1
|
Jimenez-Carretero M, Pozo-Gualda T, Lázaro M, Sola-Leyva A, Rodriguez-Jimenez PA, Carrasco-Jiménez MP, Iglesias GR, Perduca M, Jimenez-Lopez C. Role of Mms7 from Magnetococcus marinus MC-1 in controlling the growth and properties of biomimetic magnetic nanoparticles. Int J Biol Macromol 2025; 307:142165. [PMID: 40101825 DOI: 10.1016/j.ijbiomac.2025.142165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Depicting the function of the magnetosome-associated protein Mms7 is important for further understanding the formation of magnetite by magnetotactic bacteria, and from a biotechnological point of view, for the synthesis of magnetosome-like biomimetic magnetic nanoparticles (BMNPs). In this work, the role of Mms7 (Magnetococcus marinus MC-1) in magnetite precipitation was analyzed by using this protein to in vitro produce BMNPs (Mms7-BMNPs). The new nanoparticles were characterized (X-ray diffraction, electron microscopy, magnetic properties, surface area, thermogravimetry, infrared spectroscopy, electrophoretic mobility and hyperthermia) and compared with MamC-mediated BMNPs (MamC-BMNPs) and inorganic (protein-free) magnetic nanoparticles (MNPs). Results suggest that the N-terminus of Mms7 induces the nucleation of magnetite and stabilizes the nuclei, which later dissolve to provide iron for the growth of larger crystals formed at the C-terminus. We hypothesize that the acidic amino acids in the C-terminus block the growth of (311) and (110) crystal faces, that show up in the final morphology along with the (111) faces already present in MNPs. The resulting Mms7-BMNPs are similar to MamC-BMNPs in terms of size (⁓33 nm) and morphology, but their magnetic saturation (43.7 emu/g) and their ability to raise the temperature when exposed to alternating magnetic fields is lower. However, the heating efficiency upon laser irradiation in the near infrared is similar in all cases. The changes in Mms7-BMNPs are probably related to a higher protein content (⁓8 wt%) attached to the magnetic core, which also provides an isoelectric point of ⁓4.7 to the nanoparticles and allows cell uptake and drug binding/release based on electrostatic interactions.
Collapse
Affiliation(s)
| | | | - Marina Lázaro
- Department of Applied Physics, University of Granada, 18071 Granada, Spain
| | - Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain
| | | | | | | | | | | |
Collapse
|
2
|
Sola-Leyva A, Jabalera Y, Jimenez-Carretero M, Lázaro M, Pozo-Gualda T, García-Vargas PJ, Luque-Navarro PM, Fasiolo A, López-Cara LC, Iglesias GR, Paz Carrasco-Jiménez M, Jiménez-López C. Directing novel ChoKα1 inhibitors using MamC-mediated biomimetic magnetic nanoparticles: a way to improve specificity and efficiency. Bioorg Chem 2024; 151:107693. [PMID: 39116523 DOI: 10.1016/j.bioorg.2024.107693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Targeting phospholipid biosynthesis, specifically phosphatidylcholine (PC), which is enhanced in tumor cells, has been proven a suitable antitumor strategy. In fact, the overexpression of the choline kinase α1 (ChoKα1) isoform has been found in malignant cells and tumors, thus becoming an excellent antitumor target. ChoKα1 inhibitors are being synthesized at the present that show a large inhibitory activity. Two of them have been chosen in this study as representatives of different structural families: a biscationic biphenyl derivative of thieno[3,2-d]pyrimidinium substituted with a cyclic amine (here referred to as Fa22) and a biscationic biphenyl thioethano derivative of 7-chloro-quinolinium substituted with a pyrrolidinic moiety (here referred to as PL48). However, the potential use of these types of compounds in systemic treatments is hampered because of their low specificity. In fact, to enter the cell and reach their target, these inhibitors use choline transporters and inhibit choline uptake, being that one of the causes of their toxicity. One way to solve this problem could be allowing their entrance into the cells by alternative ways. With this goal, MamC-mediated magnetic nanoparticles (BMNPs), already proven effective drug nanocarriers, have been used to immobilize Fa22 and PL48. The idea is to let BMNPs enter the cell (they enter the cell by endocytosis) carrying these molecules, and, therefore, offering another way in for these compounds. In the present study, we demonstrate that the coupling of Fa22 and PL48 to BMNPs allows these molecules to enter the tumoral cell without completely inhibiting choline uptake, so, therefore, the use of Fa22 and PL48 in these nanoformulations reduces the toxicity compared to that of the soluble drugs. Moreover, the nanoassemblies Fa22-BMNPs and PL48-BMNPs allow the combination of chemotherapy and local hyperthermia therapies for a enhanced cytotoxic effect on the tumoral HepG2 cell line. The consistency of the results, independently of the drug structure, may indicate that this behavior could be extended to other ChoKα1 inhibitors, opening up a possibility for their potential use in clinics.
Collapse
Affiliation(s)
- Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada 18071, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada 18014, Spain.
| | - Ylenia Jabalera
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada 18071, Spain.
| | | | - Marina Lázaro
- NanoMag Lab. Department of Applied Physic, Faculty of Science, University of Granada, Granada 18071, Spain
| | - Tamara Pozo-Gualda
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Pedro J García-Vargas
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Pilar M Luque-Navarro
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada 18071, Spain
| | - Alberto Fasiolo
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada 18071, Spain
| | - Luisa C López-Cara
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada 18071, Spain.
| | - Guillermo R Iglesias
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada 18014, Spain; NanoMag Lab. Department of Applied Physic, Faculty of Science, University of Granada, Granada 18071, Spain; MNat Unit of Excellence, University of Granada, Granada 18071, Spain.
| | - María Paz Carrasco-Jiménez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada 18071, Spain.
| | | |
Collapse
|
3
|
Lázaro M, Lupiáñez P, Sola-Leyva A, Pozo-Gualda T, Oltolina F, Jimenez-Carretero M, Jimenez-Lopez C, Carrasco-Jiménez MP, Iglesias GR. The importance of cell uptake in photothermal treatments mediated by biomimetic magnetic nanoparticles. Colloids Surf B Biointerfaces 2024; 234:113722. [PMID: 38160473 DOI: 10.1016/j.colsurfb.2023.113722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Biomimetic magnetic nanoparticles (BMNPs) mediated by MamC have proven to be photothermal agents able to allow an optimized cytotoxicity against tumoral cells when used simultaneously as drug nanotransporters and as hyperthermia agents. However, it remains unclear whether BMNPs need to be internalized by the cells and/or if there is a threshold for internal Fe concentration for the photothermal therapy to be effective. In this study, three different situations for photothermal treatments have been simulated to disentangle the effect of BMNPs cell uptake on cell viability after photothermal treatments. Human hepatoblastoma (HepG2) cell line was treated with suspensions of BMNPs, and protocols were developed to have only intracellular BMNPs, only extracellular BMNPs or both, followed by photothermal exposure of the treated cell cultures. Our data demonstrate that: (1) Although the heating efficiency of the photothermal agent is not altered by its location (intra/extracellular), the intracellular location of BMNPs is crucial to ensure the cytotoxic effect of photothermal treatments, especially at low Fe concentration. In fact, the concentration of BMNPs needed to reach the same cytotoxic effect following upon laser irradiation of 0.2 W/cm2 is three times larger if BMNPs are located extracellularly compared to that needed if BMNPs are located intracellularly; (2) For a given location of the BMNPs, cell death increases with BMNPs (or Fe) concentration. When BMNPs are located intracellularly, there is a threshold for Fe concentration (∼ 0.5 mM at laser power intensities of 0.1 W/cm2) needed to affect cell viability following upon cell exposure to photothermia. (3) Bulk temperature rise is not the only factor accounting for cell death. Actually, temperature increases inside the cells cause more damage to cell structures and trigger cell death more efficiently than an increase in the temperature outside the cell.
Collapse
Affiliation(s)
- M Lázaro
- NanoMag Laboratory. Department of Applied Physics, Edificio I+D Josefina Castro, University of Granada, Instituto de Investigación Biosanitaria, Av. de Madrid, 28, Granada 18012, Spain
| | - P Lupiáñez
- NanoMag Laboratory. Department of Applied Physics, Edificio I+D Josefina Castro, University of Granada, Instituto de Investigación Biosanitaria, Av. de Madrid, 28, Granada 18012, Spain
| | - A Sola-Leyva
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, 18071 Granada, Spain
| | - T Pozo-Gualda
- Department of Microbiology, Faculty of Sciences, 18071 Granada, Spain
| | - F Oltolina
- Department of Microbiology, Faculty of Sciences, 18071 Granada, Spain
| | | | - C Jimenez-Lopez
- Department of Microbiology, Faculty of Sciences, 18071 Granada, Spain.
| | - M P Carrasco-Jiménez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, 18071 Granada, Spain.
| | - G R Iglesias
- NanoMag Laboratory. Department of Applied Physics, Edificio I+D Josefina Castro, University of Granada, Instituto de Investigación Biosanitaria, Av. de Madrid, 28, Granada 18012, Spain
| |
Collapse
|
4
|
Shirvalilou S, Tavangari Z, Parsaei MH, Sargazi S, Sheervalilou R, Shirvaliloo M, Ghaznavi H, Khoei S. The future opportunities and remaining challenges in the application of nanoparticle-mediated hyperthermia combined with chemo-radiotherapy in cancer. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1922. [PMID: 37778031 DOI: 10.1002/wnan.1922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 10/03/2023]
Abstract
A pivotal cause of death in the modern world, cancer is an insidious pathology that should be diagnosed at an early stage for successful treatment. Development of therapeutic interventions with minimal invasiveness and high efficacy that can discriminate between tumor and normal cells is of particular interest to the clinical science, as they can enhance patient survival. Nanoparticles are an invaluable asset that can be adopted for development of such diagnostic and therapeutic modalities, since they come in very small sizes with modifiable surface, are highly safe and stable, and can be synthesized in a controlled fashion. To date, different nanoparticles have been incorporated into numerous modalities such as tumor-targeted therapy, thermal therapy, chemotherapy, and radiotherapy. This review article seeks to deliver a brief account of recent advances in research and application of nanoparticles in hyperthermia-based cancer therapies. The most recent investigations are summarized to highlight the latest advances in the development of combined thermo-chemo-radiotherapy, along with the challenges associated with the application of nanoparticles in cancer therapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Sakine Shirvalilou
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahed Tavangari
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Parsaei
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Samideh Khoei
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Sun Y, Wang M, Wang M, Liu C, Shi Y, Liu L. The combined plasma membrane coating and cluster bombing strategy for improved tumor-targeting gene delivery of silicon nanoclusters. Colloids Surf B Biointerfaces 2023; 231:113578. [PMID: 37804597 DOI: 10.1016/j.colsurfb.2023.113578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
With the promising biosafety and favorable cell imaging efficiency, silicon quantum dots (SiQDs) was broadly exploited as non-viral gene carriers in recent years. However, the low transfection efficiency and weak targeting ability hindered its further clinical applications. In this study, the combined plasma membrane coating and cluster bombing strategy was adopted to enhance the gene delivery potential of silicon quantum dots nanoclusters (SiNC). Initially, SiNC was generated via 3, 3'-Dithiodipropionic acid (DipA) crosslinking of SiQDs, then the obtained nanoclusters were coated by distinct plasma membrane. Interestingly, cell membrane coated SiNC (CM-SiNC) underwent particle size change, the typical character of "cluster bombing", when exposed to high GSH concentration, which was observed in the tumor microenvironment. Meanwhile, CM-SiNC can be efficiently uptaken by HEK 293T and HeLa cells, therefore transferring DNA into those cells. More importantly, among the particles coated by HeLa (HeLa-M), Red Blood (RBC-M) or RAW267.4 (RAW-M) cell membrane, HeLa cell membrane coating exhibited better cellular uptake and transfection efficiency in HeLa cells, which suggested the encouraging tumor targeting ability. In sum, these data suggested that cluster bombing of SiNC could be beneficial for physical stability and biodistribution, the additional plasma membrane coating further endowed SiNC the efficient gene delivery and tumor targeting ability. Therefore, CM-SiNC had the potential as a gene delivery vector and its application should be further addressed in vivo.
Collapse
Affiliation(s)
- Yanlin Sun
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mengying Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mingjie Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chaobing Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yong Shi
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Liang Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
6
|
Khonina TG, Demin AM, Tishin DS, Germov AY, Uimin MA, Mekhaev AV, Minin AS, Karabanalov MS, Mysik AA, Bogdanova EA, Krasnov VP. Magnetic Nanocomposite Materials Based on Fe 3O 4 Nanoparticles with Iron and Silica Glycerolates Shell: Synthesis and Characterization. Int J Mol Sci 2023; 24:12178. [PMID: 37569552 PMCID: PMC10419229 DOI: 10.3390/ijms241512178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Novel magnetic nanocomposite materials based on Fe3O4 nanoparticles coated with iron and silica glycerolates (MNP@Fe(III)Glyc and MNP@Fe(III)/SiGlyc) were obtained. The synthesized nanocomposites were characterized using TEM, XRD, TGA, VMS, Mössbauer and IR spectroscopy. The amount of iron and silica glycerolates in the nanocomposites was calculated from the Mössbauer spectroscopy, ICP AES and C,H-elemental analysis. Thus, it has been shown that the distribution of Fe in the shell and core for MNP@Fe(III)Glyc and MNP@Fe(III)/SiGlyc is 27:73 and 32:68, respectively. The synthesized nanocomposites had high specific magnetization values and a high magnetic response to the alternating magnetic field. The hydrolysis of shells based on Fe(III)Glyc and Fe(III)/SiGlyc in aqueous media has been studied. It has been demonstrated that, while the iron glycerolates shell of MNP@Fe(III)Glyc is resistant to hydrolysis, the silica glycerolates shell of MNP@Fe(III)/SiGlyc is rather labile and hydrolyzed by 76.4% in 24 h at 25 °C. The synthesized materials did not show cytotoxicity in in vitro experiments (MTT-assay). The data obtained can be used in the design of materials for controlled-release drug delivery.
Collapse
Affiliation(s)
- Tat’yana G. Khonina
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (T.G.K.); (A.V.M.); (V.P.K.)
| | - Alexander M. Demin
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (T.G.K.); (A.V.M.); (V.P.K.)
| | - Denis S. Tishin
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (T.G.K.); (A.V.M.); (V.P.K.)
| | - Alexander Yu. Germov
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (A.Y.G.); (M.A.U.); (A.S.M.); (A.A.M.)
| | - Mikhail A. Uimin
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (A.Y.G.); (M.A.U.); (A.S.M.); (A.A.M.)
| | - Alexander V. Mekhaev
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (T.G.K.); (A.V.M.); (V.P.K.)
| | - Artem S. Minin
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (A.Y.G.); (M.A.U.); (A.S.M.); (A.A.M.)
| | - Maxim S. Karabanalov
- Institute of New Materials and Technologies, Ural Federal University, 620002 Ekaterinburg, Russia;
| | - Alexey A. Mysik
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (A.Y.G.); (M.A.U.); (A.S.M.); (A.A.M.)
| | - Ekaterina A. Bogdanova
- Institute of Solid State Chemistry, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia;
| | - Victor P. Krasnov
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (T.G.K.); (A.V.M.); (V.P.K.)
| |
Collapse
|
7
|
Mamun A, Sabantina L. Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications-Technology, Mechanism, and Materials. Polymers (Basel) 2023; 15:1902. [PMID: 37112049 PMCID: PMC10143376 DOI: 10.3390/polym15081902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The number of cancer patients is rapidly increasing worldwide. Among the leading causes of human death, cancer can be regarded as one of the major threats to humans. Although many new cancer treatment procedures such as chemotherapy, radiotherapy, and surgical methods are nowadays being developed and used for testing purposes, results show limited efficiency and high toxicity, even if they have the potential to damage cancer cells in the process. In contrast, magnetic hyperthermia is a field that originated from the use of magnetic nanomaterials, which, due to their magnetic properties and other characteristics, are used in many clinical trials as one of the solutions for cancer treatment. Magnetic nanomaterials can increase the temperature of nanoparticles located in tumor tissue by applying an alternating magnetic field. A very simple, inexpensive, and environmentally friendly method is the fabrication of various types of functional nanostructures by adding magnetic additives to the spinning solution in the electrospinning process, which can overcome the limitations of this challenging treatment process. Here, we review recently developed electrospun magnetic nanofiber mats and magnetic nanomaterials that support magnetic hyperthermia therapy, targeted drug delivery, diagnostic and therapeutic tools, and techniques for cancer treatment.
Collapse
Affiliation(s)
- Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Lilia Sabantina
- Faculty of Clothing Technology and Garment Engineering, HTW-Berlin University of Applied Sciences, 12459 Berlin, Germany
| |
Collapse
|
8
|
Demin AM, Vakhrushev AV, Valova MS, Korolyova MA, Uimin MA, Minin AS, Pozdina VA, Byzov IV, Tumashov AA, Chistyakov KA, Levit GL, Krasnov VP, Charushin VN. Effect of the Silica-Magnetite Nanocomposite Coating Functionalization on the Doxorubicin Sorption/Desorption. Pharmaceutics 2022; 14:2271. [PMID: 36365090 PMCID: PMC9694706 DOI: 10.3390/pharmaceutics14112271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 08/13/2023] Open
Abstract
A series of new composite materials based on Fe3O4 magnetic nanoparticles coated with SiO2 (or aminated SiO2) were synthesized. It has been shown that the use of N-(phosphonomethyl)iminodiacetic acid (PMIDA) to stabilize nanoparticles before silanization ensures the increased content of a SiO2 phase in the Fe3O4@SiO2 nanocomposites (NCs) in comparison with materials obtained under similar conditions, but without PMIDA. It has been demonstrated for the first time that the presence of PMIDA on the surface of NCs increases the level of Dox loading due to specific binding, while surface modification with 3-aminopropylsilane, on the contrary, significantly reduces the sorption capacity of materials. These regularities were in accordance with the results of quantum chemical calculations. It has been shown that the energies of Dox binding to the functional groups of NCs are in good agreement with the experimental data on the Dox sorption on these NCs. The mechanisms of Dox binding to the surface of NCs were proposed: simultaneous coordination of Dox on the PMIDA molecule and silanol groups at the NC surface leads to a synergistic effect in Dox binding. The synthesized NCs exhibited pH-dependent Dox release, as well as dose-dependent cytotoxicity in in vitro experiments. The cytotoxic effects of the studied materials correspond to their calculated IC50 values. NCs with a SiO2 shell obtained using PMIDA exhibited the highest effect. At the same time, the presence of PMIDA in NCs makes it possible to increase the Dox loading, as well as to reduce its desorption rate, which may be useful in the design of drug delivery vehicles with a prolonged action. We believe that the data obtained can be further used to develop stimuli-responsive materials for targeted cancer chemotherapy.
Collapse
Affiliation(s)
- Alexander M. Demin
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Alexander V. Vakhrushev
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Marina S. Valova
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Marina A. Korolyova
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Mikhail A. Uimin
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620990, Russia
| | - Artem S. Minin
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620990, Russia
| | - Varvara A. Pozdina
- Institute of Immunology and Physiology, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620049, Russia
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620002, Russia
| | - Iliya V. Byzov
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620990, Russia
| | - Andrey A. Tumashov
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Konstantin A. Chistyakov
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Galina L. Levit
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Victor P. Krasnov
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Valery N. Charushin
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia
| |
Collapse
|
9
|
Gareev KG, Grouzdev DS, Koziaeva VV, Sitkov NO, Gao H, Zimina TM, Shevtsov M. Biomimetic Nanomaterials: Diversity, Technology, and Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2485. [PMID: 35889709 PMCID: PMC9316400 DOI: 10.3390/nano12142485] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023]
Abstract
Biomimetic nanomaterials (BNMs) are functional materials containing nanoscale components and having structural and technological similarities to natural (biogenic) prototypes. Despite the fact that biomimetic approaches in materials technology have been used since the second half of the 20th century, BNMs are still at the forefront of materials science. This review considered a general classification of such nanomaterials according to the characteristic features of natural analogues that are reproduced in the preparation of BNMs, including biomimetic structure, biomimetic synthesis, and the inclusion of biogenic components. BNMs containing magnetic, metal, or metal oxide organic and ceramic structural elements (including their various combinations) were considered separately. The BNMs under consideration were analyzed according to the declared areas of application, which included tooth and bone reconstruction, magnetic and infrared hyperthermia, chemo- and immunotherapy, the development of new drugs for targeted therapy, antibacterial and anti-inflammatory therapy, and bioimaging. In conclusion, the authors' point of view is given about the prospects for the development of this scientific area associated with the use of native, genetically modified, or completely artificial phospholipid membranes, which allow combining the physicochemical and biological properties of biogenic prototypes with high biocompatibility, economic availability, and scalability of fully synthetic nanomaterials.
Collapse
Affiliation(s)
- Kamil G. Gareev
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (N.O.S.); (T.M.Z.)
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Denis S. Grouzdev
- SciBear OU, Tartu mnt 67/1-13b, Kesklinna Linnaosa, 10115 Tallinn, Estonia;
| | - Veronika V. Koziaeva
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, 119071 Moscow, Russia;
| | - Nikita O. Sitkov
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (N.O.S.); (T.M.Z.)
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China;
| | - Tatiana M. Zimina
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (N.O.S.); (T.M.Z.)
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Maxim Shevtsov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
- Center of Translational Cancer Research (TranslaTUM), Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
- National Center for Neurosurgery, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
10
|
Włodarczyk A, Gorgoń S, Radoń A, Bajdak-Rusinek K. Magnetite Nanoparticles in Magnetic Hyperthermia and Cancer Therapies: Challenges and Perspectives. NANOMATERIALS 2022; 12:nano12111807. [PMID: 35683663 PMCID: PMC9182445 DOI: 10.3390/nano12111807] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022]
Abstract
Until now, strategies used to treat cancer are imperfect, and this generates the need to search for better and safer solutions. The biggest issue is the lack of selective interaction with neoplastic cells, which is associated with occurrence of side effects and significantly reduces the effectiveness of therapies. The use of nanoparticles in cancer can counteract these problems. One of the most promising nanoparticles is magnetite. Implementation of this nanoparticle can improve various treatment methods such as hyperthermia, targeted drug delivery, cancer genotherapy, and protein therapy. In the first case, its feature makes magnetite useful in magnetic hyperthermia. Interaction of magnetite with the altered magnetic field generates heat. This process results in raised temperature only in a desired part of a patient body. In other therapies, magnetite-based nanoparticles could serve as a carrier for various types of therapeutic load. The magnetic field would direct the drug-related magnetite nanoparticles to the pathological site. Therefore, this material can be used in protein and gene therapy or drug delivery. Since the magnetite nanoparticle can be used in various types of cancer treatment, they are extensively studied. Herein, we summarize the latest finding on the applicability of the magnetite nanoparticles, also addressing the most critical problems faced by smart nanomedicine in oncological therapies.
Collapse
Affiliation(s)
- Agnieszka Włodarczyk
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland;
| | - Szymon Gorgoń
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, 901 87 Umeå, Sweden;
| | - Adrian Radoń
- Łukasiewicz Research Network—Institute of Non-Ferrous Metals, Sowinskiego 5 St., 44-100 Gliwice, Poland;
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland;
- Correspondence: ; Tel.: +48-32-208-8382
| |
Collapse
|
11
|
Jia L, Zhang P, Sun H, Dai Y, Liang S, Bai X, Feng L. Optimization of Nanoparticles for Smart Drug Delivery: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2790. [PMID: 34835553 PMCID: PMC8622036 DOI: 10.3390/nano11112790] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022]
Abstract
Nanoparticle delivery systems have good application prospects in the treatment of various diseases, especially in cancer treatment. The effect of drug delivery is regulated by the properties of nanoparticles. There have been many studies focusing on optimizing the structure of nanoparticles in recent years, and a series of achievements have been made. This review summarizes the optimization strategies of nanoparticles from three aspects-improving biocompatibility, increasing the targeting efficiency of nanoparticles, and improving the drug loading rate of nanoparticles-aiming to provide some theoretical reference for the subsequent drug delivery of nanoparticles.
Collapse
Affiliation(s)
- Lina Jia
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (L.J.); (P.Z.); (H.S.); (Y.D.); (S.L.)
| | - Peng Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (L.J.); (P.Z.); (H.S.); (Y.D.); (S.L.)
| | - Hongyan Sun
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (L.J.); (P.Z.); (H.S.); (Y.D.); (S.L.)
| | - Yuguo Dai
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (L.J.); (P.Z.); (H.S.); (Y.D.); (S.L.)
| | - Shuzhang Liang
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (L.J.); (P.Z.); (H.S.); (Y.D.); (S.L.)
| | - Xue Bai
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (L.J.); (P.Z.); (H.S.); (Y.D.); (S.L.)
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (L.J.); (P.Z.); (H.S.); (Y.D.); (S.L.)
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
12
|
Meireles IBDCJ, Cipreste MF, Gastelois PL, Macedo WADA, Gomes DA, de Sousa EMB. Synthesis and characterization of gold nanorods coated by mesoporous silica MCM-41 as a platform bioapplication in photohyperthermia. NANOTECHNOLOGY 2021; 32:505720. [PMID: 34547742 DOI: 10.1088/1361-6528/ac28db] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Gold nanoparticles have been widely investigated for biomedical applications due to their optical properties. These particles present the interesting feature of absorbing light when stimulated with laser radiation to generate heating. Among the possible morphologies for synthetic gold nanoparticles, gold nanorods have properties of great interest for applications in the photohyperthermia processes. Due to their morphology, gold nanorods can absorb light at longer wavelengths comprising specific regions of the electromagnetic spectrum, such as the region of the biological window, in which laser radiation has less interaction with tissues. However, these nanoparticles present limitations in biomedical applications, such as low colloidal and thermal stabilities that can be overcome by coating the gold nanorods with silica MCM-41. The silicate covering can provide greater stability for gold nanorods and allow multifunctionality in treating different diseases through photohyperthermia. This work developed a specific chemical route through seed and growth solutions to synthesize gold nanorods with controlled particle size, rod morphology, and silica covering for photohyperthermia applications. The synthesized samples were characterized through a multi-technique approach that successfully demonstrated the presence of gold nanorods inside the silica coating, presenting high stability and desirable textural and morphological characteristics for bioapplications. Furthermore, silica-coated gold nanorods exhibit high biocompatibility and great performance in generating therapeutic heating by absorbing laser radiation in the biological window range, making the system developed in this work a promising agent in photohyperthermia.
Collapse
Affiliation(s)
| | | | - Pedro Lana Gastelois
- Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, 31270-901 Belo Horizonte, MG, Brazil
| | | | - Dawidson Assis Gomes
- Departamento de Bioquímica e Imunologia-ICB-UFMG, 31270-901 Belo Horizonte, MG, Brazil
| | | |
Collapse
|
13
|
Jabalera Y, Sola-Leyva A, Gaglio SC, Carrasco-Jiménez MP, Iglesias GR, Perduca M, Jimenez-Lopez C. Enhanced Cytotoxic Effect of TAT-PLGA-Embedded DOXO Carried by Biomimetic Magnetic Nanoparticles upon Combination with Magnetic Hyperthermia and Photothermia. Pharmaceutics 2021; 13:1168. [PMID: 34452129 PMCID: PMC8398382 DOI: 10.3390/pharmaceutics13081168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/12/2021] [Accepted: 07/25/2021] [Indexed: 12/13/2022] Open
Abstract
The synergy between directed chemotherapy and thermal therapy (both magnetic hyperthermia and photothermia) mediated by a nanoassembly composed of functionalized biomimetic magnetic nanoparticles (BMNPs) with the chemotherapeutic drug doxorubicin (DOXO) covered by the polymer poly(lactic-co-glycolic acid) (PLGA), decorated with TAT peptide (here referred to as TAT-PLGA(DOXO-BMNPs)) is explored in the present study. The rationale behind this nanoassembly lies in an optimization of the nanoformulation DOXO-BMNPs, already demonstrated to be more efficient against tumor cells, both in vitro and in vivo, than systemic traditional therapies. By embedding DOXO-BMNPs into PLGA, which is further functionalized with the cell-penetrating TAT peptide, the resulting nanoassembly is able to mediate drug transport (using DOXO as a drug model) and behaves as a hyperthermic agent (induced by an alternating magnetic field (AMF) or by laser irradiation with a laser power density of 2 W/cm2). Our results obtained using the HepG2 cell line show that there is a synergy between chemotherapy and thermal therapy that results in a stronger cytotoxic effect when compared to that caused by the soluble DOXO. This is probably due to the enhanced DOXO release occurring upon the application of the thermal therapy, as well as the induced local temperature rise mediated by BMNPs in the nanoassembly following exposition to AMF or to near-infrared (NIR) laser irradiation. These results represent a proof of concept demonstrating that TAT-PLGA(DOXO-BMNPs) can be used to efficiently combine therapies against tumor cells, which is a step forward in the transition from systemic to local treatments.
Collapse
Affiliation(s)
- Ylenia Jabalera
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain;
| | - Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.Granada, 18014 Granada, Spain
| | | | | | - Guillermo R. Iglesias
- Department of Applied Physic, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Massimiliano Perduca
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| | | |
Collapse
|