1
|
Szarlej P, Piłat E, Gnatowski P, Cieśliński H, Sienkiewicz M, Kucińska-Lipka J. Investigation on Swelling of Agar-Based Antibacterial Hydrogels for Hard-to-Heal Wound Dressings. ChemMedChem 2025; 20:e202400042. [PMID: 39328077 DOI: 10.1002/cmdc.202400042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/24/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
Despite a wide range of available wound treatments, hard-to-heal wounds still pose a challenge. Hydrogels are often used as dressings for these wounds, because they sustain moisture in the wound environment, supporting the natural healing process. However, it is still not fully understood how physicochemical properties of hydrogel matrix affect the drug release process. Thus, detailed swelling kinetics examination coupled with modeling is needed together with studies on drug release. In this regard, several hydrogels based on plant-derived agar and modified with amikacin sulfate were investigated. The main properties of hydrogels were examined focusing on detailed swelling kinetics. Drug release was studied as microbiological activity against E. coli and S. Epidermidis strains. The obtained hydrogels were characterized by high swelling, reaching values in range from 465-1300 %, fitting the second order kinetics mode and exhibiting the quasi-Fickian diffusion properties. Furthermore, there was no correlation found between swelling properties and antibacterial activity against tested strains. The results confirmed that presented hydrogel materials have desirable properties for application as dressings for hard-to-heal wounds. The suggested compositions are a promising base for modification with other active substances (e. g., regenerative, anti-inflammatory) and studying the broader correlation between swelling and drug release.
Collapse
Affiliation(s)
- Paweł Szarlej
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St. 11/12, 80-233, Gdańsk, Poland
| | - Edyta Piłat
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St. 11/12, 80-233, Gdańsk, Poland
| | - Przemysław Gnatowski
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St. 11/12, 80-233, Gdańsk, Poland
| | - Hubert Cieśliński
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St. 11/12, 80-233, Gdańsk, Poland
| | - Maciej Sienkiewicz
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St. 11/12, 80-233, Gdańsk, Poland
| | - Justyna Kucińska-Lipka
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St. 11/12, 80-233, Gdańsk, Poland
| |
Collapse
|
2
|
Mulenga G, Alahmed TAA, Sami F, Majeed S, Ali MS, Le JLJ, Rhu CLQ, Nair RS, Hasan N, Ansari MT. QbD Assisted Systematic Review for Optimizing the Selection of PVP as a Ternary Substance in Enhancing the Complexation Efficiency of Cyclodextrins: a Pilot Study. AAPS PharmSciTech 2024; 25:134. [PMID: 38862663 DOI: 10.1208/s12249-024-02845-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
Inclusion complexes require higher concentration of Beta cyclodextrins (βCD) resulting in increased formulation bulk, toxicity, and production costs. This systematic review offers a comprehensive analysis using Quality by design (QbD) as a tool to predict potential applications of Polyvinylpyrrolidone (PVP) as a ternary substance to address issues of inclusion complexes. We reviewed 623 documents from 2013 to 2023 and Eighteen (18) research papers were selected for statistical and meta-analysis using the QbD concept to identify the most critical factors for selecting drugs and effect of PVP on inclusion complexes. The QbD analysis revealed that Molecular weight (MW), Partition coefficient (Log P), and the auxiliary substance ratio directly affected complexation efficiency (CE), thermodynamic stability in terms of Gibbs free energy (ΔG), and percent drug release. However, Stability constant (Ks) remained unaffected by any of these parameters. The results showed that low MW (250), median Log P (6), and a βCD: PVP ratio of 2:3 would result in higher CE, lower G, and improved drug release. PVP improves drug solubility, enhances delivery and therapeutic outcomes, and counteracts increased drug ionization due to decreased pH. In certain cases, its bulky nature and hydrogen bonding with CD molecules can form non-inclusion complexes. The findings of the study shows that there is potential molecular interaction between PVP and β-cyclodextrins, which possibly enhances the stability of inclusion complexes for drug with low MW and log P values less than 9. The systematic review shows a comprehensive methodology based on QbD offers a replicable template for future investigations into drug formulation research.
Collapse
Affiliation(s)
- Glovanna Mulenga
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Teejan Ameer Abed Alahmed
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Farheen Sami
- School of Pharmaceutical Sciences, CT University, Ferozepur Road, Sidhwan Khurd, 142024, India
| | - Shahnaz Majeed
- Department of Basic Science, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, 30450, Ipoh, Malaysia
| | - Md Sajid Ali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Janice Lo Jia Le
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Carol Lee Qhai Rhu
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Rajesh Sreedharan Nair
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Nadeem Hasan
- Department of Pharmaceutics, MAM College of Pharmacy, P&T Colony, Kalaburgi, 585102, India
| | - Mohammed Tahir Ansari
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
3
|
Luss AL, Bagrov DV, Yagolovich AV, Kukovyakina EV, Khan II, Pokrovsky VS, Shestovskaya MV, Gasparian ME, Dolgikh DA, Kuskov AN. Toxicity Evaluation and Controlled-Release of Curcumin-Loaded Amphiphilic Poly-N-vinylpyrrolidone Nanoparticles: In Vitro and In Vivo Models. Pharmaceutics 2023; 16:8. [PMID: 38276486 PMCID: PMC10818735 DOI: 10.3390/pharmaceutics16010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
Curcumin attracts huge attention because of its biological properties: it is antiproliferative, antioxidant, anti-inflammatory, immunomodulatory and so on. However, its usage has been limited by poor water solubility and low bioavailability. Herein, to solve these problems, we developed curcumin-loaded nanoparticles based on end-capped amphiphilic poly(N-vinylpyrrolidone). Nanoparticles were obtained using the solvent evaporation method and were characterized by dynamic and electrophoretic light scattering, transmission electron (TEM) and atomic force (AFM) microscopy. The average particle size was 200 nm, and the ζ-potential was -4 mV. Curcumin-release studies showed that nanoparticles are stable in aqueous solutions. An in vitro release study showed prolonged action in gastric, intestinal and colonic fluids, consistently, and in PBS. In vitro studies on epidermoid carcinoma and human embryonic kidney cells showed that the cells absorbed more curcumin in nanoparticles compared to free curcumin. Nanoparticles are safe for healthy cells and show high cytotoxicity for glioblastoma cells in cytotoxicity studies in vitro. The median lethal dose was determined in an acute toxicity assay on zebrafish and was 23 μM. Overall, the curcumin-loaded nanoparticles seem promising for cancer treatment.
Collapse
Affiliation(s)
- Anna L. Luss
- Department of Technology of Chemical, Pharmaceutical and Cosmetic Substances, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.V.K.); (M.V.S.); (M.E.G.); (A.N.K.)
| | - Dmitry V. Bagrov
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (D.V.B.); (A.V.Y.); (D.A.D.)
| | - Anne V. Yagolovich
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (D.V.B.); (A.V.Y.); (D.A.D.)
| | - Ekaterina V. Kukovyakina
- Department of Technology of Chemical, Pharmaceutical and Cosmetic Substances, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.V.K.); (M.V.S.); (M.E.G.); (A.N.K.)
| | - Irina I. Khan
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 115478 Moscow, Russia (V.S.P.)
- Department of Biochemistry, People’s Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Vadim S. Pokrovsky
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 115478 Moscow, Russia (V.S.P.)
- Department of Biochemistry, People’s Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Maria V. Shestovskaya
- Department of Technology of Chemical, Pharmaceutical and Cosmetic Substances, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.V.K.); (M.V.S.); (M.E.G.); (A.N.K.)
| | - Marine E. Gasparian
- Department of Technology of Chemical, Pharmaceutical and Cosmetic Substances, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.V.K.); (M.V.S.); (M.E.G.); (A.N.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dmitry A. Dolgikh
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (D.V.B.); (A.V.Y.); (D.A.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Andrey N. Kuskov
- Department of Technology of Chemical, Pharmaceutical and Cosmetic Substances, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.V.K.); (M.V.S.); (M.E.G.); (A.N.K.)
| |
Collapse
|
4
|
Karbarz M. Editorial. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
5
|
Mangang KN, Thakran P, Halder J, Yadav KS, Ghosh G, Pradhan D, Rath G, Rai VK. PVP-microneedle array for drug delivery: mechanical insight, biodegradation, and recent advances. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 34:986-1017. [PMID: 36541167 DOI: 10.1080/09205063.2022.2155778] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microneedle arrays are micron-sized needles usually attached to a supporting base or patch facilitated drug delivery for systemic effects. Polyvinylpyrrolidone (PVP) is a lactam polymer containing an internal amide linkage. Because of its versatility and biocompatibility, it has been widely utilized to treat several skin, bone and eye problems. Due to its specific and unique properties, the researchers realize its utility as a polymer of tremendous potential. PVP-based dissolvable microneedles have widely been utilized as a carrier for delivering DNAs, proteins, vitamins, and several biological macromolecules transdermally. However, it does not get biodegraded into the body. Therefore, the presence of its fragments in the body post-treatment needs proper justification. The adequate justification for the fate of the fragment's end products in the body will allow even better utilization of PVP. This review analyses and illustrates various experimental findings to highlight the most recent advancements and applications of PVP microneedles in drug delivery systems and cosmetology and the potential for PVP microneedles in treating dermal and systemic disorders. This review presents the expected mode of PVP biodegradation in aqueous and soil environments as a waste material, its inertness, biocompatibility, and the importance of PVP as a fabricating material, pharmaceutical uses, and non-toxic profile.
Collapse
Affiliation(s)
- Keisham Nelson Mangang
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India.,Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, UP, India
| | - Pragati Thakran
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Jitu Halder
- School of Pharmaceutical Science, Siksa 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | | | - Goutam Ghosh
- School of Pharmaceutical Science, Siksa 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Deepak Pradhan
- School of Pharmaceutical Science, Siksa 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Goutam Rath
- School of Pharmaceutical Science, Siksa 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Vineet Kumar Rai
- School of Pharmaceutical Science, Siksa 'O' Anusandhan University, Bhubaneswar, Odisha, India
| |
Collapse
|
6
|
Pharmaceutical Coating and Its Different Approaches, a Review. Polymers (Basel) 2022; 14:polym14163318. [PMID: 36015575 PMCID: PMC9415771 DOI: 10.3390/polym14163318] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/29/2022] Open
Abstract
Coating the solid dosage form, such as tablets, is considered common, but it is a critical process that provides different characteristics to tablets. It increases the value of solid dosage form, administered orally, and thus meets diverse clinical requirements. As tablet coating is a process driven by technology, it relies on advancements in coating techniques, equipment used for the coating process, evaluation of coated tablets, and coated material used. Although different techniques were employed for coating purposes, which may be based on the use of solvents or solvent-free, each of the methods used has its advantages and disadvantages, and the techniques need continued modification too. During the process of film coating, several inter-and intra-batch uniformity of coated material on the tablets is considered a critical point that ensures the worth of the final product, particularly for those drugs that contain an active medicament in the coating layer. Meanwhile, computational modeling and experimental evaluation were actively used to predict the impact of the operational parameters on the final product quality and optimize the variables in tablet coating. The efforts produced by computational modeling or experimental evaluation not only save cost in optimizing the coating process but also saves time. This review delivers a brief review on film coating in solid dosage form, which includes tablets, with a focus on the polymers and processes used in the coating. At the end, some pharmaceutical applications were also discussed.
Collapse
|
7
|
One-Pot and Green Preparation of Phyllanthus emblica Extract/Silver Nanoparticles/Polyvinylpyrrolidone Spray-On Dressing. Polymers (Basel) 2022; 14:polym14112205. [PMID: 35683878 PMCID: PMC9183123 DOI: 10.3390/polym14112205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023] Open
Abstract
A spray-on wound dressing has many benefits, including easy and quick administration to broad and uneven wounds, better interface with the wound site, adhesion without additional dressing, and multiple applications in a portable package. By limiting direct contact with the wound site, such a design can prevent wound damage during treatment. This study revealed a simple, one-pot synthesis of spray-on wound dressing relying on polyvinylpyrrolidone solution incorporating silver nanoparticles as a broad-spectrum antibacterial agent and wound-healing antioxidant Phyllanthus emblica extract. Silver nanoparticles were synthesized in situ using Phyllanthus emblica extract as a biogenic reducing agent. Polyvinylpyrrolidone was employed as a film-forming agent to create an adhesive hydrogel-based dressing matrix to provide moisture and establish a shielding barrier for the wound bed as well as to regulate the release of fruit extract. In vitro tests revealed that the produced dressing film had a controlled release of the fruit extract, high antioxidant activity, and a good antibacterial action against S. aureus, P. aeruginosa, E. coli, and MRSA. Additionally, a biocompatibility study has shown that both human fibroblasts and keratinocytes are unaffected by the dressing film. Based on established findings, the current spray-on solution might be a potential option for antibacterial wound dressing.
Collapse
|
8
|
Klemmer VA, Khera N, Siegenthaler BM, Bhattacharya I, Weber FE, Ghayor C. Effect of N-Vinyl-2-Pyrrolidone (NVP), a Bromodomain-Binding Small Chemical, on Osteoblast and Osteoclast Differentiation and Its Potential Application for Bone Regeneration. Int J Mol Sci 2021; 22:ijms222011052. [PMID: 34681710 PMCID: PMC8541071 DOI: 10.3390/ijms222011052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/15/2022] Open
Abstract
The human skeleton is a dynamic and remarkably organized organ system that provides mechanical support and performs a variety of additional functions. Bone tissue undergoes constant remodeling; an essential process to adapt architecture/resistance to growth and mechanical needs, but also to repair fractures and micro-damages. Despite bone's ability to heal spontaneously, certain situations require an additional stimulation of bone regeneration, such as non-union fractures or after tumor resection. Among the growth factors used to increase bone regeneration, bone morphogenetic protein-2 (BMP2) is certainly the best described and studied. If clinically used in high quantities, BMP2 is associated with various adverse events, including fibrosis, overshooting bone formation, induction of inflammation and swelling. In previous studies, we have shown that it was possible to reduce BMP2 doses significantly, by increasing the response and sensitivity to it with small molecules called "BMP2 enhancers". In the present study, we investigated the effect of N-Vinyl-2-pyrrolidone (NVP) on osteoblast and osteoclast differentiation in vitro and guided bone regeneration in vivo. We showed that NVP increases BMP2-induced osteoblast differentiation and decreases RANKL-induced osteoclast differentiation in a dose-dependent manner. Moreover, in a rabbit calvarial defect model, the histomorphometric analysis revealed that bony bridging and bony regenerated area achieved with NVP-loaded poly (lactic-co-glycolic acid (PLGA) membranes were significantly higher compared to unloaded membranes. Taken together, our results suggest that NVP sensitizes BMP2-dependent pathways, enhances BMP2 effect, and inhibits osteoclast differentiation. Thus, NVP could prove useful as "osteopromotive substance" in situations where a high rate of bone regeneration is required, and in the management of bone diseases associated with excessive bone resorption, like osteoporosis.
Collapse
Affiliation(s)
- Viviane A. Klemmer
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (V.A.K.); (N.K.); (B.M.S.); (I.B.)
| | - Nupur Khera
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (V.A.K.); (N.K.); (B.M.S.); (I.B.)
| | - Barbara M. Siegenthaler
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (V.A.K.); (N.K.); (B.M.S.); (I.B.)
| | - Indranil Bhattacharya
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (V.A.K.); (N.K.); (B.M.S.); (I.B.)
| | - Franz E. Weber
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (V.A.K.); (N.K.); (B.M.S.); (I.B.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, 8057 Zurich, Switzerland
- Correspondence: (F.E.W.); (C.G.)
| | - Chafik Ghayor
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (V.A.K.); (N.K.); (B.M.S.); (I.B.)
- Correspondence: (F.E.W.); (C.G.)
| |
Collapse
|
9
|
Yagolovich A, Kuskov A, Kulikov P, Kurbanova L, Bagrov D, Artykov A, Gasparian M, Sizova S, Oleinikov V, Gileva A, Kirpichnikov M, Dolgikh D, Markvicheva E. Amphiphilic Poly( N-vinylpyrrolidone) Nanoparticles Conjugated with DR5-Specific Antitumor Cytokine DR5-B for Targeted Delivery to Cancer Cells. Pharmaceutics 2021; 13:1413. [PMID: 34575490 PMCID: PMC8464842 DOI: 10.3390/pharmaceutics13091413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Nanoparticles based on the biocompatible amphiphilic poly(N-vinylpyrrolidone) (Amph-PVP) derivatives are promising for drug delivery. Amph-PVPs self-aggregate in aqueous solutions with the formation of micellar nanoscaled structures. Amph-PVP nanoparticles are able to immobilize therapeutic molecules under mild conditions. As is well known, many efforts have been made to exploit the DR5-dependent apoptosis induction for cancer treatment. The aim of the study was to fabricate Amph-PVP-based nanoparticles covalently conjugated with antitumor DR5-specific TRAIL (Tumor necrosis factor-related apoptosis-inducing ligand) variant DR5-B and to evaluate their in vitro cytotoxicity in 3D tumor spheroids. The Amph-PVP nanoparticles were obtained from a 1:1 mixture of unmodified and maleimide-modified polymeric chains, while DR5-B protein was modified by cysteine residue at the N-end for covalent conjugation with Amph-PVP. The nanoparticles were found to enhance cytotoxicity effects compared to those of free DR5-B in both 2D (monolayer culture) and 3D (tumor spheroids) in vitro models. The cytotoxicity of the nanoparticles was investigated in human cell lines, namely breast adenocarcinoma MCF-7 and colorectal carcinomas HCT116 and HT29. Notably, DR5-B conjugation with Amph-PVP nanoparticles sensitized resistant multicellular tumor spheroids from MCF-7 and HT29 cells. Taking into account the nanoparticles loading ability with a wide range of low-molecular-weight antitumor chemotherapeutics into hydrophobic core and feasibility of conjugation with hydrophilic therapeutic molecules by click chemistry, we suggest further development to obtain a versatile system for targeted drug delivery into tumor cells.
Collapse
Affiliation(s)
- Anne Yagolovich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (A.A.); (M.G.); (S.S.); (V.O.); (A.G.); (E.M.); (M.K.); (D.D.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Andrey Kuskov
- D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Pavel Kulikov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia;
| | - Leily Kurbanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (A.A.); (M.G.); (S.S.); (V.O.); (A.G.); (E.M.); (M.K.); (D.D.)
| | - Dmitry Bagrov
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Artem Artykov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (A.A.); (M.G.); (S.S.); (V.O.); (A.G.); (E.M.); (M.K.); (D.D.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Marine Gasparian
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (A.A.); (M.G.); (S.S.); (V.O.); (A.G.); (E.M.); (M.K.); (D.D.)
| | - Svetlana Sizova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (A.A.); (M.G.); (S.S.); (V.O.); (A.G.); (E.M.); (M.K.); (D.D.)
| | - Vladimir Oleinikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (A.A.); (M.G.); (S.S.); (V.O.); (A.G.); (E.M.); (M.K.); (D.D.)
| | - Anastasia Gileva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (A.A.); (M.G.); (S.S.); (V.O.); (A.G.); (E.M.); (M.K.); (D.D.)
| | - Mikhail Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (A.A.); (M.G.); (S.S.); (V.O.); (A.G.); (E.M.); (M.K.); (D.D.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Dmitry Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (A.A.); (M.G.); (S.S.); (V.O.); (A.G.); (E.M.); (M.K.); (D.D.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Elena Markvicheva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (A.A.); (M.G.); (S.S.); (V.O.); (A.G.); (E.M.); (M.K.); (D.D.)
| |
Collapse
|