1
|
Chabib L, Yulianto, Ananda PWR, Utami RN, Mir M, Elim D, Fitri AMN, Zaman HS, Aziz AYR, Fauziah N, Rahman L, Febrian MP, Permana AD. Ethyl cellulose-based in-situ film of itraconazole for enhanced treatment of fungal infections. ANNALES PHARMACEUTIQUES FRANÇAISES 2025:S0003-4509(25)00072-0. [PMID: 40253000 DOI: 10.1016/j.pharma.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/06/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
OBJECTIVES Fungal infections represent a significant global health challenge, requiring effective treatments to prevent complications and improve patient outcomes. This study aimed to develop an in-situ film-forming system (IFFS) for transcutaneous delivery of itraconazole (ITZ) as an alternative to oral administration, addressing issues such as low bioavailability, reduced efficacy, and potential side effects. MATERIALS AND METHODS The IFFS was formulated using ethyl cellulose as the primary polymer, PEG 400 as a plasticizer, and a eutectic mixture of menthol and camphor as penetration enhancers. The system was characterized for viscosity, pH, drying time, water vapor permeability, bioadhesion, and physicochemical interactions (DSC and FTIR). Ex vivo skin permeation and retention studies were conducted using Franz diffusion cells, and antifungal efficacy was tested on an ex vivo Candida albicans infection model. Skin integrity and hemolysis tests were performed to evaluate safety. RESULTS The IFFS exhibited desirable physicochemical properties, with increased polymer concentrations enhancing skin retention and bioadhesive strength while reducing permeation rates. Ex vivo studies showed sustained ITZ release and enhanced skin retention. The antifungal activity test demonstrated complete eradication of Candida albicans within 48hours. Safety assessments confirmed no skin irritation or toxicity. CONCLUSION The developed IFFS provides a safe and effective transcutaneous delivery system for ITZ. This innovative approach enhances antifungal efficacy, improves skin retention, and offers a promising alternative to oral administration, minimizing systemic side effects.
Collapse
Affiliation(s)
- Lutfi Chabib
- Department of Pharmacy, Islamic University of Indonesia, 55584 Yogyakarta, Indonesia.
| | - Yulianto
- Department of Pharmacy, Islamic University of Indonesia, 55584 Yogyakarta, Indonesia
| | | | - Rifka Nurul Utami
- Faculty of Pharmacy, Hasanuddin University, 90245 Makassar, Indonesia
| | - Maria Mir
- Department of Pharmacy, Iqra University Islamabad Campus, Islamabad, Pakistan
| | - Diany Elim
- Faculty of Pharmacy, Hasanuddin University, 90245 Makassar, Indonesia
| | | | | | | | - Nurul Fauziah
- Faculty of Pharmacy, Hasanuddin University, 90245 Makassar, Indonesia
| | - Latifah Rahman
- Faculty of Pharmacy, Hasanuddin University, 90245 Makassar, Indonesia
| | - M Pandoman Febrian
- Department of Pharmacy, Islamic University of Indonesia, 55584 Yogyakarta, Indonesia
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, 90245 Makassar, Indonesia.
| |
Collapse
|
2
|
Deng YC, Shih CJ, Lin SY, Wang LC, Yang TY, Tseng SP. Synergistic effect between taurine-induced silver ion and itraconazole against azole-resistant Candida species and Candida auris. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025:S1684-1182(25)00004-0. [PMID: 39893146 DOI: 10.1016/j.jmii.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/03/2024] [Accepted: 01/19/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Azole antifungals are the first-line choice for treating candidiasis within a limited antifungal option. However, azole-resistant Candida species have increased rapidly, causing severe clinical threats, especially multidrug-resistant (MDR) isolates. The emergence of Candida auris has also caused global concerns recently. METHODS Herein, we evaluated the antifungal activity of taurine-induced silver ions (Tau-Ag), prepared by the induction from silver-incorporated mesoporous bioactive glass to address this issue. RESULTS Our data demonstrated that minimum inhibitory concentrations (MICs) of Tau-Ag ranged from 0.020 to 0.078 mg/mL in 24h and from 0.039 to 0.156 mg/mL in 48h. No hemolysis and cytotoxicity were observed at the MICs. Furthermore, no in vivo toxicity related to Tau-Ag was observed in a Caenorhabditis elegans model. In the investigation of antifungal mechanisms, we observed that the reactive oxygen species (ROS) level significantly increased when Candida spp. treated with Tau-Ag. Biofilm formation inhibition assays found that Tau-Ag may penetrate the biofilm and eliminate biofilm-forming cells. In the time-kill method, Tau-Ag showed a long-lasting fungistatic effect and superior antifungal effect compared to itraconazole alone. Furthermore, Tau-Ag showed synergistic antifungal effects in combination with itraconazole, effectively restoring its activity. CONCLUSION Our results confirmed the potential of Tau-Ag and its combination use with itraconazole to serve as a novel antifungal agent to combat the plight of administration on azole-resistant and MDR Candida spp. and C. auris.
Collapse
Affiliation(s)
- Yu-Cin Deng
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Jen Shih
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shang-Yi Lin
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Liang-Chun Wang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tsung-Ying Yang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Laboratory and Regenerative Medicine, MacKay Medical College, New Taipei City, Taiwan; Research Institute for Science and Engineering, Waseda University, Japan.
| | - Sung-Pin Tseng
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan; Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
3
|
Safaat M, Saputra H, Santoso P, Taira T, Wakabayashi R, Goto M, Kamiya N. Topical Delivery of Artificial Lipidated Antifungal Proteins for the Treatment of Subcutaneous Fungal Infections Using a Biocompatible Ionic Liquid-Based Microemulsion. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3062-3071. [PMID: 39763030 DOI: 10.1021/acsami.4c19868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The rising incidence of fungal infections, compounded by the emergence of severe antifungal resistance, has resulted in an urgent need for innovative antifungal therapies. We developed an antifungal protein-based formulation as a topical antifungal agent by combining an artificial lipidated chitin-binding domain of antifungal chitinase (LysM-lipid) with recently developed ionic liquid-in-oil microemulsion formulations (MEFs). Our findings demonstrated that the lipid moieties attached to LysM and the MEFs effectively disrupted the integrity of the stratum corneum in a mouse skin model, thereby enhancing the skin permeability of the LysM-lipids. Among the MEFs incorporating LysM modified with lauric (C12), myristic (C14), and palmitic (C16) acids, the LysM-C14-loaded MEF emerged as the most promising candidate, exhibiting potent antifungal activity against Trichoderma viride growing actively beneath the skin. The stability of the MEFs was investigated after a 28 day storage period at room temperature, and both LysM-C14- and LysM-C16-loaded MEFs retained comparable antifungal activity with that of the freshly prepared MEFs. These results highlight the considerable potential of LysM-lipid-loaded MEFs as effective topical antifungal agents.
Collapse
Affiliation(s)
- Muhammad Safaat
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Hendra Saputra
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Pugoh Santoso
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Toki Taira
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara-cho, Okinawa 903-0213, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Musakhanian J, Osborne DW, Rodier JD. Skin Penetration and Permeation Properties of Transcutol ® in Complex Formulations. AAPS PharmSciTech 2024; 25:201. [PMID: 39235493 DOI: 10.1208/s12249-024-02886-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/05/2024] [Indexed: 09/06/2024] Open
Abstract
Percutaneous delivery is explored as alternative pathway for addressing the drawbacks associated with the oral administration of otherwise efficacious drugs. Short of breaching the skin by physical means, the preference goes to formulation strategies that augment passive diffusion across the skin. One such strategy lies in the use of skin penetration and permeation enhancers notably of hydroxylated solvents like propylene glycol (PG), ethanol (EtOH), and diethylene glycol monoethyl ether (Transcutol®, TRC). In a previous publication, we focused on the role of Transcutol® as enhancer in neat or diluted systems. Herein, we explore its' role in complex formulation systems, including patches, emulsions, vesicles, solid lipid nanoparticles, and micro or nanoemulsions. This review discusses enhancement mechanisms associated with hydroalcoholic solvents in general and TRC in particular, as manifested in multi-component formulation settings alongside other solvents and enhancers. The principles that govern skin penetration and permeation, notably the importance of drug diffusion due to solubilization and thermodynamic activity in the vehicle (formulation), drug solubilization and partitioning in the stratum corneum (SC), and/or solvent drag across the skin into deeper tissue for systemic absorption are discussed. Emphasized also are the interplay between the drug properties, the skin barrier function and the formulation parameters that are key to successful (trans)dermal delivery.
Collapse
Affiliation(s)
| | - David W Osborne
- President of David W. Osborne, PhD Consulting Inc., Fort Collins, USA
| | | |
Collapse
|
5
|
Uronnachi E, Nakpheng T, Gugu T, Srichana T. Formulation and Antimycotic Evaluation of Colloidal Itraconazole-Loaded Metered Dose Sprays for Treating Superficial Mycoses. AAPS PharmSciTech 2024; 25:156. [PMID: 38981986 DOI: 10.1208/s12249-024-02879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024] Open
Abstract
Commercial topical formulations containing itraconazole (poorly water soluble), for mycotic infections, have poor penetration to infection sites beneath the nails and skin thereby necessitating oral administration. To improve penetration, colloidal solutions of itraconazole (G1-G4) containing Poloxamer 188, tween 80, ethanol, and propylene glycol were prepared and incorporated into HFA-134-containing sprays. Formulations were characterized using particle size, drug content, and Fourier-transform infrared spectroscopy (FTIR). In vitro permeation studies were performed using Franz diffusion cells for 8 h. Antimycotic activity on Candida albicans and Trichophyton rubrum was performed using broth micro-dilution and flow cytometry, while cytotoxicity was tested on HaCaT cell lines. Particle size ranged from 39.35-116.80 nm. FTIR and drug content revealed that G1 was the most stable formulation (optimized formulation). In vitro release over 2 h was 45% for G1 and 34% for the cream. There was a twofold increase in skin permeation, fivefold intradermal retention, and a sevenfold increase in nail penetration of G1 over the cream. Minimum fungicidal concentrations (MFC) against C. albicans were 0.156 and 0.313 µg/mL for G1 and cream, respectively. The formulations showed optimum killing kinetics after 48 h. MFC values against T. rubrum were 0.312 and 0.625 µg/mL for the G1 and cream, respectively. Transmission electron microscopy revealed organelle destruction and cell leakage for G1 in both organisms and penetration of keratin layers to destroy T. rubrum. Cytotoxicity evaluation of G1 showed relative safety for skin cells. The G1 formulation showed superior skin permeation, nail penetration, and fungicidal activity compared with the cream formulation.
Collapse
Affiliation(s)
- Emmanuel Uronnachi
- Drug Delivery Systems Excellence Center and Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Agulu, Anambra State, Nigeria
| | - Titpawan Nakpheng
- Drug Delivery Systems Excellence Center and Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
| | - Thaddeus Gugu
- Drug Delivery Systems Excellence Center and Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Teerapol Srichana
- Drug Delivery Systems Excellence Center and Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand.
| |
Collapse
|
6
|
Jadach B, Nowak A, Długaszewska J, Kordyl O, Budnik I, Osmałek T. Coated Microneedle System for Delivery of Clotrimazole in Deep-Skin Mycoses. Gels 2024; 10:264. [PMID: 38667683 PMCID: PMC11048890 DOI: 10.3390/gels10040264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Mycoses of the skin are infectious diseases caused by fungal microorganisms that are generally treated with topical agents. However, such therapy is often ineffective and has to be supported by oral use of active substances, which, in turn, can cause many side effects. A good alternative for the treatment of deep-skin mycoses seems to be microneedles (MNs). The aim of this research was to fabricate and evaluate the properties of innovative MNs coated with a hydrogel as potential carriers for clotrimazole (CLO) in the treatment of deep fungal skin infections. A 3D printing technique using a photo-curable resin was employed to produce MNs, which were coated with hydrogels using a dip-coating method. Hydrogels were prepared with carbopol EZ-3 Polymer (Lubrizol) in addition to glycerol and triisopropanolamine. Clotrimazole was introduced into the gel as the solution in ethanol or was suspended. In the first step of the investigation, a texture analysis of hydrogels was prepared with a texture analyzer, and the drug release studies were conducted with the use of automatic Franz diffusion cells. Next, the release profiles of CLO for coated MNs were checked. The last part of the investigation was the evaluation of the antifungal activity of the prepared systems, and the inhibition of the growth of Candida albicans was checked with the diffusion and suspended-plate methods. The texture profile analysis (TPA) for the tested hydrogels showed that the addition of ethanol significantly affects the following studied parameters: hardness, adhesiveness and gumminess, causing a decrease in their values. On the other hand, for the gels with suspended CLO, better spreadability was seen compared to gels with dissolved CLO. The presence of the active substance did not significantly affect the values of the tested parameters. In the dissolution study, the results showed that higher amounts of CLO were released for MNs coated with a hydrogel containing dissolved CLO. Also, microbiological tests proved its efficacy against fungal cultures. Qualitative tests carried out using the diffusion method showed that circular zones of inhibition of fungal growth on the plate were obtained, confirming the hypothesis of effectiveness. The suspension-plate technique confirmed the inhibitory effect of applied CLO on the growth of Candida albicans. From the analysis of the data, the MNs coated with CLO dissolved in hydrogel showed better antifungal activity. All received results seem to be helpful in developing further studies for MNs as carriers of antifungal substances.
Collapse
Affiliation(s)
- Barbara Jadach
- Division of Industrial Pharmacy, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznan, Poland
| | - Agata Nowak
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznan, Poland (T.O.)
| | - Jolanta Długaszewska
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznan, Poland;
| | - Oliwia Kordyl
- Division of 3D Printing, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznan, Poland; (O.K.); (I.B.)
| | - Irena Budnik
- Division of 3D Printing, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznan, Poland; (O.K.); (I.B.)
| | - Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznan, Poland (T.O.)
| |
Collapse
|
7
|
Imran M, Insaf A, Hasan N, Sugandhi VV, Shrestha D, Paudel KR, Jha SK, Hansbro PM, Dua K, Devkota HP, Mohammed Y. Exploring the Remarkable Chemotherapeutic Potential of Polyphenolic Antioxidants in Battling Various Forms of Cancer. Molecules 2023; 28:molecules28083475. [PMID: 37110709 PMCID: PMC10142939 DOI: 10.3390/molecules28083475] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Plant-derived compounds, specifically antioxidants, have played an important role in scavenging the free radicals present under diseased conditions. The persistent generation of free radicals in the body leads to inflammation and can result in even more severe diseases such as cancer. Notably, the antioxidant potential of various plant-derived compounds prevents and deregulates the formation of radicals by initiating their decomposition. There is a vast literature demonstrating antioxidant compounds' anti-inflammatory, anti-diabetic, and anti-cancer potential. This review describes the molecular mechanism of various flavonoids, such as quercetin, kaempferol, naringenin, epicatechin, and epicatechin gallate, against different cancers. Additionally, the pharmaceutical application of these flavonoids against different cancers using nanotechnologies such as polymeric, lipid-based nanoparticles (solid-lipid and liquid-lipid), liposomes, and metallic nanocarriers is addressed. Finally, combination therapies in which these flavonoids are employed along with other anti-cancer agents are described, indicating the effective therapies for the management of various malignancies.
Collapse
Affiliation(s)
- Mohammad Imran
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Areeba Insaf
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Vrushabh V Sugandhi
- Department of Pharmaceutics, Y.B. Chavan College of Pharmacy, Aurangabad 431001, India
| | - Deumaya Shrestha
- Department of Bioscience, Mokp o National University, Muna 58554, Republic of Korea
| | - Keshav Raj Paudel
- Centre of Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Saurav Kumar Jha
- Department of Biomedicine, Health & Life Convergence Sciences, Mokpo National University, Muna 58554, Republic of Korea
| | - Philip M Hansbro
- Centre of Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
- Pharmacy Program, Gandaki University, Pokhara 33700, Nepal
| | - Yousuf Mohammed
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
8
|
Topical Delivery of Atraric Acid Derived from Stereocaulon japonicum with Enhanced Skin Permeation and Hair Regrowth Activity for Androgenic Alopecia. Pharmaceutics 2023; 15:pharmaceutics15020340. [PMID: 36839662 PMCID: PMC9960134 DOI: 10.3390/pharmaceutics15020340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Atraric acid (AA) is a phenolic compound isolated from Stereocaulon japonicum that has demonstrated anti-androgen properties and was used to design an alternative formulation for the treatment of alopecia. This new topical formulation was designed using a solvent mixture system composed of ethanol as a volatile vehicle, oleic acid as a permeation enhancer, and water for skin hydration. The ideal topical AA formulation (AA-TF#15) exhibited an 8.77-fold higher human skin flux and a 570% increase in dermal drug deposition, compared to 1% (w/w) AA in ethanol. In addition, compared to other formulations, AA-TF#15 (1% [w/w] AA) activated keratinocytes and human dermal papilla cell proliferation at a concentration of 50 µM AA, which is equivalent to 50 µM minoxidil. Moreover, AA-TF#15 treatment produced a significant increase in hair regrowth by 58.0% and 41.9% compared to the 1% (w/w) minoxidil and oral finasteride (1 mg/kg)-treated mice. In addition, AA-TF#15 showed a higher expression level of aldehyde dehydrogenase 1, β-catenin, cyclin D1, and pyruvate kinase M2 proteins in the skin of AA-TF#15-treated mice compared to that of those treated with minoxidil and oral finasteride. These findings suggest AA-TF#15 is an effective formulation for the treatment of scalp androgenic alopecia.
Collapse
|
9
|
Cadinoiu AN, Popa M. Editorial on Special Issue "Pharmaceutical Formulations with Antimicrobial Properties". Pharmaceutics 2022; 15:pharmaceutics15010137. [PMID: 36678765 PMCID: PMC9866384 DOI: 10.3390/pharmaceutics15010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023] Open
Abstract
Even though numerous studies on the systemic administration of antimicrobial drugs can be found in the literature, they still have many shortcomings related to the site-specific drug delivery, unwanted side effects and even potential toxicity [...].
Collapse
Affiliation(s)
- Anca N. Cadinoiu
- Faculty of Medical Dentistry, Apollonia University of Iasi, 700511 Iasi, Romania
- Correspondence:
| | - Marcel Popa
- Faculty of Medical Dentistry, Apollonia University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
10
|
Lamie C, Elmowafy E, Ragaie MH, Attia DA, Mortada ND. Assessment of antifungal efficacy of itraconazole loaded aspasomal cream: comparative clinical study. Drug Deliv 2022; 29:1345-1357. [PMID: 35506466 PMCID: PMC9090397 DOI: 10.1080/10717544.2022.2067601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Topical conveyance of antifungal agents like itraconazole ITZ has been giving good grounds for expecting felicitous antifungal medicines. The defiance of topical delivery of this poorly water soluble and high-molecular-weight drug, however, mightily entail an adequate vehiculation. ITZ aspasomes, newer antioxidant generation of liposomes, have been designed and enclosed in a cream to ameliorate skin deposition. The proposed creams containing non-formulated ITZ or encapsulated in aspasomes (0.1% or 0.5%) were topically applied in patients with diagnosed diaper dermatitis complicated by candidiasis, tinea corporis (TC), and tinea versicolor (TVC). Placebos (void aspasomal cream and cream base) were also utilized. The obtained results for diaper rash revealed that aspasomal cream (0.5% ITZ) was eminent with respect to complete cure and negative candida culture after 10-day therapy relative to counterparts containing 0.1% ITZ aspasomes or non-formulated ITZ (0.1% and 0.5%). For tinea, the same trend was manifested in terms of ‘cleared’ clinical response in 90% of patients and absence of fungal elements after 4-week treatment. Relative to non-formulated ITZ, ITZ aspasomal cream was endorsed to be auspicious especially when ITZ concentration was lowered to half commercially available cream concentration (1%), pushing further exploitation in other dermal fungal infections.
Collapse
Affiliation(s)
- Caroline Lamie
- Pharmaceutics and Pharmaceutical Technology, The British University in Egypt, Cairo, Egypt
| | - Enas Elmowafy
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Maha H Ragaie
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al Minya, Egypt
| | - Dalia A Attia
- Pharmaceutics and Pharmaceutical Technology, The British University in Egypt, Cairo, Egypt
| | - Nahed D Mortada
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
11
|
Subedi L, Pandey P, Shim JH, Kim KT, Cho SS, Koo KT, Kim BJ, Park JW. Preparation of topical bimatoprost with enhanced skin infiltration and in vivo hair regrowth efficacy in androgenic alopecia. Drug Deliv 2022; 29:328-341. [PMID: 35040730 PMCID: PMC8774136 DOI: 10.1080/10717544.2022.2027046] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
To prepare a topical formulation of bimatoprost (BIM) with high skin permeability, we designed a solvent mixture system composed of ethanol, diethylene glycol monoethyl ether, cyclomethicone, and butylated hydroxyanisole, serving as a volatile solvent, nonvolatile co-solvent, spreading agent, and antioxidant, respectively. The ideal topical BIM formulation (BIM–TF#5) exhibited 4.60-fold higher human skin flux and a 529% increase in dermal drug deposition compared to BIM in ethanol. In addition, compared to the other formulations, BIM–TF#5 maximally activated human dermal papilla cell proliferation at a concentration of 5 μM BIM, equivalent to 10 μM minoxidil. Moreover, BIM–TF#5 (0.3% [w/w] BIM) significantly promoted hair regrowth in the androgenic alopecia mouse model and increased the area covered by hair at 10 days by 585% compared to the vehicle-treated mice, indicating that entire telogen area transitioned into the anagen phase. Furthermore, at day 14, the hair weight of mice treated with BIM–TF#5 (5% [w/w] BIM) was 8.45- and 1.30-fold greater than in the 5% (w/w) BIM in ethanol and 5% (w/v) minoxidil treated groups, respectively. In the histological examination, the number and diameter of hair follicles in the deep subcutis were significantly increased in the BIM–TF#5 (0.3 or 5% [w/w] BIM)-treated mice compared to the mice treated with vehicle or 5% (w/w) BIM in ethanol. Thus, our findings suggest that BIM–TF#5 is an effective formulation to treat scalp alopecia, as part of a novel therapeutic approach involving direct prostamide F2α receptor-mediated stimulation of dermal papilla cells within hair follicles.
Collapse
Affiliation(s)
- Laxman Subedi
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Prashant Pandey
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Jung-Hyun Shim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea.,College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Ki-Taek Kim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea.,College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Seung-Sik Cho
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea.,College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Kyo-Tan Koo
- BioBelief Co., Ltd., Seoul, Republic of Korea
| | - Beum Joon Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea.,College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| |
Collapse
|