1
|
Sherif AY, Elzayat EM, Altamimi MA. Optimization of Glibenclamide Loaded Thermoresponsive SNEDDS Using Design of Experiment Approach: Paving the Way to Enhance Pharmaceutical Applicability. Molecules 2024; 29:5163. [PMID: 39519804 PMCID: PMC11547575 DOI: 10.3390/molecules29215163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Thermoresponsive self-nanoemulsifying drug delivery systems (T-SNEDDS) offer a promising solution to the limitations of conventional SNEDDS formulations. Liquid SNEDDS are expected to enhance drug solubility; however, they are susceptible to leakage during storage. Even though solid SNEDDS offers a solution to this storage instability, they introduce new challenges, namely increased total dosage and potential for drug trapping within the formulation. The invented T-SNEDDS was used to overcome these limitations and improve the dissolution of glibenclamide (GBC). Solubility and transmittance studies were performed to select a suitable oil and surfactant. Design of Experiments (DoE) software was used to study the impact of propylene glycol and Poloxamer 188 concentrations on measured responses (liquefying temperature, liquefying time, and GBC solubility). The optimized formulation was subjected to an in vitro dissolution study. The optimized T-SNEDDS consisted of Kolliphor EL and Imwitor 308 as surfactants and oil. The optimized propylene glycol and Poloxamer 188 concentrations were 13.7 and 7.9% w/w, respectively. It exhibited a liquefying temperature of 35.0 °C, a liquefying time of 119 s, and a GBC solubility of 5.51 mg/g. In vitro dissolution study showed that optimized T-SNEDDS exhibited 98.8% dissolution efficiency compared with 2.5% for raw drugs. This study presents a promising approach to enhance pharmaceutical applicability by resolving the limitations of traditional SNEDDS.
Collapse
Affiliation(s)
- Abdelrahman Y. Sherif
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (E.M.E.); (M.A.A.)
| | | | | |
Collapse
|
2
|
Sherif AY, Abbas Ibrahim M. Self-Nanoemulsifying Drug Delivery System Combined with a Polymeric Amorphous System of Glibenclamide for Enhanced Drug Dissolution and Stability. ACS OMEGA 2024; 9:43165-43174. [PMID: 39464452 PMCID: PMC11500158 DOI: 10.1021/acsomega.4c07285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024]
Abstract
Self-nanoemulsifying drug delivery systems (SNEDDS) have been widely applied to improve the dissolution and bioavailability of hydrophobic medications like glibenclamide (GB). However, the acid liability of GB limits its loading in SNEDDS formulation owing to the expected drug degradation. The present study investigated the ability of a polymeric amorphous system (PAS) to amorphize raw GB and facilitate its integration within dispersed SNEDDS. Liquid-SNEDDS (L-SNEDDS), solid-SNEDDS (S-SNEDDS), and combined systems (SNEDDS + PAS) were prepared for this purpose. The physicochemical properties of the prepared formulations were examined using a zeta-sizer, SEM, DSC, PXRD, and dissolution apparatus. In addition, GB integrity within formulations following incubation in a stability chamber was also investigated. The prepared formulations were able to be dispersed within the nanosize range. SEM, DSC, and PXRD showed that freeze-drying (FD) was superior to the microwave (MW) method in GB amorphization. Even though L-SNEDDS and S-SNEDDS were able to increase the dissolution efficiency (DE) of GB, drug degradation was observed. However, PAS prepared using FD was able to increase the DE of GB from 2.5% to 84.2% and protect the drug from chemical degradation. The present study revealed that a combined system (SNEDDS + PAS) is a promising approach to enhance the stability of acid-labile drugs and facilitate the integration of amorphous drugs within a dispersed SNEDDS formulation.
Collapse
Affiliation(s)
- Abdelrahman Y. Sherif
- Department of Pharmaceutics,
College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Abbas Ibrahim
- Department of Pharmaceutics,
College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Sherif AY, Alshora DH, Ibrahim MA, Jreebi A. Development and Evaluation of Solidified Supersaturated SNEDDS Loaded with Triple Combination Therapy for Metabolic Syndrome. AAPS PharmSciTech 2024; 25:209. [PMID: 39237698 DOI: 10.1208/s12249-024-02928-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
The present study aimed to develop and optimize solidified supersaturated self-nanoemulsifying drug delivery systems (SNEDDS) for the combined administration of antihypertensive, antihyperglycemic, and antihyperlipidemic drugs to enhance their solubility and dissolution during the treatment of metabolic syndrome. Various SNEDDS formulations were prepared and subjected to pharmaceutical assessment. The solubility of candesartan (CC), glibenclamide (GB), and rosuvastatin (RC) in SNEDDS and supersaturated SNEDDS formulations was evaluated. The optimized formulation was solidified using Syloid adsorbent at different ratios. Pharmaceutical characterization of the formulations included particle size, zeta potential, in-vitro dissolution, PXRD, FTIR, and SEM analysis. The prepared optimized formulation (F6) was able to form homogeneous nanoemulsion droplets without phase separation, which is composed of Tween 20: PEG-400: Capmul MCM (4: 3: 3). It was mixed with 5% PVP-K30 to prepare a supersaturated liquid SNEDDS formulation (F9). In addition, it was found that the addition of PVP-K30 significantly increased solubility CC and GB from 20.46 ± 0.48 and 6.73 ± 0.05 to 27.67 ± 1.72 and 9.45 ± 0.32 mg/g, respectively. In-vitro dissolution study revealed that liquid and solid SNEDD formulations remarkably improved the dissolution rates of CC, GB, and RC compared to pure drugs. XRPD and FTIR analysis revealed that all drugs present in an amorphous state within prepared solidified supersaturated SNEDDS formulation. SEM images showed that liquid SNEDDS formulation was successfully adsorbed on the surface of Syloid. Overall, optimized F9 and solidified supersaturated SNEDDS formulations showed superior performance in enhancing drug solubility and dissolution rate. The present study revealed that the proposed triple combination therapy of metabolic syndrome holds a promising strategy during the treatment of metabolic syndrome. Further in-vivo studies are required to evaluate the therapeutic efficacy of prepared solidified supersaturated SNEDDS formulation.
Collapse
Affiliation(s)
- Abdelrahman Y Sherif
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Doaa Hasan Alshora
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohamed Abbas Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Adel Jreebi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Sherif AY, Shahba AAW. Development of a Multifunctional Oral Dosage Form via Integration of Solid Dispersion Technology with a Black Seed Oil-Based Self-Nanoemulsifying Drug Delivery System. Biomedicines 2023; 11:2733. [PMID: 37893108 PMCID: PMC10604588 DOI: 10.3390/biomedicines11102733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Lansoprazole (LZP) is used to treat acid-related gastrointestinal disorders; however, its low aqueous solubility limits its oral absorption. Black seed oil (BSO) has gastroprotective effects, making it a promising addition to gastric treatment regimens. The present study aims to develop a stable multifunctional formulation integrating solid dispersion (SD) technology with a bioactive self-nanoemulsifying drug delivery system (SNEDDS) based on BSO to synergistically enhance LZP delivery and therapeutic effects. The LZP-loaded SNEDDS was prepared using BSO, Transcutol P, and Kolliphor EL. SDs were produced by microwave irradiation and lyophilization using different polymers. The formulations were characterized by particle apparent hydrodynamic radius analysis, zeta potential, SEM, DSC, PXRD, and in vitro dissolution testing. Their chemical and physical stability under accelerated conditions was also examined. Physicochemical characterization revealed that the dispersed systems were in the nanosize range (<500 nm). DSC and PXRD studies revealed that lyophilization more potently disrupted LZP crystallinity versus microwave heating. The SNEDDS effectively solubilized LZP but degraded completely within 1 day. Lyophilized SDs with Pluronic F-127 demonstrated the highest LZP dissolution efficiency (3.5-fold vs. drug) and maintained chemical stability (>97%) for 1 month. SDs combined with the SNEDDS had variable effects suggesting that the synergistic benefits were dependent on the formulation and preparation method. Lyophilized LZP-Pluronic F127 SD enabled effective and stable LZP delivery alongside the bioactive effects of the BSO-based SNEDDS. This multifunctional system is a promising candidate with the potential for optimized gastrointestinal delivery of LZP and bioactive components.
Collapse
Affiliation(s)
- Abdelrahman Y. Sherif
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 1145, Saudi Arabia;
- Kayyali Research Chair for Pharmaceutical Industries, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmad Abdul-Wahhab Shahba
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 1145, Saudi Arabia;
| |
Collapse
|
5
|
Barghi L, Vekalati A, Jahangiri A. Stability-Enhanced Ternary Solid Dispersions of Glyburide: Effect of Preparation Method on Physicochemical Properties. Adv Pharmacol Pharm Sci 2023; 2023:2641153. [PMID: 37215486 PMCID: PMC10199792 DOI: 10.1155/2023/2641153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/04/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Limited aqueous solubility and subsequent poor absorption and low bioavailability are the main challenges in oral drug delivery. Solid dispersion is a widely used formulation strategy to overcome this problem. Despite their efficiency, drug crystallization tendency and poor physical stability limited their commercial use. To overcome this defect, ternary solid dispersions of glyburide: sodium lauryl sulfate (SLS) and polyethylene glycol 4000 (PEG), were developed using the fusion (F) and solvent evaporation (SE) techniques and subsequently evaluated and compared. Materials and Methods Physicochemical and dissolution properties of the prepared ternary solid dispersions were evaluated using differential scanning calorimetry (DSC), infrared spectroscopy (FTIR), and dissolution test. Flow properties were also assessed using Carr's index and Hausner's ratio. The physical stability of the formulations was evaluated initially and after 12 months by comparing dissolution properties. Results Formulations prepared by both methods similarly showed significant improvements in dissolution efficiency and mean dissolution time compared to the pure drug. However, formulations that were prepared by SE showed a greater dissolution rate during the initial phase of dissolution. Also, after a 12-month follow-up, no significant change was observed in the mentioned parameters. The results of the infrared spectroscopy indicated that there was no chemical interaction between the drug and the polymer. The absence of endotherms related to the pure drug from thermograms of the prepared formulations could be indicative of reduced crystallinity or the gradual dissolving of the drug in the molten polymer. Moreover, formulations prepared by the SE technique revealed superior flowability and compressibility in comparison with the pure drug and physical mixture (ANOVA, P < 0.05). Conclusion Efficient ternary solid dispersions of glyburide were successfully prepared by F and SE methods. Solid dispersions prepared by SE, in addition to increasing the dissolution properties and the possibility of improving the bioavailability of the drug, showed acceptable long-term physical stability with remarkably improved flowability and compressibility features.
Collapse
Affiliation(s)
- Leila Barghi
- Department of Pharmaceutics, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Afshin Vekalati
- School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Azin Jahangiri
- Department of Pharmaceutics, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
6
|
Harisa GI, Sherif AY, Alanazi FK, Ali EA, Omran GA, Nasr FA, Attia SM, Alqahtani AS. TPGS decorated NLC shift gefitinib from portal absorption into lymphatic delivery: Intracellular trafficking, biodistribution and bioavailability studies. Colloids Surf B Biointerfaces 2023; 223:113148. [PMID: 36706479 DOI: 10.1016/j.colsurfb.2023.113148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/27/2022] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Lymphatic drug delivery (LDD) is an attractive option for the prevention and treatment of cancer metastasis. This study aims to develop TPGS decorated nanostructure lipid carrier gefitinib loaded (TPGS-NLC-GEF). Biocompatibility and cytotoxicity were studied using erythrocytes and A549 cell lines. Furthermore, cellular uptake of the prepared TPGS-NLC was studied using 5-carboxyfluorescein (5-CF). Pharmacokinetic, biodistribution, and chylomicron-block flow studies were performed using male Wister Albino rats to investigate the influence of TPGS-NLC on plasma concentration-time profile, organ deposition, and LDD of GEF. The present results indicated that the prepared TPGS-NLC and TPGS-NLC-GEF formulation had a particle size range of 268 and 288 nm with a negative zeta-potential value of - 29.3 and - 26.5 mV, respectively. The in-vitro release showed burst drug release followed by sustained release. In addition, the biosafety in the term of the hemocompatibility study showed that the prepared formulation was safe at the therapeutic level. Additionally, an in-vitro cytotoxicity study showed that the TPGS-NLC was able to enhance the activity of GEF against the A549 cell line. The cellular uptake study showed the ability of TPGS-NLC to enhance 5-CF internalization by 12.6-fold compared to the 5-CF solution. Furthermore, the in-vivo study showed that TPGS-NLC was able to enhance GEF bioavailability (1.5-fold) through lymphatic system which was confirmed via the indirect chylomicron-block flow method. The tissue distribution study showed the ability of lipid nanoparticles to enhance lung drug deposition by 5.8-fold compared to a GEF suspension. This study concluded that GEF-NLC-GEF is an encouraging approach for the treatment of metastatic lung cancer through lymphatic delivery, enhanced bioavailability, and reduced systemic toxicity.
Collapse
Affiliation(s)
- Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Biochemistry and Molecular Biology, College of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Abdelrahman Y Sherif
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Fars K Alanazi
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Essam A Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Gamal A Omran
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.
| | - Fahd A Nasr
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
7
|
Oral Bioactive Self-Nanoemulsifying Drug Delivery Systems of Remdesivir and Baricitinib: A Paradigmatic Case of Drug Repositioning for Cancer Management. Molecules 2023; 28:molecules28052237. [PMID: 36903483 PMCID: PMC10005540 DOI: 10.3390/molecules28052237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Oral anticancer therapy mostly faces the challenges of low aqueous solubility, poor and irregular absorption from the gastrointestinal tract, food-influenced absorption, high first-pass metabolism, non-targeted delivery, and severe systemic and local adverse effects. Interest has been growing in bioactive self-nanoemulsifying drug delivery systems (bio-SNEDDSs) using lipid-based excipients within nanomedicine. This study aimed to develop novel bio-SNEDDS to deliver antiviral remdesivir and baricitinib for the treatment of breast and lung cancers. Pure natural oils used in bio-SNEDDS were analyzed using GC-MS to examine bioactive constituents. The initial evaluation of bio-SNEDDSs were performed based on self-emulsification assessment, particle size analysis, zeta potential, viscosity measurement, and transmission electron microscopy (TEM). The single and combined anticancer effects of remdesivir and baricitinib in different bio-SNEDDS formulations were investigated in MDA-MB-231 (breast cancer) and A549 (lung cancer) cell lines. The results from the GC-MS analysis of bioactive oils BSO and FSO showed pharmacologically active constituents, such as thymoquinone, isoborneol, paeonol and p-cymenene, and squalene, respectively. The representative F5 bio-SNEDDSs showed relatively uniform, nanosized (247 nm) droplet along with acceptable zeta potential values (+29 mV). The viscosity of the F5 bio-SNEDDS was recorded within 0.69 Cp. The TEM suggested uniform spherical droplets upon aqueous dispersions. Drug-free, remdesivir and baricitinib-loaded bio-SNEDDSs (combined) showed superior anticancer effects with IC50 value that ranged from 1.9-4.2 µg/mL (for breast cancer), 2.4-5.8 µg/mL (for lung cancer), and 3.05-5.44 µg/mL (human fibroblasts cell line). In conclusion, the representative F5 bio-SNEDDS could be a promising candidate for improving the anticancer effect of remdesivir and baricitinib along with their existing antiviral performance in combined dosage form.
Collapse
|
8
|
Brain Targeting by Intranasal Drug Delivery: Effect of Different Formulations of the Biflavone "Cupressuflavone" from Juniperus sabina L. on the Motor Activity of Rats. Molecules 2023; 28:molecules28031354. [PMID: 36771021 PMCID: PMC9921169 DOI: 10.3390/molecules28031354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The polar fractions of the Juniperus species are rich in bioflavonoid contents. Phytochemical study of the polar fraction of Juniperus sabina aerial parts resulted in the isolation of cupressuflavone (CPF) as the major component in addition to another two bioflavonoids, amentoflavone and robustaflavone. Biflavonoids have various biological activities, such as antioxidant, anti-inflammatory, antibacterial, antiviral, hypoglycemic, neuroprotective, and antipsychotic effects. Previous studies have shown that the metabolism and elimination of biflavonoids in rats are fast, and their oral bioavailability is very low. One of the methods to improve the bioavailability of drugs is to alter the route of administration. Recently, nose-to-brain drug delivery has emerged as a reliable method to bypass the blood-brain barrier and treat neurological disorders. To find the most effective CPF formulation for reaching the brain, three different CPF formulations (A, B and C) were prepared as self-emulsifying drug delivery systems (SEDDS). The formulations were administered via the intranasal (IN) route and their effect on the spontaneous motor activity in addition to motor coordination and balance of rats was observed using the activity cage and rotarod, respectively. Moreover, pharmacokinetic investigation was used to determine the blood concentrations of the best formulation after 12 h. of the IN dose. The results showed that formulations B and C, but not A, decreased the locomotor activity and balance of rats. Formula C at IN dose of 5 mg/kg expressed the strongest effect on the tested animals.
Collapse
|
9
|
Sherif AY, Harisa GI, Shahba AA, Alanazi FK, Qamar W. Optimization of Gefitinib-Loaded Nanostructured Lipid Carrier as a Biomedical Tool in the Treatment of Metastatic Lung Cancer. Molecules 2023; 28:molecules28010448. [PMID: 36615641 PMCID: PMC9823586 DOI: 10.3390/molecules28010448] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Gefitinib (GEF) is utilized in clinical settings for the treatment of metastatic lung cancer. However, premature drug release from nanoparticles in vivo increases the exposure of systemic organs to GEF. Herein, nanostructured lipid carriers (NLC) were utilized not only to avoid premature drug release but also due to their inherent lymphatic tropism. Therefore, the present study aimed to develop a GEF-NLC as a lymphatic drug delivery system with low drug release. Design of experiments was utilized to develop a stable GEF-NLC as a lymphatic drug delivery system for the treatment of metastatic lung cancer. The in vitro drug release of GEF from the prepared GEF-NLC formulations was studied to select the optimum formulation. MTT assay was utilized to study the cytotoxic activity of GEF-NLC compared to free GEF. The optimized GEF-NLC formulation showed favorable physicochemical properties: <300 nm PS, <0.2 PDI, <−20 ZP values with >90% entrapment efficiency. Interestingly, the prepared formulation was able to retain GEF with only ≈57% drug release within 24 h. Furthermore, GEF-NLC reduced the sudden exposure of cultured cells to GEF and produced the required cytotoxic effect after 48 and 72 h incubation time. Consequently, optimized formulation offers a promising approach to improve GEF’s therapeutic outcomes with reduced systemic toxicity in treating metastatic lung cancer.
Collapse
Affiliation(s)
- Abdelrahman Y. Sherif
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Gamaleldin I. Harisa
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Biochemistry and Molecular Biology, College of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Ahmad A. Shahba
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fars K. Alanazi
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wajhul Qamar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Tashish AY, Shahba AAW, Alanazi FK, Kazi M. Adsorbent Precoating by Lyophilization: A Novel Green Solvent Technique to Enhance Cinnarizine Release from Solid Self-Nanoemulsifying Drug Delivery Systems (S-SNEDDS). Pharmaceutics 2022; 15:pharmaceutics15010134. [PMID: 36678766 PMCID: PMC9863206 DOI: 10.3390/pharmaceutics15010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Solidification by high surface area adsorbents has been associated with major obstacles in drug release. Accordingly, new approaches are highly demanded to solve these limitations. The current study proposes to improve the drug release of solidified self-nanoemulsifying drug delivery systems (SNEDDS) to present dual enhancement of drug solubilization and formulation stabilization, using cinnarizine (CN) as a model drug. METHODS The solidification process involved the precoating of adsorbent by lyophilization of the aqueous dispersion of polymer-adsorbent mixture using water as a green solvent. Then, the precoated adsorbent was mixed with drug-loaded liquid SNEDDS to prepare solid SNEDDS. The solid-state characterization of developed cured S-SNEDDS was done using X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC). In vitro dissolution studies were conducted to investigate CN SNEDDS performance at pH 1.2 and 6.8. The solidified formulations were characterized by Brunauer-Emmett-Teller (BET), powder flow properties, scanning electron microscopy, and droplet size analysis. In addition, the optimized formulations were evaluated through in vitro lipolysis and stability studies. RESULTS The cured solid SNEDDS formula by PVP k30 showed acceptable self-emulsification and powder flow properties. XRD and DSC revealed that CN was successfully amorphized into drug-loaded S-SNEDDS. The uncured solid SNEDDS experienced negligible drug release (only 5% drug release after 2 h), while the cured S-SNEDDS showed up to 12-fold enhancement of total drug release (at 2 h) compared to the uncured counterpart. However, the cured S- SNEDDS showed considerable CN degradation and decrease in drug release upon storage in accelerated conditions. CONCLUSIONS The implemented solidification approach offers a promising technique to minimize the adverse effect of adsorbent on drug release and accomplish improved drug release from solidified SNEDDS.
Collapse
Affiliation(s)
- Ahmad Yousef Tashish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Kayyali Research Chair for Pharmaceutical Industries, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmad Abdul-Wahhab Shahba
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Correspondence: (A.A.-W.S.); (M.K.); Tel.: +966-(11)-4677372(M.K.); Fax: +966-(11)-4676295 (M.K.)
| | - Fars Kaed Alanazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Kayyali Research Chair for Pharmaceutical Industries, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Correspondence: (A.A.-W.S.); (M.K.); Tel.: +966-(11)-4677372(M.K.); Fax: +966-(11)-4676295 (M.K.)
| |
Collapse
|
11
|
Shahba AAW, Sherif AY, Elzayat EM, Kazi M. Combined Ramipril and Black Seed Oil Dosage Forms Using Bioactive Self-Nanoemulsifying Drug Delivery Systems (BIO-SNEDDSs). Pharmaceuticals (Basel) 2022; 15:ph15091120. [PMID: 36145341 PMCID: PMC9503356 DOI: 10.3390/ph15091120] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose: Ramipril (RMP)—an angiotensin-converting enzyme (ACE) inhibitor—and thymoquinone (THQ) suffer from poor oral bioavailability. Developing a combined liquid SNEDDS that comprises RMP and black seed oil (as a natural source of THQ) could lead to several formulations and therapeutic benefits. Methods: The present study involved comprehensive optimization of RMP/THQ liquid SNEDDS using self-emulsification assessment, equilibrium solubility studies, droplet size analysis, and experimentally designed phase diagrams. In addition, the optimized RMP/THQ SNEDDS was evaluated against pure RMP, pure THQ, and the combined pure RMP + RMP-free SNEDDS (capsule-in-capsule) dosage form via in vitro dissolution studies. Results: The phase diagram study revealed that black seed oil (BSO) showed enhanced self-emulsification efficiency with the cosolvent (Transcutol P) and hydrogenated castor oil. The phase diagram studies also revealed that the optimized formulation BSO/TCP/HCO-30 (32.25/27.75/40 % w/w) showed high apparent solubility of RMP (25.5 mg/g), good THQ content (2.7 mg/g), and nanometric (51 nm) droplet size. The in-vitro dissolution studies revealed that the optimized drug-loaded SNEDDS showed good release of RMP and THQ (up to 86% and 89%, respectively). Similarly, the isolation between RMP and SNEDDS (pure RMP + RMP-free SNEDDS) using capsule-in-capsule technology showed >84% RMP release and >82% THQ release. Conclusions: The combined pure RMP + RMP-free SNEDDS (containing black seed oil) could be a potential dosage form combining the solubilization benefits of SNEDDSs, enhancing the release of RMP/THQ along with enhancing RMP stability through its isolation from lipid-based excipients during storage.
Collapse
Affiliation(s)
- Ahmad Abdul-Wahhab Shahba
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box-2457, Riyadh 11451, Saudi Arabia
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdelrahman Y. Sherif
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box-2457, Riyadh 11451, Saudi Arabia
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ehab M. Elzayat
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box-2457, Riyadh 11451, Saudi Arabia
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box-2457, Riyadh 11451, Saudi Arabia
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: ; Tel.: +966-11-4677372; Fax: +966-11-4676295
| |
Collapse
|
12
|
Three-Dimensional Printing of a Container Tablet: A New Paradigm for Multi-Drug-Containing Bioactive Self-Nanoemulsifying Drug-Delivery Systems (Bio-SNEDDSs). Pharmaceutics 2022; 14:pharmaceutics14051082. [PMID: 35631668 PMCID: PMC9147480 DOI: 10.3390/pharmaceutics14051082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
This research demonstrates the use of fused deposition modeling (FDM) 3D printing to control the delivery of multiple drugs containing bioactive self-nano emulsifying drug-delivery systems (SNEDDSs). Around two-thirds of the new chemical entities being introduced in the market are associated with some inherent issues, such as poor solubility and high lipophilicity. SNEDDSs provide for an innovative and easy way to develop a delivery platform for such drugs. Combining this platform with FDM 3D printing would further aid in developing new strategies for delivering poorly soluble drugs and personalized drug-delivery systems with added therapeutic benefits. This study evaluates the performance of a 3D-printed container system containing curcumin (CUR)- and lansoprazole (LNS)-loaded SNEDDS. The SNEDDS showed 50% antioxidant activity (IC50) at concentrations of around 330.1 µg/mL and 393.3 µg/mL in the DPPH and ABTS radical scavenging assay, respectively. These SNEDDSs were loaded with no degradation and leakage from the 3D-printed container. We were able to delay the release of the SNEDDS from the hollow prints while controlling the print wall thickness to achieve lag phases of 30 min and 60 min before the release from the 0.4 mm and 1 mm wall thicknesses, respectively. Combining these two innovative drug-delivery strategies demonstrates a novel option for tackling the problems associated with multi-drug delivery and delivery of drugs susceptible to degradation in, i.e., gastric pH for targeting disease conditions throughout the gastrointestinal tract (GIT). It is also envisaged that such delivery systems reported herein can be an ideal solution to deliver many challenging molecules, such as biologics, orally or near the target site in the future, thus opening a new paradigm for multi-drug-delivery systems.
Collapse
|
13
|
Alshadidi A, Shahba AAW, Sales I, Rashid MA, Kazi M. Combined Curcumin and Lansoprazole-Loaded Bioactive Solid Self-Nanoemulsifying Drug Delivery Systems (Bio-SSNEDDS). Pharmaceutics 2021; 14:pharmaceutics14010002. [PMID: 35056898 PMCID: PMC8781459 DOI: 10.3390/pharmaceutics14010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The current study aimed to design a novel combination of lansoprazole (LNS) and curcumin (CUR) solid oral dosage form using bioactive self-nanoemulsifying drug delivery systems (Bio-SSNEDDS). METHODS Liquid SNEDDS were prepared using the lipid-excipients: Imwitor988 (cosurfactant), Kolliphor El (surfactant), the bioactive black seed (BSO) and/or zanthoxylum rhetsa seed oils (ZRO). Liquid SNEDDS were loaded with CUR and LNS, then solidified using commercially available (uncured) and processed (cured) Neusilin® US2 (NUS2) adsorbent. A novel UHPLC method was validated to simultaneously quantify CUR and LNS in lipid-based formulations. The liquid SNEDDS were characterized in terms of self-emulsification, droplet size and zeta-potential measurements. The solidified SNEDDS were characterized by differential scanning calorimetry (DSC), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), in vitro dissolution and stability in accelerated storage conditions. RESULTS Liquid SNEDDS containing BSO produced a transparent appearance and ultra-fine droplet size (14 nm) upon aqueous dilution. The solidified SNEDDS using cured and uncured NUS2 showed complete solidification with no particle agglomeration. DSC and XRD confirmed the conversion of crystalline CUR and LNS to the amorphous form in all solid SNEDDS samples. SEM images showed that CUR/LNS-SNEDDS were relatively spherical and regular in shape. The optimized solid SNEDDS showed higher percent of cumulative release as compared to the pure drugs. Curing NUS2 with 10% PVP led to significant enhancement of CUR and LNS dissolution efficiencies (up to 1.82- and 2.75-fold, respectively) compared to uncured NUS2-based solid SNEDDS. These findings could be attributed to the significant (50%) reduction in the micropore area% in cured NUS2 which reflects blocking very small pores allowing more space for the self-emulsification process to take place in the larger-size pores. Solid SNEDDS showed significant enhancement of liquid SNEDDS stability after 6 months storage in accelerated conditions. CONCLUSIONS The developed Bio-SSNEDDS of CUR and LNS using processed NUS2 could be used as a potential combination therapy to improve the treatment of peptic ulcers.
Collapse
Affiliation(s)
- Abdulrahman Alshadidi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Riyadh Province, Saudi Arabia;
| | - Ahmad Abdul-Wahhab Shahba
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Riyadh Province, Saudi Arabia;
- Correspondence: (A.A.-W.S.); (M.K.); Tel.: +966-(11)-4694253 (A.A.-W.S.); +966-(11)-4677372 (M.K.); Fax: +966-(11)-4676295 (A.A.-W.S. & M.K.)
| | - Ibrahim Sales
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Riyadh Province, Saudi Arabia;
| | - Md Abdur Rashid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Aseer, Saudi Arabia;
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Riyadh Province, Saudi Arabia;
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Riyadh Province, Saudi Arabia
- Correspondence: (A.A.-W.S.); (M.K.); Tel.: +966-(11)-4694253 (A.A.-W.S.); +966-(11)-4677372 (M.K.); Fax: +966-(11)-4676295 (A.A.-W.S. & M.K.)
| |
Collapse
|
14
|
Shakeel F, Kazi M, Alanazi FK, Alam P. Solubility of Cinnarizine in (Transcutol + Water) Mixtures: Determination, Hansen Solubility Parameters, Correlation, and Thermodynamics. Molecules 2021; 26:7052. [PMID: 34834144 PMCID: PMC8618442 DOI: 10.3390/molecules26227052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
Between 293.2 and 313.2 K and at 0.1 MPa, the solubility of the weak base, cinnarizine (CNZ) (3), in various {Transcutol-P (TP) (1) + water (2)} combinations is reported. The Hansen solubility parameters (HSP) of CNZ and various {(TP) (1) + water (2)} mixtures free of CNZ were also predicted using HSPiP software. Five distinct cosolvency-based mathematical models were used to link the experimentally determined solubility data of CNZ. The solubility of CNZ in mole fraction was increased with elevated temperature and TP mass fraction in {(TP) (1) + water (2)} combinations. The maximum solubility of CNZ in mole fraction was achieved in neat TP (5.83 × 10-2 at 313.2 K) followed by the minimum in neat water (3.91 × 10-8 at 293.2 K). The values of mean percent deviation (MPD) were estimated as 2.27%, 5.15%, 27.76%, 1.24% and 1.52% for the "Apelblat, van't Hoff, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van't Hoff models", respectively, indicating good correlations. The HSP value of CNZ was closed with that of neat TP, suggesting the maximum solubilization of CNZ in TP compared with neat water and other aqueous mixtures of TP and water. The outcomes of the apparent thermodynamic analysis revealed that CNZ dissolution was endothermic and entropy-driven in all of the {(TP) (1) + water (2)} systems investigated. For {(TP) (1) + water (2)} mixtures, the enthalpy-driven mechanism was determined to be the driven mechanism for CNZ solvation. TP has great potential for solubilizing the weak base, CNZ, in water, as demonstrated by these results.
Collapse
Affiliation(s)
- Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.); (F.K.A.)
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.); (F.K.A.)
| | - Fars K. Alanazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.); (F.K.A.)
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| |
Collapse
|
15
|
Solid self emulsifying drug delivery system: Superior mode for oral delivery of hydrophobic cargos. J Control Release 2021; 337:646-660. [PMID: 34384795 DOI: 10.1016/j.jconrel.2021.08.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/11/2022]
Abstract
A significant proportion of recently approved drug molecules possess poor aqueous solubility which further restrains their desired bioavailability. Poor aqueous solubility of these drugs poses significant hurdles in development of novel drug delivery systems and achieving target response. Self-emulsifying drug delivery systems (SEDDS) emerged as an insightful approach for delivering highly hydrophobic entities to enhance their bioavailability. Conventional SEDDS were developed in a liquid form which owned numerous shortcomings like low stability and drug loading efficiency, fewer choices of dosage forms and irreversible precipitation of drug or excipients. To address these curbs solid-SEDDS (S-SEDDS) was introduced as an efficient strategy that combined advantages of solid dosage forms such as increased stability, portability and patient compliance along with substantial improvement in the bioavailability. S-SEDDS are isotropic mixtures of oil, surfactant, solvent and co-solvents generated by solidification of liquid or semisolid self-emulsifying ingredients onto powders. The present review highlights components of S-SEDDS, their peculiarities to be considered while designing solid dosage forms and various methods of fabrication. Lastly, key challenges faced during development, applications and future directions for the research in this area are thoroughly summarized.
Collapse
|