1
|
Velickovic U, Selakovic D, Jovicic N, Mitrovic M, Janjic V, Rosic S, Randjelovic S, Milovanovic D, Rosic G. The Advances in Antipsychotics-Induced Dyskinesia Rodent Models: Benefits of Antioxidant Supplementation. Biomedicines 2025; 13:512. [PMID: 40002925 PMCID: PMC11853207 DOI: 10.3390/biomedicines13020512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
After 70 years of clinical practice with antipsychotics in the treatment of some specific serious mental disorders, much information has been accumulated considering their efficiency as a first-line evidence-based schizophrenia therapy, but also on their adverse effects within the range from minor to life-threatening issues. In this paper, we highlight motor impairment as a frequent limiting factor. Despite the diversity of side effects following antipsychotics usage, many of those who suffer share the same pathophysiological background issues, such as oxidative damage, neuroinflammation, apoptosis, and neurodegeneration (observed in the brain regions involved in motor control). The obvious need to solve these limitations is facing restraints in clinical studies due to the ethical issues. Therefore, it seems reasonable to address the importance of preclinical investigations to overcome the adverse effects of antipsychotics. For that purpose, we analyzed the antipsychotics-induced dyskinesia seen in rodent models, with a special focus on attempts to highlight the benefits of antioxidant supplementation. Our analysis has revealed that antioxidant supplementation, with various antioxidant-rich compounds, confirms the clear neuroprotective effects of the therapy of this iatrogenic dyskinesia. Given their accessibility and safety, it seems that the administration of antioxidant-rich compounds in various forms, as an adjuvant therapy, may be beneficial in patients by lowering the risk of secondary Parkinsonism. Also, it seems that the strategy for further investigations in this field of preclinical studies should be standardized and should include more antipsychotics employed in the clinical practice.
Collapse
Affiliation(s)
- Uros Velickovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (U.V.); (S.R.); (G.R.)
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (U.V.); (S.R.); (G.R.)
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Marina Mitrovic
- Department of Medical Biochemistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Vladimir Janjic
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
- Psychiatry Clinic, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| | - Sara Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (U.V.); (S.R.); (G.R.)
| | - Suzana Randjelovic
- Department of Emergency Medicine, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia;
| | - Dragan Milovanovic
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (U.V.); (S.R.); (G.R.)
| |
Collapse
|
2
|
Ibrahim EA, Saad SS, Hegazy MA, Abdel Fattah LE, Marzouk HM. A novel stability-indicating chromatographic quantification of the antiparkinsonian drug safinamide in its pharmaceutical formulation employing HPTLC densitometry and ion-pair HPLC-DAD. BMC Chem 2024; 18:212. [PMID: 39487557 PMCID: PMC11529230 DOI: 10.1186/s13065-024-01315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/03/2024] [Indexed: 11/04/2024] Open
Abstract
Parkinson's disease (PD) emerges as a notable health concern among the elderly population. Safinamide mesylate (SAF) is a novel and emerging add-on therapy in PD treatment. The stability of innovative drug formulations and the development of appropriate stability-indicating methods are of great importance to modern pharmaceutical analysis. The current work has established novel comprehensive stability-indicating chromatographic approaches, HPTLC coupled with densitometric quantification and HPLC-DAD, for the selective assay of SAF in pharmaceutical formulation along with its synthetic precursor impurity; 4-hydroxy benzaldehyde (4-HBD) in presence of its stress induced degradation products. The stability of SAF was investigated under different stress conditions. It was found that SAF is likely to undergo acid, base hydrolysis, and oxidative degradation. Using mass spectrometry and infrared spectroscopy, the structures of the forced degradation products were confirmed and elucidated. The dissolution behavior of Parkimedine® Tablets was also monitored in the FDA suitable medium. Multiple assessment tools were used to evaluate the environmental sustainability of the proposed methods and the reported one. The greenness tools included Complex-GAPI and AGREE metrics. In addition, the innovative concepts of "blueness" and "whiteness" evaluation were incorporated through the newly introduced BAGI and RGB12 algorithms, respectively.
Collapse
Affiliation(s)
- Engy A Ibrahim
- Pharmaceutical Analytical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science & Technology, 6th of October City, Giza, Egypt
| | - Samah S Saad
- Pharmaceutical Analytical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science & Technology, 6th of October City, Giza, Egypt
| | - Maha A Hegazy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo, 11835, Egypt
| | - Laila E Abdel Fattah
- Pharmaceutical Analytical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science & Technology, 6th of October City, Giza, Egypt
| | - Hoda M Marzouk
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Al-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
3
|
Grancharova T, Simeonova S, Pilicheva B, Zagorchev P. Gold Nanoparticles in Parkinson's Disease Therapy: A Focus on Plant-Based Green Synthesis. Cureus 2024; 16:e54671. [PMID: 38524031 PMCID: PMC10960252 DOI: 10.7759/cureus.54671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease that affects approximately 1% of people over the age of 60 and 5% of those over the age of 85. Current drugs for Parkinson's disease mainly affect the symptoms and cannot stop its progression. Nanotechnology provides a solution to address some challenges in therapy, such as overcoming the blood-brain barrier (BBB), adverse pharmacokinetics, and the limited bioavailability of therapeutics. The reformulation of drugs into nanoparticles (NPs) can improve their biodistribution, protect them from degradation, reduce the required dose, and ensure target accumulation. Furthermore, appropriately designed nanoparticles enable the combination of diagnosis and therapy with a single nanoagent. In recent years, gold nanoparticles (AuNPs) have been studied with increasing interest due to their intrinsic nanozyme activity. They can mimic the action of superoxide dismutase, catalase, and peroxidase. The use of 13-nm gold nanoparticles (CNM-Au8®) in bicarbonate solution is being studied as a potential treatment for Parkinson's disease and other neurological illnesses. CNM-Au8® improves remyelination and motor functions in experimental animals. Among the many techniques for nanoparticle synthesis, green synthesis is increasingly used due to its simplicity and therapeutic potential. Green synthesis relies on natural and environmentally friendly materials, such as plant extracts, to reduce metal ions and form nanoparticles. Moreover, the presence of bioactive plant compounds on their surface increases the therapeutic potential of these nanoparticles. The present article reviews the possibilities of nanoparticles obtained by green synthesis to combine the therapeutic effects of plant components with gold.
Collapse
Affiliation(s)
- Tsenka Grancharova
- Department of Medical Physics and Biophysics, Medical University of Plovdiv, Plovdiv, BGR
- Research Institute, Medical University of Plovdiv, Plovdiv, BGR
| | - Stanislava Simeonova
- Department of Pharmaceutical Sciences, Medical University of Plovdiv, Plovdiv, BGR
- Research Institute, Medical University of Plovdiv, Plovdiv, BGR
| | - Bissera Pilicheva
- Department of Pharmaceutical Sciences, Medical University of Plovdiv, Plovdiv, BGR
- Research Institute, Medical University of Plovdiv, Plovdiv, BGR
| | - Plamen Zagorchev
- Department of Medical Physics and Biophysics, Medical University of Plovdiv, Plovdiv, BGR
- Research Institute, Medical University of Plovdiv, Plovdiv, BGR
| |
Collapse
|
4
|
Ozer T, Henry CS. Recent Trends in Nanomaterial Based Electrochemical Sensors for Drug Detection: Considering Green Assessment. Curr Top Med Chem 2024; 24:952-972. [PMID: 38415434 DOI: 10.2174/0115680266286981240207053402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/02/2024] [Accepted: 01/12/2024] [Indexed: 02/29/2024]
Abstract
An individual's therapeutic drug exposure level is directly linked to corresponding clinical effects. Rapid, sensitive, inexpensive, portable and reliable devices are needed for diagnosis related to drug exposure, treatment, and prognosis of diseases. Electrochemical sensors are useful for drug monitoring due to their high sensitivity and fast response time. Also, they can be combined with portable signal read-out devices for point-of-care applications. In recent years, nanomaterials such as carbon-based, carbon-metal nanocomposites, noble nanomaterials have been widely used to modify electrode surfaces due to their outstanding features including catalytic abilities, conductivity, chemical stability, biocompatibility for development of electrochemical sensors. This review paper presents the most recent advances about nanomaterials-based electrochemical sensors including the use of green assessment approach for detection of drugs including anticancer, antiviral, anti-inflammatory, and antibiotics covering the period from 2019 to 2023. The sensor characteristics such as analyte interactions, fabrication, sensitivity, and selectivity are also discussed. In addition, the current challenges and potential future directions of the field are highlighted.
Collapse
Affiliation(s)
- Tugba Ozer
- Department of Bioengineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Türkiye
- Health Biotechnology Joint Research and Application Center of Excellence, 34220, Esenler, Istanbul, Türkiye
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO80523, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, 80523, United States
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Kapoor A, Hafeez A, Kushwaha P. Nanocarrier Mediated Intranasal Drug Delivery Systems for the Management of Parkinsonism: A Review. Curr Drug Deliv 2024; 21:709-725. [PMID: 37365787 DOI: 10.2174/1567201820666230523114259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 06/28/2023]
Abstract
The transport of drugs to the brain becomes a key concern when treating disorders of the central nervous system. Parkinsonism is one of the major concerns across the world populations, which causes difficulty in coordination and balance. However, the blood-brain barrier is a significant barrier to achieving optimal brain concentration through oral, transdermal, and intravenous routes of administration. The intranasal route with nanocarrier-based formulations has shown potential for managing Parkinsonism disorder (PD). Direct delivery to the brain through the intranasal route is possible via the olfactory and trigeminal pathways using drug-loaded nanotechnology-based drug delivery systems. The critical analysis of reported works demonstrates dose reduction, brain targeting, safety, effectiveness, and stability for drug-loaded nanocarriers. The important aspects of intranasal drug delivery, PD details, and nanocarrier-based intranasal formulations in PD management with a discussion of physicochemical characteristics, cell line studies, and animal studies are the major topics in this review. Patent reports and clinical investigations are summarized in the last sections.
Collapse
Affiliation(s)
- Archita Kapoor
- Faculty of Pharmacy, Integral University, Lucknow- 226026, India
| | - Abdul Hafeez
- Faculty of Pharmacy, Integral University, Lucknow- 226026, India Lucknow India
| | - Poonam Kushwaha
- Faculty of Pharmacy, Integral University, Lucknow- 226026, India
| |
Collapse
|
6
|
van Vliet EF, Knol MJ, Schiffelers RM, Caiazzo M, Fens MHAM. Levodopa-loaded nanoparticles for the treatment of Parkinson's disease. J Control Release 2023; 360:212-224. [PMID: 37343725 DOI: 10.1016/j.jconrel.2023.06.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) resulting in dopamine (DA) deficiency, which manifests itself in motor symptoms including tremors, rigidity and bradykinesia. Current PD treatments aim at symptom reduction through oral delivery of levodopa (L-DOPA), a precursor of DA. However, L-DOPA delivery to the brain is inefficient and increased dosages are required as the disease progresses, resulting in serious side effects like dyskinesias. To improve PD treatment efficacy and to reduce side effects, recent research focuses on the encapsulation of L-DOPA into polymeric- and lipid-based nanoparticles (NPs). These formulations can protect L-DOPA from systemic decarboxylation into DA and improve L-DOPA delivery to the central nervous system. Additionally, NPs can be modified with proteins, peptides and antibodies specifically targeting the blood-brain barrier (BBB), thereby reducing required dosages and free systemic DA. Alternative delivery approaches for NP-encapsulated L-DOPA include intravenous (IV) administration, transdermal delivery using adhesive patches and direct intranasal administration, facilitating increased therapeutic DA concentrations in the brain. This review provides an overview of the recent advances for NP-mediated L-DOPA delivery to the brain, and debates challenges and future perspectives on the field.
Collapse
Affiliation(s)
- Emile F van Vliet
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Maarten J Knol
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | | | - Massimiliano Caiazzo
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands; Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy.
| | - Marcel H A M Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
7
|
Vaquero-Rodríguez A, Razquin J, Zubelzu M, Bidgood R, Bengoetxea H, Miguelez C, Morera-Herreras T, Ruiz-Ortega JA, Lafuente JV, Ortuzar N. Efficacy of invasive and non-invasive methods for the treatment of Parkinson's disease: Nanodelivery and enriched environment. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 172:103-143. [PMID: 37833010 DOI: 10.1016/bs.irn.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder characterised by the loss of dopaminergic neurons in the substantia nigra pars compacta and the subsequent motor disability. The most frequently used treatments in clinics, such as L-DOPA, restore dopaminergic neurotransmission in the brain. However, these treatments are only symptomatic, have temporary efficacy, and produce side effects. Part of the side effects are related to the route of administration as the consumption of oral tablets leads to unspecific pulsatile activation of dopaminergic receptors. For this reason, it is necessary to not only find alternative treatments, but also to develop new administration systems with better security profiles. Nanoparticle delivery systems are new administration forms designed to reach the pharmacological target in a highly specific way, leading to better drug bioavailability, efficacy and safety. Some of these delivery systems have shown promising results in animal models of PD not only when dopaminergic drugs are administered, but even more when neurotrophic factors are released. These latter compounds promote maturation and survival of dopaminergic neurons and can be exogenously administered in the form of pharmacological therapy or endogenously generated by non-pharmacological methods. In this sense, experimental exposure to enriched environments, a non-invasive strategy based on the combination of social and inanimate stimuli, enhances the production of neurotrophic factors and produces a neuroprotective effect in parkinsonian animals. In this review, we will discuss new nanodelivery systems in PD with a special focus on therapies that increase the release of neurotrophic factors.
Collapse
Affiliation(s)
- Andrea Vaquero-Rodríguez
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Jone Razquin
- Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain; Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Maider Zubelzu
- Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain; Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Raphaelle Bidgood
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Harkaitz Bengoetxea
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Cristina Miguelez
- Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain; Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Teresa Morera-Herreras
- Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain; Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jose Angel Ruiz-Ortega
- Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain; Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria, Spain
| | - José Vicente Lafuente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Naiara Ortuzar
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain.
| |
Collapse
|
8
|
Mohammad, Khan UA, Warsi MH, Alkreathy HM, Karim S, Jain GK, Ali A. Intranasal cerium oxide nanoparticles improves locomotor activity and reduces oxidative stress and neuroinflammation in haloperidol-induced parkinsonism in rats. Front Pharmacol 2023; 14:1188470. [PMID: 37324485 PMCID: PMC10267740 DOI: 10.3389/fphar.2023.1188470] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/09/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction: Cerium oxide nanoparticles (CONPs) have been investigated for their therapeutic potential in Parkinson's disease (PD) due to their potent and regenerative antioxidant activity. In the present study, CONPs were used to ameliorate the oxidative stress caused by free radicals in haloperidol-induced PD in rats following intranasal administration. Method: The antioxidant potential of the CONPs was evaluated in vitro using ferric reducing antioxidant power (FRAP) assay. The penetration and local toxicity of the CONPs was evaluated ex-vivo using goat nasal mucosa. The acute local toxicity of intranasal CONPs was also studied in rat. Gamma scintigraphy was used to assess the targeted brain delivery of CONPs. Acute toxicity studies were performed in rats to demonstrate safety of intranasal CONPs. Further, open field test, pole test, biochemical estimations and brain histopathology was performed to evaluate efficacy of intranasal CONPs in haloperidol-induced PD rat model. Results: The FRAP assay revealed highest antioxidant activity of prepared CONPs at a concentration of 25 μg/mL. Confocal microscopy showed deep and homogenous distribution of CONPs in the goat nasal mucus layers. No signs of irritation or injury were seen in goat nasal membrane when treated with optimized CONPs. Scintigraphy studies in rats showed targeted brain delivery of intranasal CONPs and acute toxicity study demonstrated safety. The results of open field and pole test showed highly significant (p < 0.001) improvement in locomotor activity of rats treated with intranasal CONPs compared to untreated rats. Further, brain histopathology of treatment group rats showed reduced neurodegeneration with presence of more live cells. The amount of thiobarbituric acid reactive substances (TBARS) was reduced significantly, whereas the levels of catalase (CAT), superoxide dismutase (SOD), and GSH were increased significantly, while amounts of interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) showed significant reduction after intranasal administration of CONPs. Also, the intranasal CONPs, significantly high (p < 0.001) dopamine concentration (13.93 ± 0.85 ng/mg protein) as compared to haloperidol-induced control rats (5.76 ± 0.70 ng/mg protein). Conclusion: The overall results concluded that the intranasal CONPs could be safe and effective therapeutics for the management of PD.
Collapse
Affiliation(s)
- Mohammad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Urooj Ahmed Khan
- Department of Pharmaceutics, Dr. Ram Manohar Lohia College of Pharmacy, Ghaziabad, Uttar Pradesh, India
| | - Musarrat Husain Warsi
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Huda Mohammed Alkreathy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shahid Karim
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
- Center for Advanced Formulation Technology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Asgar Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| |
Collapse
|
9
|
Adam H, Gopinath SCB, Md Arshad MK, Adam T, Parmin NA, Husein I, Hashim U. An update on pathogenesis and clinical scenario for Parkinson's disease: diagnosis and treatment. 3 Biotech 2023; 13:142. [PMID: 37124989 PMCID: PMC10134733 DOI: 10.1007/s13205-023-03553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
In severe cases, Parkinson's disease causes uncontrolled movements known as motor symptoms such as dystonia, rigidity, bradykinesia, and tremors. Parkinson's disease also causes non-motor symptoms such as insomnia, constipation, depression and hysteria. Disruption of dopaminergic and non-dopaminergic neural networks in the substantia nigra pars compacta is a major cause of motor symptoms in Parkinson's disease. Furthermore, due to the difficulty of clinical diagnosis of Parkinson's disease, it is often misdiagnosed, highlighting the need for better methods of detection. Treatment of Parkinson's disease is also complicated due to the difficulties of medications passing across the blood-brain barrier. Moreover, the conventional methods fail to solve the aforementioned issues. As a result, new methods are needed to detect and treat Parkinson's disease. Improved diagnosis and treatment of Parkinson's disease can help avoid some of its devastating symptoms. This review explores how nanotechnology platforms, such as nanobiosensors and nanomedicine, have improved Parkinson's disease detection and treatment. Nanobiosensors integrate science and engineering principles to detect Parkinson's disease. The main advantages are their low cost, portability, and quick and precise analysis. Moreover, nanotechnology can transport medications in the form of nanoparticles across the blood-brain barrier. However, because nanobiosensors are a novel technology, their use in biological systems is limited. Nanobiosensors have the potential to disrupt cell metabolism and homeostasis, changing cellular molecular profiles and making it difficult to distinguish sensor-induced artifacts from fundamental biological phenomena. In the treatment of Parkinson's disease, nanoparticles, on the other hand, produce neurotoxicity, which is a challenge in the treatment of Parkinson's disease. Techniques must be developed to distinguish sensor-induced artifacts from fundamental biological phenomena and to reduce the neurotoxicity caused by nanoparticles.
Collapse
Affiliation(s)
- Hussaini Adam
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
| | - Subash C. B. Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, 02600 Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau, 02600 Perlis, Malaysia
| | - M. K. Md Arshad
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau, 02600 Perlis, Malaysia
| | - Tijjani Adam
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau, 02600 Perlis, Malaysia
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau, 02600 Perlis, Malaysia
| | - N. A. Parmin
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
| | - Irzaman Husein
- Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor-Indonesia, Indonesia
| | - Uda Hashim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
| |
Collapse
|
10
|
El-Sayed HM, El-Abassy OM, Abdellatef HE, Hendawy HAM, Ibrahim H. Green Spectrophotometric Platforms for Resolving Overlapped Spectral Signals of Recently Approved Antiparkinsonian Drug (Safinamide) in the Presence of Its Synthetic Precursor (4-Hydroxybenzaldehyde): Applying Ecological Appraisal and Comparative Statistical Studies. J AOAC Int 2022; 106:26-33. [PMID: 36214622 PMCID: PMC9619678 DOI: 10.1093/jaoacint/qsac123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Safinamide, a highly specific inhibitor of monoamine oxidase B, is a new approved prodigious therapy used to cure Parkinson's disease (PD). OBJECTIVE Before marketing and selling a medicine, manufacturers must guarantee that the manufacturing process is consistent by monitoring levels of process-related chemicals and drug contaminants. Therefore, five precise, fast, and accurate spectrophotometric techniques were employed and evaluated for the simultaneous measurement of safinamide and its synthetic precursor, 4-hydroxybenzaldehyde. METHODS The first derivative, derivative ratio, ratio difference, dual wavelength, and Fourier self-deconvolution methods worked well to resolve spectral overlap of safinamide and its synthetic precursor, 4-hydroxybenzaldehyde. RESULTS Safinamide detection limits ranged from 0.598 to 1.315 µg/mL, whereas the 4-hydroxybenzaldehyde detection limit was found to be as low as 0.327 µg/mL. CONCLUSION According to International Council for Harmonisation (ICH) criteria, all procedures were verified and confirmed to be accurate, robust, repeatable, and precise within reasonable range. No considerable variation was found when comparing the outcomes of the suggested approaches to the findings of previously published methods. The ecological value of established methods was measured: the national environmental methods index (NEMI), the analytical eco-scale, the analytical greenness metric (AGREE), and the green analytical process index (GAPI) were used. HIGHLIGHTS This is the first spectrophotometric determination of safinamide drug in the presence of its synthetic precursor. Five simple and efficient spectrophotometric approaches were employed to determine a newly approved antiparkinsonian drug in the presence of its synthetic precursor simultaneously. Ecological appraisal was performed for the developed methods using four assessment tools.
Collapse
Affiliation(s)
- Heba M El-Sayed
- Department of Analytical Chemistry, Faculty of pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Omar M El-Abassy
- Corresponding author: Correspondence to Omar M El-Abassy, Teaching assistant of Analytical Chemistry, Department of Pharmaceutical Chemistry Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt. E-mail:
| | - Hisham Ezzat Abdellatef
- Department of Analytical Chemistry, Faculty of pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Hassan A M Hendawy
- Pharmaceutical Chemistry Department Egyptian Drug Authority, Giza, Egypt
| | - Hany Ibrahim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| |
Collapse
|
11
|
Jagaran K, Singh M. Lipid Nanoparticles: Promising Treatment Approach for Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23169361. [PMID: 36012619 PMCID: PMC9408920 DOI: 10.3390/ijms23169361] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease (PD), a neurodegenerative disorder, is a life-altering, debilitating disease exhibiting a severe physical, psychological, and financial burden on patients. Globally, approximately 7–10 million people are afflicted with this disease, with the number of cases estimated to increase to 12.9 million by 2040. PD is a progressive movement disorder with nonmotor symptoms, including insomnia, depression, anxiety, and anosmia. While current therapeutics are available to PD patients, this treatment remains palliative, necessitating alternative treatment approaches. A major hurdle in treating PD is the protective nature of the blood–brain barrier (BBB) and its ability to limit access to foreign molecules, including therapeutics. Drugs utilized presently are nonspecific and administered at dosages that result in numerous adverse side effects. Nanomedicine has emerged as a potential strategy for treating many diseases. From the array of nanomaterials available, lipid nanoparticles (LNPs) possess various advantages, including enhanced permeability to the brain via passive diffusion and specific and nonspecific transporters. Their bioavailability, nontoxic nature, ability to be conjugated to drugs, and targeting moieties catapult LNPs as a promising therapeutic nanocarriers for PD. While PD-related studies are limited, their potential as therapeutics is evident in their formulations as vaccines. This review is aimed at examining the roles and properties of LNPs that make them efficient therapeutic nanodelivery vehicles for the treatment of PD, including therapeutic advances made to date.
Collapse
|
12
|
El-sayed HM, Abdel-Raoof AM, Abdellatef HE, Hendawy HA, El-Abassy OM, Ibrahim H. Versatile eco-friendly electrochemical sensor based on chromium-doped zinc oxide nanoparticles for determination of safinamide aided by green assessment criteria. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Szász JA, Constantin VA, Orbán-Kis K, Bancu LA, Bataga SM, Ciorba M, Nagy E, Neagoe MR, Mihály I, Szász RM, Kelemen K, Simu M, Szatmári S. Levodopa-Carbidopa Intestinal Gel in Advanced Parkinson's Disease: Observations and Dilemmas after 10 Years of Real-Life Experience. Pharmaceutics 2022; 14:1115. [PMID: 35745688 PMCID: PMC9231164 DOI: 10.3390/pharmaceutics14061115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
Advanced Parkinson's disease (APD) cannot be treated efficiently using the classical medications however, in recent decades invasive therapeutical methods were implemented and confirmed as effective. One of these methods makes it possible to continue the levodopa (LD) supplementation as a gel administered directly into the upper intestine. However, there are a number of unanswered questions regarding this method. Therefore, we retrospectively analyzed a 10-year period of selected patients that were treated with levodopa/carbidopa intestinal gel (LCIG). We included all APD patients with motor fluctuations and dyskinesia at presentation. LCIG treatment was started in 150 patients: on average these patients received LD for 10.6 ± 4.4 years with a frequency of 5.2 ± 1.0/day until the introduction of LCIG. The estimated and the real LCIG dose differed significantly (mean: 1309 ± 321 mg vs. 1877 ± 769 mg). The mean duration of LCIG administration was 19.8 ± 3.6 h, but in a number of 62 patients we had to administer it for 24 h, to maximize the therapeutic benefit. A carefully and individually adjusted LCIG treatment improves the quality of life of APD patients, but questions remain unresolved even after treating a large number of patients. It is important to share the ideas and observations based on the real-life experience related to the optimal timing, the appropriate dose and duration of administration of the LCIG.
Collapse
Affiliation(s)
- József Attila Szász
- 2nd Clinic of Neurology, Târgu Mureș County Emergency Clinical Hospital, 540136 Târgu Mureș, Romania; (J.A.S.); (V.A.C.); (K.K.); (S.S.)
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
| | - Viorelia Adelina Constantin
- 2nd Clinic of Neurology, Târgu Mureș County Emergency Clinical Hospital, 540136 Târgu Mureș, Romania; (J.A.S.); (V.A.C.); (K.K.); (S.S.)
- Doctoral School, ”Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Károly Orbán-Kis
- 2nd Clinic of Neurology, Târgu Mureș County Emergency Clinical Hospital, 540136 Târgu Mureș, Romania; (J.A.S.); (V.A.C.); (K.K.); (S.S.)
- Department of Physiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
| | - Ligia Ariana Bancu
- Department of Internal Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
- 1st Clinic of Internal Medicine, Târgu Mureș County Emergency Clinical Hospital, 540142 Târgu Mureș, Romania
| | - Simona Maria Bataga
- Department of Gastroenterology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (S.M.B.); (M.C.)
- Department of Gastroenterology, Târgu Mureș County Emergency Clinical Hospital, 540142 Târgu Mureș, Romania
| | - Marius Ciorba
- Department of Gastroenterology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (S.M.B.); (M.C.)
- Department of Gastroenterology, Târgu Mureș County Emergency Clinical Hospital, 540142 Târgu Mureș, Romania
| | - Előd Nagy
- Department of Biochemistry, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
- Laboratory of Medical Analysis, Clinical County Hospital Mures, 540142 Târgu Mureș, Romania
| | - Mircea Radu Neagoe
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
- 2nd Clinic of Surgery, Târgu Mures County Emergency Clinical Hospital, 540136 Târgu Mures, Romania
| | - István Mihály
- Department of Physiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
- Department of Neurology, Emergency County Hospital Miercurea Ciuc, 530173 Miercurea Ciuc, Romania
| | - Róbert Máté Szász
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
| | - Krisztina Kelemen
- 2nd Clinic of Neurology, Târgu Mureș County Emergency Clinical Hospital, 540136 Târgu Mureș, Romania; (J.A.S.); (V.A.C.); (K.K.); (S.S.)
- Department of Physiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
| | - Mihaela Simu
- Department of Neurology, ”Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
- ”Pius Branzeu” Emergency Clinical County Hospital, 300723 Timisoara, Romania
| | - Szabolcs Szatmári
- 2nd Clinic of Neurology, Târgu Mureș County Emergency Clinical Hospital, 540136 Târgu Mureș, Romania; (J.A.S.); (V.A.C.); (K.K.); (S.S.)
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
| |
Collapse
|
14
|
Kaur J, Gulati M, Kapoor B, Jha NK, Gupta PK, Gupta G, Chellappan DK, Devkota HP, Prasher P, Ansari MS, Aba Alkhayl FF, Arshad MF, Morris A, Choonara YE, Adams J, Dua K, Singh SK. Advances in designing of polymeric micelles for biomedical application in brain related diseases. Chem Biol Interact 2022; 361:109960. [PMID: 35533733 DOI: 10.1016/j.cbi.2022.109960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/11/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022]
|