effect on CIPN. PS significantly prevented CIPN compared to vehicle. Given concomitantly with paclitaxel to mice with lung cancer xenografts, PS relieved CIPN without affecting the anticancer effect of paclitaxel. The enantiomers of PS were equally efficacious against CIPN, suggesting the therapeutic suitability of the racemate PS. There were no apparent side effects of PS. PS suppressed the levels of IL-6, IL-10, CXCL1, and CXCL2 induced by paclitaxel in a neuroblastoma cell line, and macrophage activation to the M1 proinflammatory phenotype. Conclusion Topically applied PS demonstrated broad therapeutic and preventive efficacy against CIPN, preserved the anticancer effect of paclitaxel, and was safe. Its anti-CIPN effect appears to be mediated, in part, by suppression of neuroinflammation. These data support further evaluation of topical PS for the control of CIPN.
Collapse
Affiliation(s)
- Aryah Basu
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Jennifer Y. Yang
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Vasiliki E. Tsirukis
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Andrew Loiacono
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Gina Koch
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Ishan A. Khwaja
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Mahila Krishnamurthy
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Nicholas Fazio
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Emily White
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Aayushi Jha
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Shrila Shah
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Cameron Takmil
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Deniz Bagdas
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Aylin Demirer
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Adam Master
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Ernest Natke
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Robert Honkanen
- Departments of Ophthalmology, Stony Brook University, Stony Brook, NY, United States
| | - Liqun Huang
- Medicon Pharmaceuticals, Inc, Setauket, NY, United States
| | - Basil Rigas
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
7
|
Gramacy A, Villa A. Topical gabapentin solution for the management of burning mouth syndrome: A retrospective study. PLoS One 2023; 18:e0295559. [PMID: 38096135 PMCID: PMC10721041 DOI: 10.1371/journal.pone.0295559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
OBJECTIVE The aim of this retrospective study was to evaluate the effectiveness and safety of topical gabapentin solution (250 mg/mL) for the management of burning mouth syndrome (BMS). STUDY DESIGN A retrospective chart review was conducted of all patients diagnosed with BMS and managed with gabapentin 250 mg/mL solution (swish and spit) between January 2021 and October 2022. Patient-reported outcomes included changes in burning score ranked on a 10-point numeric rating scale (NRS) and reported adverse drug reactions (ADR). Wilcoxon signed-rank test was used to assess differences in the oral burning score ranked on a NRS (0-10) between the baseline visit and the second visit. RESULTS A total of 19 patients (68.4% females) with BMS were included and evaluated for follow-up at a median of 86 days (range: 29-195). Overall, patients reported a median 2-point burning decrease on a 0-10 NRS between the baseline visit and the second visit (p < 0.01). ADRs were reported by 3 patients (15.8%). CONCLUSION Although this was a small retrospective study, BMS management with topical gabapentin (250 mg/mL) appears to be effective and well-tolerated. Future randomized prospective studies are needed to verify these preliminary findings.
Collapse
Affiliation(s)
- Amanda Gramacy
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - Alessandro Villa
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
- Oral Medicine, Oral Oncology and Dentistry, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, United States of America
| |
Collapse
|
8
|
Hösch NG, Martins BB, Alcantara QA, Bufalo MC, Neto BS, Chudzinki-Tavassi AM, Santa-Cecilia FV, Cury Y, Zambelli VO. Wnt signaling is involved in crotalphine-induced analgesia in a rat model of neuropathic pain. Eur J Pharmacol 2023; 959:176058. [PMID: 37739305 DOI: 10.1016/j.ejphar.2023.176058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
The aberrant activation of Wnt/β-catenin and atypical Wnt/Ryk signaling pathways in the spinal cord is critical for the development and maintenance of neuropathic pain. Crotalphine is a structural analog to a peptide first identified in Crotalus durissus terrificus snake venom, which induces antinociception by activating kappa-opioid and CB2 cannabinoid receptors. Consistent with previous data, we showed that the protein levels of the canonical Wnt/β-catenin and the atypical Wnt/Ryk signaling pathways are increased in neuropathic rats. Importantly, the administration of crotalphine downregulates these protein levels, including its downstream cascades, such as TCF4 from the canonical pathway and NR2B glutamatergic receptor and Ca2+-dependent signals, via the Ryk receptor. The CB2 receptor antagonist, AM630, abolished the crotalphine-induced atypical Wnt/Ryk signaling pathway activation. However, the selective CB2 agonist affects both canonical and non-canonical Wnt signaling in the spinal cord. Next, we showed that crotalphine blocked hypersensitivity and significantly decreased the concentration of IL-1ɑ, IL-1β, IL-6, IL-10, IL-18, TNF-ɑ, MIP-1ɑ and MIP-2 induced by intrathecal injection of exogenous Wnt-3a agonist. Taken together, our findings show that crotalphine induces analgesia in a neuropathic pain model by down-regulating the canonical Wnt/β-catenin and the atypical Wnt/Ryk signaling pathways and, consequently controlling neuroinflammation. This effect is, at least in part, mediated by CB2 receptor activation. These results open a perspective for new approaches that can be used to target Wnt signaling in the context of chronic pain. PERSPECTIVE: Our work identified that crotalphine-induced activation of CB2 receptors plays a critical role in the impairment of Wnt signaling during neuropathic pain. This work suggests that drugs with opioid/cannabinoid activity may be a useful strategy to target Wnt signaling in the context of chronic pain.
Collapse
Affiliation(s)
- Natália G Hösch
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524, 05508-900, São Paulo, Brazil
| | - Bárbara B Martins
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Queren A Alcantara
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Department of Biochemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Michelle Cristiane Bufalo
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Center of Excellence in New Target Discovery (CENTD), Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Beatriz S Neto
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Ana Marisa Chudzinki-Tavassi
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Innovation and Development Laboratory, Innovation and Development Center, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Flávia V Santa-Cecilia
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Yara Cury
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Vanessa O Zambelli
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil.
| |
Collapse
|
9
|
Fu Z, Gao C, Wu T, Wang L, Li S, Zhang Y, Shi C. Peripheral neuropathy associated with monomethyl auristatin E-based antibody-drug conjugates. iScience 2023; 26:107778. [PMID: 37727735 PMCID: PMC10505985 DOI: 10.1016/j.isci.2023.107778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Since the successful approval of gemtuzumab ozogamicin, antibody-drug conjugates (ADCs) have emerged as a pivotal category of targeted therapies for cancer. Among these ADCs, the use of monomethyl auristatin E (MMAE) as a payload is prevalent in the development of ADC drugs, which has significantly improved overall therapeutic efficacy against various malignancies. However, increasing clinical observations have raised concerns regarding the potential nervous system toxicity associated with MMAE-based ADCs. Specifically, a higher incidence of peripheral neuropathy has been reported in ADCs incorporating MMAE as payloads. Considering the increasing global use of MMAE-based ADCs, it is imperative to provide an inclusive overview of diagnostic and management strategies for this adverse event. In this review, we examine current information and what future research directions are required to better understand and manage this type of clinical challenge.
Collapse
Affiliation(s)
- Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Chen Gao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Lulu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Shijun Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| |
Collapse
|
10
|
Huerta MÁ, Garcia MM, García-Parra B, Serrano-Afonso A, Paniagua N. Investigational Drugs for the Treatment of Postherpetic Neuralgia: Systematic Review of Randomized Controlled Trials. Int J Mol Sci 2023; 24:12987. [PMID: 37629168 PMCID: PMC10455720 DOI: 10.3390/ijms241612987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
The pharmacological treatment of postherpetic neuralgia (PHN) is unsatisfactory, and there is a clinical need for new approaches. Several drugs under advanced clinical development are addressed in this review. A systematic literature search was conducted in three electronic databases (Medline, Web of Science, Scopus) and in the ClinicalTrials.gov register from 1 January 2016 to 1 June 2023 to identify Phase II, III and IV clinical trials evaluating drugs for the treatment of PHN. A total of 18 clinical trials were selected evaluating 15 molecules with pharmacological actions on nine different molecular targets: Angiotensin Type 2 Receptor (AT2R) antagonism (olodanrigan), Voltage-Gated Calcium Channel (VGCC) α2δ subunit inhibition (crisugabalin, mirogabalin and pregabalin), Voltage-Gated Sodium Channel (VGSC) blockade (funapide and lidocaine), Cyclooxygenase-1 (COX-1) inhibition (TRK-700), Adaptor-Associated Kinase 1 (AAK1) inhibition (LX9211), Lanthionine Synthetase C-Like Protein (LANCL) activation (LAT8881), N-Methyl-D-Aspartate (NMDA) receptor antagonism (esketamine), mu opioid receptor agonism (tramadol, oxycodone and hydromorphone) and Nerve Growth Factor (NGF) inhibition (fulranumab). In brief, there are several drugs in advanced clinical development for treating PHN with some of them reporting promising results. AT2R antagonism, AAK1 inhibition, LANCL activation and NGF inhibition are considered first-in-class analgesics. Hopefully, these trials will result in a better clinical management of PHN.
Collapse
Affiliation(s)
- Miguel Á. Huerta
- Department of Pharmacology, University of Granada, 18016 Granada, Spain;
- Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain
| | - Miguel M. Garcia
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Unidad Asociada I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain;
- High Performance Experimental Pharmacology Research Group, Universidad Rey Juan Carlos (PHARMAKOM), 28922 Alcorcón, Spain
| | - Beliu García-Parra
- Clinical Neurophysiology Section—Neurology Service, Hospital Universitari de Bellvitge, Universitat de Barcelona-Health Campus, IDIBELL, 08907 L’Hospitalet de Llobregat, Spain;
| | - Ancor Serrano-Afonso
- Department of Anesthesia, Reanimation and Pain Clinic, Hospital Universitari de Bellvitge, Universitat de Barcelona-Health Campus, IDIBELL, 08907 L’Hospitalet de Llobregat, Spain;
| | - Nancy Paniagua
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Unidad Asociada I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain;
- High Performance Experimental Pharmacology Research Group, Universidad Rey Juan Carlos (PHARMAKOM), 28922 Alcorcón, Spain
| |
Collapse
|
11
|
Patel N, B Urolagin S, Haq MA, Patel C, Bhatt R, Girdhar G, Sinha S, Haque M, Kumar S. Anesthetic Effect of 2% Amitriptyline Versus 2% Lidocaine: A Comparative Evaluation. Cureus 2023; 15:e43405. [PMID: 37581201 PMCID: PMC10423460 DOI: 10.7759/cureus.43405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2023] [Indexed: 08/16/2023] Open
Abstract
Introduction A common dental problem is the fear of pain during needle prick for giving local anesthesia (LA). The needle prick pain during dental procedures often varies with sex and age. Perception of pain depends on various factors, which can be psychological and biological. This perception of pain may change the behavior of patients toward dental treatments. Traditionally, lidocaine gel formulation was utilized before the parenteral dosage form. The lidocaine gel formulation is considered the drug of choice for LA in dental surgery. Currently, amitriptyline has been utilized in dental practice because of its beneficial pharmacology. Hence, the present study has been undertaken to compare the anesthetic ability of amitriptyline as an intraoral topical anesthetic agent with lidocaine gel. Methods This study was a comparative clinical study between two medications' anesthetic properties. This study included 120 patients indicated for bilateral orthodontics (the subdivision of dentistry that emphasizes identifying necessary interventions for the malocclusion of teeth) procedures. All the subjects were divided into amitriptyline and lidocaine groups. Both anesthetic gels were applied at separate sites before the injection of LA. The time of the onset of anesthesia was noted and analyzed. Patients were selected on the basis of inclusion and exclusion criteria. Individuals aged 18 to 30 years who were systemically healthy and orthodontically indicated for bilateral premolar extraction were included in this study. Again, patients with a history of neurological disorders and allergies to amitriptyline and lidocaine were excluded from the current study. Results Significant differences emerged between groups at five and 10 minutes, with amitriptyline-induced partial numbness (36.7% and 6.7%). At 40 and 45 minutes, both groups showed varied partial and complete numbness, with amitriptyline leading to partial recovery (23.3% and 73.3% complete numbness, 23.3% partial recovery) and lidocaine resulting in partial recovery (81.7%). When comparing the visual analog scale (VAS) scores, both groups exhibited a similar simultaneous effect at 15 minutes. Nonetheless, amitriptyline displayed significantly lower scores at 25 and 35 minutes (p < 0.001) in comparison to lidocaine. Similar observations were made when controlling for pain intensity. Conclusion It was concluded that amitriptyline holds both anesthetic and analgesic properties. Nevertheless, this study was unable to generalize the study findings because of the small sample size and being a single-center study. However, the VAS scores of anesthetic and analgesic pharmacodynamics properties of amitriptyline were statistically significantly lower than lidocaine, particularly at 25 and 35 minutes. Additionally, amitriptyline-induced anesthetic and analgesic pharmacology, especially pharmacokinetics properties, depends on the location and pattern of pain.
Collapse
Affiliation(s)
- Nirav Patel
- Department of Oral and Maxillofacial Surgery, Goenka Research Institute of Dental Science, Gandhinagar, IND
| | - Sarvesh B Urolagin
- Department of Oral and Maxillofacial Surgery, Subbaiah Institute of Dental Sciences, Shimoga, IND
| | - Md Ahsanul Haq
- Department of Biostatistics, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, BGD
| | - Chhaya Patel
- Department of Pedodontics and Preventive Dentistry, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Rohan Bhatt
- Department of Pediatric Dentistry, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Gaurav Girdhar
- Department of Periodontology and Implantology, Karnavati University, Gandhinagar, IND
| | - Susmita Sinha
- Department of Physiology, Khulna City Medical College and Hospital, Khulna, BGD
| | - Mainul Haque
- Karnavati Scientific Research Center, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
12
|
Bernatoniene J, Sciupokas A, Kopustinskiene DM, Petrikonis K. Novel Drug Targets and Emerging Pharmacotherapies in Neuropathic Pain. Pharmaceutics 2023; 15:1799. [PMID: 37513986 PMCID: PMC10384314 DOI: 10.3390/pharmaceutics15071799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Neuropathic pain is a debilitating condition characterized by abnormal signaling within the nervous system, resulting in persistent and often intense sensations of pain. It can arise from various causes, including traumatic nerve injury, neuropathy, and certain diseases. We present an overview of current and emerging pharmacotherapies for neuropathic pain, focusing on novel drug targets and potential therapeutic agents. Current pharmacotherapies, including tricyclic antidepressants, gabapentinoids, and serotonin norepinephrine re-uptake inhibitors, are discussed, as are emerging treatments, such as ambroxol, cannabidiol, and N-acetyl-L-cysteine. Additionally, the article highlights the need for further research in this field to identify new targets and develop more effective and targeted therapies for neuropathic pain management.
Collapse
Affiliation(s)
- Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Arunas Sciupokas
- Pain Clinic, Lithuanian University of Health Sciences Hospital Kauno Klinikos, Eivenių Str. 2, LT-50009 Kaunas, Lithuania
- Department of Neurology, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50009 Kaunas, Lithuania
| | - Dalia Marija Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Kestutis Petrikonis
- Department of Neurology, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50009 Kaunas, Lithuania
| |
Collapse
|
13
|
Wu Q, Huang J, Fan X, Wang K, Jin X, Huang G, Li J, Pan X, Yan N. Structural mapping of Na v1.7 antagonists. Nat Commun 2023; 14:3224. [PMID: 37270609 DOI: 10.1038/s41467-023-38942-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023] Open
Abstract
Voltage-gated sodium (Nav) channels are targeted by a number of widely used and investigational drugs for the treatment of epilepsy, arrhythmia, pain, and other disorders. Despite recent advances in structural elucidation of Nav channels, the binding mode of most Nav-targeting drugs remains unknown. Here we report high-resolution cryo-EM structures of human Nav1.7 treated with drugs and lead compounds with representative chemical backbones at resolutions of 2.6-3.2 Å. A binding site beneath the intracellular gate (site BIG) accommodates carbamazepine, bupivacaine, and lacosamide. Unexpectedly, a second molecule of lacosamide plugs into the selectivity filter from the central cavity. Fenestrations are popular sites for various state-dependent drugs. We show that vinpocetine, a synthetic derivative of a vinca alkaloid, and hardwickiic acid, a natural product with antinociceptive effect, bind to the III-IV fenestration, while vixotrigine, an analgesic candidate, penetrates the IV-I fenestration of the pore domain. Our results permit building a 3D structural map for known drug-binding sites on Nav channels summarized from the present and previous structures.
Collapse
Affiliation(s)
- Qiurong Wu
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| | - Xiao Fan
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| | - Kan Wang
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xueqin Jin
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Gaoxingyu Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Jiaao Li
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaojing Pan
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
- Shenzhen Medical Academy of Research and Translation, Guangming District, Shenzhen, 518107, Guangdong Province, China.
| |
Collapse
|
14
|
Adamiak-Giera U, Nowak A, Duchnik W, Ossowicz-Rupniewska P, Czerkawska A, Machoy-Mokrzyńska A, Sulikowski T, Kucharski Ł, Białecka M, Klimowicz A, Białecka M. Evaluation of the in vitro permeation parameters of topical ketoprofen and lidocaine hydrochloride from transdermal Pentravan ® products through human skin. Front Pharmacol 2023; 14:1157977. [PMID: 37324484 PMCID: PMC10264579 DOI: 10.3389/fphar.2023.1157977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
In the treatment of pain, especially chronic pain, the rule of multimodal therapy applies, based on various painkillers mechanisms of action. The aim of the conducted study was to evaluate the in vitro penetration of ketoprofen (KET) and lidocaine hydrochloride (LH) through the human skin from a vehicle with transdermal properties. The results obtained with the use of the Franz chamber showed statistically significantly higher penetration of KET from the transdermal vehicle as compared to commercial preparations. It was also shown that the addition of LH to the transdermal vehicle did not change the amount of KET permeated. The study also compared the penetration of KET and LH by adding various excipients to the transdermal vehicle. Comparing the cumulative mass of KET that penetrated after the 24-h study, it was observed that the significantly highest permeation was found for the vehicle containing additionally Tinctura capsici, then for that containing camphor and ethanol, and the vehicle containing menthol and ethanol as compared to that containing Pentravan® alone. A similar tendency was observed in the case of LH, where the addition of Tinctura capsici, menthol and camphor led to a statistically significant higher penetration. Adding certain drugs such as KET and LH to Pentravan®, and substances such as menthol, camphor or capsaicin, can be an interesting alternative to administered enteral drugs especially in the group of patients with multiple diseases and polypragmasy.
Collapse
Affiliation(s)
- Urszula Adamiak-Giera
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Wiktoria Duchnik
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Paula Ossowicz-Rupniewska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Anna Czerkawska
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Anna Machoy-Mokrzyńska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Tadeusz Sulikowski
- Department of General and Transplantation Surgery, Pomeranian Medical University, Szczecin, Poland
| | - Łukasz Kucharski
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Marta Białecka
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Adam Klimowicz
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Monika Białecka
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
15
|
Pușcașu C, Zanfirescu A, Negreș S. Recent Progress in Gels for Neuropathic Pain. Gels 2023; 9:gels9050417. [PMID: 37233008 DOI: 10.3390/gels9050417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Neuropathic pain is a complex and debilitating condition that affects millions of people worldwide. While several treatment options are available, they often have limited efficacy and are associated with adverse effects. In recent years, gels have emerged as a promising option for the treatment of neuropathic pain. Inclusion of various nanocarriers, such as cubosomes and niosomes, into gels results in pharmaceutical forms with higher drug stability and increased drug penetration into tissues compared to products currently marketed for the treatment of neuropathic pain. Furthermore, these compounds usually provide sustained drug release and are biocompatible and biodegradable, which makes them a safe option for drug delivery. The purpose of this narrative review was to provide a comprehensive analysis of the current state of the field and identify potential directions for future research in the development of effective and safe gels for the treatment of neuropathic pain, ultimately improving the quality of life for patients suffering from neuropathic pain.
Collapse
Affiliation(s)
- Ciprian Pușcașu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Anca Zanfirescu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Simona Negreș
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| |
Collapse
|
16
|
Bielewicz J, Kamieniak M, Szymoniuk M, Litak J, Czyżewski W, Kamieniak P. Diagnosis and Management of Neuropathic Pain in Spine Diseases. J Clin Med 2023; 12:jcm12041380. [PMID: 36835916 PMCID: PMC9961043 DOI: 10.3390/jcm12041380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Neuropathic pain is generally defined as a non-physiological pain experience caused by damage to the nervous system. It can occur spontaneously, as a reaction to a given stimulus, or independently of its action, leading to unusual pain sensations usually referred to as firing, burning or throbbing. In the course of spine disorders, pain symptoms commonly occur. According to available epidemiological studies, a neuropathic component of pain is often present in patients with spinal diseases, with a frequency ranging from 36% to 55% of patients. Distinguishing between chronic nociceptive pain and neuropathic pain very often remains a challenge. Consequently, neuropathic pain is often underdiagnosed in patients with spinal diseases. In reference to current guidelines for the treatment of neuropathic pain, gabapentin, serotonin and norepinephrine reuptake inhibitors and tricyclic antidepressants constitute first-line therapeutic agents. However, long-term pharmacologic treatment often leads to developing tolerance and resistance to used medications. Therefore, in recent years, a plethora of therapeutic methods for neuropathic pain have been developed and investigated to improve clinical outcomes. In this review, we briefly summarized current knowledge about the pathophysiology and diagnosis of neuropathic pain. Moreover, we described the most effective treatment approaches for neuropathic pain and discussed their relevance in the treatment of spinal pain.
Collapse
Affiliation(s)
- Joanna Bielewicz
- Department of Neurology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Maciej Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Michał Szymoniuk
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Correspondence:
| | - Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Wojciech Czyżewski
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Department of Didactics and Medical Simulation, Medical University of Lublin, Chodźki 4, 20-093 Lublin, Poland
| | - Piotr Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| |
Collapse
|
17
|
Natural Herbal Non-Opioid Topical Pain Relievers-Comparison with Traditional Therapy. Pharmaceutics 2022; 14:pharmaceutics14122648. [PMID: 36559142 PMCID: PMC9785912 DOI: 10.3390/pharmaceutics14122648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Pain is the predominant symptom of many clinical diseases and is frequently associated with neurological and musculoskeletal problems. Chronic pain is frequent in the elderly, causing suffering, disability, social isolation, and increased healthcare expenses. Chronic pain medication is often ineffective and has many side effects. Nonsteroidal over-the-counter and prescription drugs are frequently recommended as first-line therapies for pain control; however, long-term safety issues must not be neglected. Herbs and nutritional supplements may be a safer and more effective alternative to nonsteroidal pharmaceuticals for pain management, especially when used long-term. Recently, topical analgesic therapies have gained attention as an innovative approach due to their sufficient efficacy and comparatively fewer systemic side effects and drug-drug interactions. In this paper, we overview the main natural herbal pain relievers, their efficacy and safety, and their potential use as topical agents for pain control. Although herbal-derived medications are not appropriate for providing quick relief for acute pain problems, they could be used as potent alternative remedies in managing chronic persistent pain with minimal side effects.
Collapse
|
18
|
Silva-Cardoso GK, Leite-Panissi CRA. Chronic Pain and Cannabidiol in Animal Models: Behavioral Pharmacology and Future Perspectives. Cannabis Cannabinoid Res 2022; 8:241-253. [PMID: 36355044 DOI: 10.1089/can.2022.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The incidence of chronic pain is around 8% in the general population, and its impact on quality of life, mood, and sleep exceeds the burden of its causal pathology. Chronic pain is a complex and multifaceted problem with few effective and safe treatment options. It can be associated with neurological diseases, peripheral injuries or central trauma, or some maladaptation to traumatic or emotional events. In this perspective, animal models are used to assess the manifestations of neuropathy, such as allodynia and hyperalgesia, through nociceptive tests, such as von Frey, Hargreaves, hot plate, tail-flick, Randall & Selitto, and others. Cannabidiol (CBD) has been considered a promising strategy for treating chronic pain and diseases that have pain as a consequence of neuropathy. However, despite the growing body of evidence linking the efficacy of CBD on pain management in clinical and basic research, there is a lack of reviews focusing on chronic pain assessments, especially when considering pre-clinical studies, which assess chronic pain as a disease by itself or as a consequence of trauma or peripheral or central disease. Therefore, this review focused only on studies that fit our inclusion criteria: (1) used treatment with CBD extract; (2) used tests to assess mechanical or thermal nociception in at least one of the following most commonly used tests (von Frey, hot plate, acetone, Hargreaves, tail-flick, Randall & Selitto, and others); and (3) studies that assessed pain sensitivity in chronic pain induction models. The current literature points out that CBD is a well-tolerated and safe natural compound that exerts analgesic effects, decreasing hyperalgesia, and mechanical/thermal allodynia in several animal models of pain and patients. In addition, CBD presents several molecular and cellular mechanisms of action involved in its positive effects on chronic pain. In conclusion, using CBD seems to be a promising strategy to overcome the lack of efficacy of conventional treatment for chronic pain.
Collapse
Affiliation(s)
- Gleice Kelli Silva-Cardoso
- Psychology Department, Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
19
|
Kopsky DJ, van Eijk RPA, Warendorf JK, Keppel Hesselink JM, Notermans NC, Vrancken AFJE. Enriched enrollment randomized double-blind placebo-controlled cross-over trial with phenytoin cream in painful chronic idiopathic axonal polyneuropathy (EPHENE): a study protocol. Trials 2022; 23:888. [PMID: 36273216 PMCID: PMC9587538 DOI: 10.1186/s13063-022-06806-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/30/2022] [Indexed: 11/10/2022] Open
Abstract
Background Patients with chronic idiopathic axonal polyneuropathy (CIAP) can have neuropathic pain that significantly impacts quality of life. Oral neuropathic pain medication often has insufficient pain relief and side effects. Topical phenytoin cream could circumvent these limitations. The primary objectives of this trial are to evaluate (1) efficacy in pain reduction and (2) safety of phenytoin cream in patients with painful CIAP. The main secondary objective is to explore the usefulness of a double-blind placebo-controlled response test (DOBRET) to identify responders to sustained pain relief with phenytoin cream. Methods This 6-week, enriched enrollment randomized double-blind, placebo-controlled triple cross-over trial compares phenytoin 20%, 10% and placebo cream in 48 participants with painful CIAP. Enriched enrollment is based on a positive DOBRET in 48 participants who experience within 30 minutes ≥2 points pain reduction on the 11-point numerical rating scale (NRS) in the phenytoin 10% cream applied area and ≥1 point difference in pain reduction on the NRS between phenytoin 10% and placebo cream applied area, in favour of the former. To explore whether DOBRET has predictive value for sustained pain relief, 24 DOBRET-negative participants will be included. An open-label extension phase is offered with phenytoin 20% cream for up to one year, to study long-term safety. The main inclusion criteria are a diagnosis of CIAP and symmetrical neuropathic pain with a mean weekly pain score of ≥4 and <10 on the NRS. The primary outcome is the mean difference between phenytoin 20% versus placebo cream in 7-day average pain intensity, as measured by the NRS, over week 2 in DOBRET positive participants. Key secondary outcomes include the mean difference in pain intensity between phenytoin 10% and phenytoin 20% cream, and between phenytoin 10% and placebo cream. Furthermore, differences between the 3 interventions will be evaluated on the Neuropathic Pain Symptom Inventory, EuroQol EQ5-5D-5L, and evaluation of adverse events. Discussion This study will provide evidence on the efficacy and safety of phenytoin cream in patients with painful CIAP and will give insight into the usefulness of DOBRET as a way of personalized medicine to identify responders to sustained pain relief with phenytoin cream. Trial registration ClinicalTrials.gov NCT04647877. Registered on 1 December 2020.
Collapse
Affiliation(s)
- David J Kopsky
- Institute for Neuropathic Pain, Amsterdam / Soest / Bosch en Duin, The Netherlands. .,Department of Neurology, Brain Centre University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Ruben P A van Eijk
- Department of Neurology, Brain Centre University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Janna K Warendorf
- Department of Neurology, Brain Centre University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Nicolette C Notermans
- Department of Neurology, Brain Centre University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Alexander F J E Vrancken
- Department of Neurology, Brain Centre University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
20
|
Ye F, Du L, Huang W, Wang S. Shared Genetic Regulatory Networks Contribute to Neuropathic and Inflammatory Pain: Multi-Omics Systems Analysis. Biomolecules 2022; 12:1454. [PMID: 36291662 PMCID: PMC9599593 DOI: 10.3390/biom12101454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
The mechanisms of chronic pain are complex, and genetic factors play an essential role in the development of chronic pain. Neuropathic pain (NP) and inflammatory pain (IP) are two primary components of chronic pain. Previous studies have uncovered some common biological processes in NP and IP. However, the shared genetic mechanisms remained poorly studied. We utilized multi-omics systematic analyses to investigate the shared genetic mechanisms of NP and IP. First, by integrating several genome-wide association studies (GWASs) with multi-omics data, we revealed the significant overlap of the gene co-expression modules in NP and IP. Further, we uncovered the shared biological pathways, including the previously reported mitochondrial electron transport and ATP metabolism, and stressed the role of genetic factors in chronic pain with neurodegenerative diseases. Second, we identified 24 conservative key drivers (KDs) contributing to NP and IP, containing two well-established pain genes, IL1B and OPRM1, and some novel potential pain genes, such as C5AR1 and SERPINE1. The subnetwork of those KDs highlighted the processes involving the immune system. Finally, gene expression analysis of the KDs in mouse models underlined two of the KDs, SLC6A15 and KCNQ5, with unidirectional regulatory functions in NP and IP. Our study provides strong evidence to support the current understanding of the shared genetic regulatory networks underlying NP and IP and potentially benefit the future common therapeutic avenues for chronic pain.
Collapse
Affiliation(s)
- Fang Ye
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Li Du
- Vitalant Research Institute, San Francisco, CA 94118, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Sheng Wang
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
21
|
Insights into the Promising Prospect of G Protein and GPCR-Mediated Signaling in Neuropathophysiology and Its Therapeutic Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8425640. [PMID: 36187336 PMCID: PMC9519337 DOI: 10.1155/2022/8425640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
G protein-coupled receptors (GPCRs) are intricately involved in the conversion of extracellular feedback to intracellular responses. These specialized receptors possess a crucial role in neurological and psychiatric disorders. Most nonsensory GPCRs are active in almost 90% of complex brain functions. At the time of receptor phosphorylation, a GPCR pathway is essentially activated through a G protein signaling mechanism via a G protein-coupled receptor kinase (GRK). Dopamine, an important neurotransmitter, is primarily involved in the pathophysiology of several CNS disorders; for instance, bipolar disorder, schizophrenia, Parkinson's disease, and ADHD. Since dopamine, acetylcholine, and glutamate are potent neuropharmacological targets, dopamine itself has potential therapeutic effects in several CNS disorders. GPCRs essentially regulate brain functions by modulating downstream signaling pathways. GPR6, GPR52, and GPR8 are termed orphan GPCRs because they colocalize with dopamine D1 and D2 receptors in neurons of the basal ganglia, either alone or with both receptors. Among the orphan GPCRs, the GPR52 is recognized for being an effective psychiatric receptor. Various antipsychotics like aripiprazole and quetiapine mainly target GPCRs to exert their actions. One of the most important parts of signal transduction is the regulation of G protein signaling (RGS). These substances inhibit the activation of the G protein that initiates GPCR signaling. Developing a combination of RGS inhibitors with GPCR agonists may prove to have promising therapeutic potential. Indeed, several recent studies have suggested that GPCRs represent potentially valuable therapeutic targets for various psychiatric disorders. Molecular biology and genetically modified animal model studies recommend that these enriched GPCRs may also act as potential therapeutic psychoreceptors. Neurotransmitter and neuropeptide GPCR malfunction in the frontal cortex and limbic-related regions, including the hippocampus, hypothalamus, and brainstem, is likely responsible for the complex clinical picture that includes cognitive, perceptual, emotional, and motor symptoms. G protein and GPCR-mediated signaling play a critical role in developing new treatment options for mental health issues, and this study is aimed at offering a thorough picture of that involvement. For patients who are resistant to current therapies, the development of new drugs that target GPCR signaling cascades remains an interesting possibility. These discoveries might serve as a fresh foundation for the creation of creative methods for pharmacologically useful modulation of GPCR function.
Collapse
|
22
|
Ridouh I, Hackshaw KV. Essential Oils and Neuropathic Pain. PLANTS (BASEL, SWITZERLAND) 2022; 11:1797. [PMID: 35890431 PMCID: PMC9323890 DOI: 10.3390/plants11141797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Neuropathic pain is one of the most prominent chronic pain syndromes, affecting almost 10% of the United States population. While there are a variety of established pharmacologic and non-pharmacologic treatment options, including tricyclic antidepressants (TCAs), serotonin-noradrenaline reuptake inhibitors, anticonvulsants, trigger point injections, and spinal cord stimulators, many patients continue to have chronic pain or suboptimal symptom control. This has led to an increased interest in alternative solutions for neuropathic pain such as nutritional supplements and essential oils. In this review, we explore the literature on the most commonly cited essential oils, including lavender, bergamot, rosemary, nutmeg, Billy goat weed, and eucalyptus. However, the literature is limited and largely comprised of preclinical animal models and a few experimental studies, some of which were poorly designed and did not clearly isolate the effects of the essential oil treatment. Additionally, no standardized method of dosing or route of administration has been established. Further randomized control studies isolating the active components of various essential oils are needed to provide conclusive evidence on the use of essential oils for neuropathic pain. In this review, we explore the basis behind some of the essential oils of interest to patients with neuropathic pain seen in rheumatology clinics.
Collapse
Affiliation(s)
- Imane Ridouh
- Dell Medical School, University of Texas, 1601 Trinity St., Austin, TX 78712, USA;
| | - Kevin V. Hackshaw
- Dell Medical School, University of Texas, 1601 Trinity St., Austin, TX 78712, USA;
- Department of Internal Medicine, Division of Rheumatology, Dell Medical School, University of Texas, 1601 Trinity St., Austin, TX 78712, USA
| |
Collapse
|
23
|
Quintero JM, Pulido G, Giraldo LF, Leon MX, Diaz LE, Bustos RH. A Systematic Review on Cannabinoids for Neuropathic Pain Administered by Routes Other than Oral or Inhalation. PLANTS 2022; 11:plants11101357. [PMID: 35631782 PMCID: PMC9145866 DOI: 10.3390/plants11101357] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022]
Abstract
The use of cannabis and cannabinoid products for the treatment of neuropathic pain is a growing area of research. This type of pain has a high prevalence, limited response to available therapies and high social and economic costs. Systemic cannabinoid-based therapies have shown some unwanted side effects. Alternative routes of administration in the treatment of neuropathic pain may provide better acceptance for the treatment of multiple pathologies associated with neuropathic pain. To examine the efficacy, tolerability, and safety of cannabinoids (individualized formulations, phytocannabinoids, and synthetics) administered by routes other than oral or inhalation compared to placebo and/or conventional medications in the management of neuropathic pain. This systematic review of the literature reveals a lack of clinical research investigating cannabis by routes other than oral and inhalation as a potential treatment for neuropathic pain and highlights the need for further investigation with well-designed clinical trials. There is a significant lack of evidence indicating that cannabinoids administered by routes other than oral or inhaled may be an effective alternative, with better tolerance and safety in the treatment of neuropathic pain. Higher quality, long-term, randomized controlled trials are needed to examine whether cannabinoids administered by routes other than inhalation and oral routes may have a role in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Jose-Manuel Quintero
- Department of Clinical Pharmacology, Evidence-Based Therapeutics Group, Faculty of Medicine, Clínica Universidad de La Sabana, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía 140013, Colombia; (J.-M.Q.); (G.P.)
- Doctoral Programme of Biosciences, Universidad de La Sabana, Chía 140013, Colombia
| | - German Pulido
- Department of Clinical Pharmacology, Evidence-Based Therapeutics Group, Faculty of Medicine, Clínica Universidad de La Sabana, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía 140013, Colombia; (J.-M.Q.); (G.P.)
| | - Luis-Fernando Giraldo
- Epidemiology and Biostatistics Department, School of Medicine, Universidad de La Sabana, Chía 140013, Colombia;
- Internal Medicine, Universidad de La Sabana, Chía 140013, Colombia
- Interventional Pulmonology and Research Department, Fundación Neumológica Colombiana, Bogotá D.C. 110131, Colombia
| | - Marta-Ximena Leon
- Grupo Dolor y Cuidados Paliativos, Universidad de La Sabana, Chía 140013, Colombia;
| | - Luis-Eduardo Diaz
- Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte, Chía 140013, Colombia;
| | - Rosa-Helena Bustos
- Department of Clinical Pharmacology, Evidence-Based Therapeutics Group, Faculty of Medicine, Clínica Universidad de La Sabana, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía 140013, Colombia; (J.-M.Q.); (G.P.)
- Correspondence: ; Tel.: +57-1608615555
| |
Collapse
|
24
|
Alles SRA, Smith PA. Peripheral Voltage-Gated Cation Channels in Neuropathic Pain and Their Potential as Therapeutic Targets. FRONTIERS IN PAIN RESEARCH 2021; 2:750583. [PMID: 35295464 PMCID: PMC8915663 DOI: 10.3389/fpain.2021.750583] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
The persistence of increased excitability and spontaneous activity in injured peripheral neurons is imperative for the development and persistence of many forms of neuropathic pain. This aberrant activity involves increased activity and/or expression of voltage-gated Na+ and Ca2+ channels and hyperpolarization activated cyclic nucleotide gated (HCN) channels as well as decreased function of K+ channels. Because they display limited central side effects, peripherally restricted Na+ and Ca2+ channel blockers and K+ channel activators offer potential therapeutic approaches to pain management. This review outlines the current status and future therapeutic promise of peripherally acting channel modulators. Selective blockers of Nav1.3, Nav1.7, Nav1.8, Cav3.2, and HCN2 and activators of Kv7.2 abrogate signs of neuropathic pain in animal models. Unfortunately, their performance in the clinic has been disappointing; some substances fail to meet therapeutic end points whereas others produce dose-limiting side effects. Despite this, peripheral voltage-gated cation channels retain their promise as therapeutic targets. The way forward may include (i) further structural refinement of K+ channel activators such as retigabine and ASP0819 to improve selectivity and limit toxicity; use or modification of Na+ channel blockers such as vixotrigine, PF-05089771, A803467, PF-01247324, VX-150 or arachnid toxins such as Tap1a; the use of Ca2+ channel blockers such as TTA-P2, TTA-A2, Z 944, ACT709478, and CNCB-2; (ii) improving methods for assessing "pain" as opposed to nociception in rodent models; (iii) recognizing sex differences in pain etiology; (iv) tailoring of therapeutic approaches to meet the symptoms and etiology of pain in individual patients via quantitative sensory testing and other personalized medicine approaches; (v) targeting genetic and biochemical mechanisms controlling channel expression using anti-NGF antibodies such as tanezumab or re-purposed drugs such as vorinostat, a histone methyltransferase inhibitor used in the management of T-cell lymphoma, or cercosporamide a MNK 1/2 inhibitor used in treatment of rheumatoid arthritis; (vi) combination therapy using drugs that are selective for different channel types or regulatory processes; (vii) directing preclinical validation work toward the use of human or human-derived tissue samples; and (viii) application of molecular biological approaches such as clustered regularly interspaced short palindromic repeats (CRISPR) technology.
Collapse
Affiliation(s)
- Sascha R A Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Peter A Smith
- Department of Pharmacology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
25
|
Sánchez-Salcedo JA, Cabrera MME, Molina-Jiménez T, Cortes-Altamirano JL, Alfaro-Rodríguez A, Bonilla-Jaime H. Depression and Pain: use of antidepressant. Curr Neuropharmacol 2021; 20:384-402. [PMID: 34151765 PMCID: PMC9413796 DOI: 10.2174/1570159x19666210609161447] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/03/2021] [Accepted: 04/03/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Emotional disorders are common comorbid affectations that exacerbate the severity and persistence of chronic pain. Specifically, depressive symptoms can lead to an excessive duration and intensity of pain. Clinical and preclinical studies have been focused on the underlying mechanisms of chronic pain and depression comorbidity and the use of antidepressants to reduce pain. Aim: This review provides an overview of the comorbid relationship of chronic pain and depression, the clinical and pre-clinical studies performed on the neurobiological aspects of pain and depression, and the use of antidepressants as analgesics. Methods: A systematic search of literature databases was conducted according to pre-defined criteria. The authors independently conducted a focused analysis of the full-text articles. Results: Studies suggest that pain and depression are highly intertwined and may co-exacerbate physical and psychological symptoms. One important biochemical basis for pain and depression focuses on the serotonergic and norepinephrine system, which have been shown to play an important role in this comorbidity. Brain structures that codify pain are also involved in mood. It is evident that using serotonergic and norepinephrine antidepressants are strategies commonly employed to mitigate pain Conclusion: Literature indicates that pain and depression impact each other and play a prominent role in the development and maintenance of other chronic symptoms. Antidepressants continue to be a major therapeutic tool for managing chronic pain. Tricyclic antidepressants (TCAs) are more effective in reducing pain than Selective Serotonin Reuptake Inhibitors (SSRIs) and Serotonin-Noradrenaline Reuptake Inhibitors (SNRIs).
Collapse
Affiliation(s)
- José Armando Sánchez-Salcedo
- Doctorado en Ciencias Biológicas y de la Salud. Universidad Autónoma Metropolitana-Iztapalapa, UAM-I, Apartado Postal 55 535, C.P. 09340, Ciudad de México, Mexico
| | - Maribel Maetizi Estevez Cabrera
- Doctorado en Ciencias Biológicas y de la Salud. Universidad Autónoma Metropolitana-Iztapalapa, UAM-I, Apartado Postal 55 535, C.P. 09340, Ciudad de México, Mexico
| | - Tania Molina-Jiménez
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana. Circuito Gonzálo Aguirre Beltrán Sn, Zona Universitaria. C.P. 91090 Xalapa-Enríquez
| | - José Luis Cortes-Altamirano
- División de Neurociencias, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Secretaría de Salud, Ciudad de México, Mexico
| | - Alfonso Alfaro-Rodríguez
- División de Neurociencias, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Secretaría de Salud, Ciudad de México, Mexico
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa. Apartado Postal 55 535, C.P. 09340, Ciudad de México, Mexico
| |
Collapse
|