1
|
Hosseini-Kharat M, Bremmell KE, Grubor-Bauk B, Prestidge CA. Enhancing non-viral DNA delivery systems: Recent advances in improving efficiency and target specificity. J Control Release 2025; 378:170-194. [PMID: 39647508 DOI: 10.1016/j.jconrel.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
DNA-based therapies are often limited by challenges such as stability, long-term integration, low transfection efficiency, and insufficient targeted DNA delivery. This review focuses on recent progress in the design of non-viral delivery systems for enhancing targeted DNA delivery and modulation of therapeutic efficiency. Cellular uptake and intracellular trafficking mechanisms play a crucial role in optimizing gene delivery efficiency. There are two main strategies employed to improve the efficiency of gene delivery vectors: (i) explore different administration routes (e.g., mucosal, intravenous, intramuscular, subcutaneous, intradermal, intratumoural, and intraocular) that best facilitates optimal uptake into the targeted cells and organs and (ii) modify the delivery vectors with cell-specific ligands (e.g., natural ligands, antibodies, peptides, carbohydrates, or aptamers) that enable targeted uptake to specific cells with higher specificity and improved biodistribution. We describe how recent progress in employing these DNA delivery strategies is advancing the field and increasing the clinical translation and ultimate clinical application of DNA therapies.
Collapse
Affiliation(s)
- Mahboubeh Hosseini-Kharat
- Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia
| | - Kristen E Bremmell
- Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Clive A Prestidge
- Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
2
|
Eusébio D, Paul M, Biswas S, Cui Z, Costa D, Sousa Â. Mannosylated polyethylenimine-cholesterol-based nanoparticles for targeted delivery of minicircle DNA vaccine against COVID-19 to antigen-presenting cells. Int J Pharm 2024; 654:123959. [PMID: 38430949 DOI: 10.1016/j.ijpharm.2024.123959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/25/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
DNA vaccines can be a potential solution to protect global health, triggering both humoral and cellular immune responses. DNA vaccines are valuable in preventing intracellular pathogen infections, and therefore can be explored against coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2). This work explored different systems based on polyethylenimine (PEI), functionalized for the first time with both cholesterol (CHOL) and mannose (MAN) to deliver parental plasmid (PP) and minicircle DNA (mcDNA) vectors encoding the receptor-binding domain (RBD) of SARS-CoV-2 to antigen-presenting cells (APCs). For comparative purposes, three different systems were evaluated: PEI, PEI-CHOL and PEI-CHOL-MAN. The systems were prepared at various nitrogen-to-phosphate group (N/P) ratios and characterized in terms of encapsulation efficiency, surface charge, size, polydispersity index (PDI), morphology, and stability over time. Moreover, in vitro transfection studies of dendritic cells (JAWS II) and human fibroblast cells were performed. Viability studies assured the biocompatibility of all nanocarriers. Confocal microscopy studies confirmed intracellular localization of systems, resulting in enhanced cellular uptake using PEI-CHOL and PEI-CHOL-MAN systems when compared with the PEI system. Regarding the RBD expression, PEI-CHOL-MAN was the system that led to the highest levels of transcripts and protein expression in JAWS II cells. Furthermore, the nanosystems significantly stimulated pro-inflammatory cytokines production and dendritic cell maturation in vitro. Overall, mannosylated systems can be considered a valuable tool in the delivery of plasmid DNA or mcDNA vaccines to APCs.
Collapse
Affiliation(s)
- Dalinda Eusébio
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus. Jawahar Nagar, Medchal, Hyderabad 500078, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus. Jawahar Nagar, Medchal, Hyderabad 500078, India
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX 78712, USA
| | - Diana Costa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ângela Sousa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
3
|
Zhang T, Aipire A, Li Y, Guo C, Li J. Antigen cross-presentation in dendric cells: From bench to bedside. Biomed Pharmacother 2023; 168:115758. [PMID: 37866002 DOI: 10.1016/j.biopha.2023.115758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
Cross-presentation (XPT) is an adaptation of the cellular process in which dendritic cells (DCs) present exogenous antigens on major histocompatibility complex (MHC) class I molecules for recognition of the cytotoxic T lymphocytes (CTL) and natural killer (NK) cells, resulting in immunity or tolerance. Recent advances in DCs have broadened our understanding of the underlying mechanisms of XPT and strengthened their application in tumor immunotherapy. In this review, we summarized the known mechanisms of XPT, including the receptor-mediated internalization of exogenous antigens, endosome escape, engagement of the other XPT-related proteins, and adjuvants, which significantly enhance the XPT capacity of DCs. Consequently, various strategies to enhance XPT can be adopted and optimized to improve outcomes of DC-based therapy.
Collapse
Affiliation(s)
- Tingting Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Adila Aipire
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yijie Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Changying Guo
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
4
|
Casper J, Schenk SH, Parhizkar E, Detampel P, Dehshahri A, Huwyler J. Polyethylenimine (PEI) in gene therapy: Current status and clinical applications. J Control Release 2023; 362:667-691. [PMID: 37666302 DOI: 10.1016/j.jconrel.2023.09.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Polyethlyenimine (PEI) was introduced 1995 as a cationic polymer for nucleic acid delivery. PEI and its derivatives are extensively used in basic research and as reference formulations in the field of polymer-based gene delivery. Despite its widespread use, the number of clinical applications to date is limited. Thus, this review aims to consolidate the past applications of PEI in DNA delivery, elucidate the obstacles that hinder its transition to clinical use, and highlight potential prospects for novel iterations of PEI derivatives. The present review article is divided into three sections. The first section examines the mechanism of action employed by PEI, examining fundamental aspects of cellular delivery including uptake mechanisms, release from endosomes, and transport into the cell nucleus, along with potential strategies for enhancing these delivery phases. Moreover, an in-depth analysis is conducted concerning the mechanism underlying cellular toxicity, accompanied with approaches to overcome this major challenge. The second part is devoted to the in vivo performance of PEI and its application in various therapeutic indications. While systemic administration has proven to be challenging, alternative localized delivery routes hold promise, such as treatment of solid tumors, application as a vaccine, or serving as a therapeutic agent for pulmonary delivery. In the last section, the outcome of completed and ongoing clinical trials is summarized. Finally, an expert opinion is provided on the potential of PEI and its future applications. PEI-based formulations for nucleic acid delivery have a promising potential, it will be an important task for the years to come to introduce innovations that address PEI-associated shortcomings by introducing well-designed PEI formulations in combination with an appropriate route of administration.
Collapse
Affiliation(s)
- Jens Casper
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Susanne H Schenk
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Elahehnaz Parhizkar
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pascal Detampel
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
5
|
Rajendran AP, Ogundana O, Morales LC, Meenakshi Sundaram DN, Kucharski C, Kc R, Uludağ H. Transfection Efficacy and Cellular Uptake of Lipid-Modified Polyethyleneimine Derivatives for Anionic Nanoparticles as Gene Delivery Vectors. ACS APPLIED BIO MATERIALS 2023; 6:1105-1121. [PMID: 36853230 DOI: 10.1021/acsabm.2c00978] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Cationic polyethylenimine (PEI)-based nonviral gene carriers have been desirable to overcome the limitations of viral vectors in gene therapy. A range of PEI derivatives were designed, synthesized, and evaluated for nonviral delivery applications of plasmid DNA (pDNA). Linolenic acid, lauric acid, and oleic acid were covalently conjugated with low-molecular-weight PEI (Mw ∼ 1200 Da) via two different linkers, gallic acid (GA) and p-hydroxybenzoic acid (PHPA), that allows a differential loading of lipids per modified amine (3 vs 1, respectively). 1H NMR spectrum confirmed the expected structure of the conjugates as well as the level of lipid substitution. SYBR Green binding assay performed to investigate the 50% binding concentration (BC50) of lipophilic polymers to pDNA revealed increased BC50 with an increased level of lipid substitution. The particle analysis determined that GA- and PHPA-modified lipopolymers gave pDNA complexes with ∼300 and ∼100 nm in size, respectively. At the polymer/pDNA ratio of 5.0, the ζ-potentials of the complexes were negative (-6.55 to -10.6 mV) unlike the complexes with the native PEI (+11.2 mV). The transfection experiments indicated that the prepared lipopolymers showed higher transfection in attachment-dependent cells than in suspension cells based on the expression of the reporter green fluorescent protein (GFP) gene. When loaded with Cy3-labeled pDNA, the lipopolymers exhibited effective cellular uptake in attachment-dependent cells while the cellular uptake was limited in suspension cells. These results demonstrate the potential of lipid-conjugated PEI via GA and PHPA linkers, which are promising for the modification of anchorage-dependent cells.
Collapse
Affiliation(s)
- Amarnath Praphakar Rajendran
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Oluwanifemi Ogundana
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Luis Carlos Morales
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | | | - Cezary Kucharski
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Remant Kc
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
6
|
Development of WRAP5 Peptide Complexes for Targeted Drug/Gene Co-Delivery toward Glioblastoma Therapy. Pharmaceutics 2022; 14:pharmaceutics14102213. [PMID: 36297647 PMCID: PMC9607428 DOI: 10.3390/pharmaceutics14102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the great progress over the past few decades in both the diagnosis and treatment of a great variety of human cancers, glioblastoma remains the most lethal brain tumor. In recent years, cancer gene therapy focused on non-viral vectors which emerged as a promising approach to glioblastoma treatment. Transferrin (Tf) easily penetrates brain cells of the blood–brain barrier, and its receptor is highly expressed in this barrier and glioblastoma cells. Therefore, the development of delivery systems containing Tf appears as a reliable strategy to improve their brain cells targeting ability and cellular uptake. In this work, a cell-penetrating peptide (WRAP5), bearing a Tf-targeting sequence, has been exploited to condense tumor suppressor p53-encoding plasmid DNA (pDNA) for the development of nanocomplexes. To increase the functionality of developed nanocomplexes, the drug Temozolomide (TMZ) was also incorporated into the formulations. The physicochemical properties of peptide/pDNA complexes were revealed to be dependent on the nitrogen to phosphate groups ratio and can be optimized to promote efficient cellular internalization. A confocal microscopy study showed the capacity of developed complexes for efficient glioblastoma cell transfection and consequent pDNA delivery into the nucleus, where efficient gene expression took place, followed by p53 protein production. Of promise, these peptide/pDNA complexes induced a significant decrease in the viability of glioblastoma cells. The set of data reported significantly support further in vitro research to evaluate the therapeutic potential of developed complexes against glioblastoma.
Collapse
|
7
|
Uchida S. Delivery Systems of Plasmid DNA and Messenger RNA for Advanced Therapies. Pharmaceutics 2022; 14:pharmaceutics14040810. [PMID: 35456642 PMCID: PMC9029576 DOI: 10.3390/pharmaceutics14040810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 12/10/2022] Open
Abstract
The vast potential of non-viral delivery systems of messenger RNA (mRNA) and plasmid DNA (pDNA) has been demonstrated in the vaccines against coronavirus disease 2019 (COVID-19) [...]
Collapse
Affiliation(s)
- Satoshi Uchida
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan;
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki 210-0821, Japan
| |
Collapse
|
8
|
Nunes R, Serra AS, Simaite A, Sousa Â. Modulation of Chitosan-TPP Nanoparticle Properties for Plasmid DNA Vaccines Delivery. Polymers (Basel) 2022; 14:1443. [PMID: 35406316 PMCID: PMC9003200 DOI: 10.3390/polym14071443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/27/2022] Open
Abstract
Nucleic acid vaccines have become a revolutionary technology to give a fast, safe, cost-effective and efficient response against viral infections, such as SARS-CoV-2 or Human papillomavirus (HPV). However, to ensure their effectiveness, the development of adequate methods to protect, carry, and deliver nucleic acids is fundamental. In this work, nanoparticles (NPs) of chitosan (CS)-tripolyphosphate (TPP)-plasmid DNA (pDNA) were thoroughly modulated and characterized, by measuring the charge and size through dynamic light scattering (DLS) and morphology by scanning electron microscopy (SEM). Stability, cytotoxicity and cellular uptake of NPs were also evaluated. Finally, the effect of polyplexes on the expression of HPV E7 antigen in human fibroblast and RAW cells was investigated through polymerase chain reaction (PCR) and real-time PCR. The results showed NPs with a spherical/oval shape, narrow size distribution <180 nm and positive zeta potentials (>20 mV) and good stability after one month of storage at 4 °C in formulation buffer or when incubated in culture medium and trypsin. In vitro studies of NPs cytotoxicity revealed that the elimination of formulation buffers led to an improvement in the rate of cell viability. The E7 antigen transcription was also increased for NPs obtained with high pDNA concentration (60 μg/mL). The analyzed CS-TPP-pDNA polyplexes can offer a promising vehicle for nucleic acid vaccines, not only in the prevention or treatment of viral infections, but also to fight emergent and future pathogens.
Collapse
Affiliation(s)
- Renato Nunes
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (R.N.); (A.S.S.)
- InoCure s.r.o, R&D Laboratory Center, Prumyslová 1960, 250 88 Celákovice, Czech Republic;
| | - Ana Sofia Serra
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (R.N.); (A.S.S.)
| | - Aiva Simaite
- InoCure s.r.o, R&D Laboratory Center, Prumyslová 1960, 250 88 Celákovice, Czech Republic;
| | - Ângela Sousa
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (R.N.); (A.S.S.)
| |
Collapse
|
9
|
Rodolfo C, Eusébio D, Ventura C, Nunes R, Florindo HF, Costa D, Sousa Â. Design of Experiments to Achieve an Efficient Chitosan-Based DNA Vaccine Delivery System. Pharmaceutics 2021; 13:pharmaceutics13091369. [PMID: 34575445 PMCID: PMC8471690 DOI: 10.3390/pharmaceutics13091369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/18/2021] [Accepted: 08/28/2021] [Indexed: 11/23/2022] Open
Abstract
In current times, DNA vaccines are seen as a promising approach to treat and prevent diseases, such as virus infections and cancer. Aiming at the production of a functional and effective plasmid DNA (pDNA) delivery system, four chitosan polymers, differing in the molecular weight, were studied using the design of experiments (DoE) tool. These gene delivery systems were formulated by ionotropic gelation and exploring the chitosan and TPP concentrations as DoE inputs to maximize the nanoparticle positive charge and minimize their size and polydispersity index (PDI) as DoE outputs. The obtained linear and quadratic models were statistically significant (p-value < 0.05) and non-significant lack of fit, with suitable coefficient of determination and the respective optimal points successfully validated. Furthermore, morphology, stability and cytotoxicity assays were performed to evaluate the endurance of these systems over time and their further potential for future in vitro studies. The subsequent optimization process was successful achieved for the delivery systems based on the four chitosan polymers, in which the smallest particle size was obtained for the carrier containing the 5 kDa chitosan (~82 nm), while the nanosystem prepared with the high molecular weight (HMW) chitosan displayed the highest zeta potential (~+26.8 mV). Delivery systems were stable in the formulation buffer after a month and did not exhibit toxicity for the cells. In this sense, DoE revealed to be a powerful tool to explore and tailor the characteristics of chitosan/pDNA nanosystems significantly contributing to unraveling an optimum carrier for advancing the DNA vaccines delivery field.
Collapse
Affiliation(s)
- Carlos Rodolfo
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (C.R.); (D.E.); (C.V.); (R.N.); (D.C.)
| | - Dalinda Eusébio
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (C.R.); (D.E.); (C.V.); (R.N.); (D.C.)
| | - Cathy Ventura
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (C.R.); (D.E.); (C.V.); (R.N.); (D.C.)
| | - Renato Nunes
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (C.R.); (D.E.); (C.V.); (R.N.); (D.C.)
| | - Helena F. Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
| | - Diana Costa
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (C.R.); (D.E.); (C.V.); (R.N.); (D.C.)
| | - Ângela Sousa
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (C.R.); (D.E.); (C.V.); (R.N.); (D.C.)
- Correspondence: ; Tel.: +351-275-329
| |
Collapse
|
10
|
Zhang X, Cai A, Gao Y, Zhang Y, Duan X, Men K. Treatment of Melanoma by Nano-conjugate-Delivered Wee1 siRNA. Mol Pharm 2021; 18:3387-3400. [PMID: 34375118 DOI: 10.1021/acs.molpharmaceut.1c00316] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Small interfering RNA (siRNA)-based drugs have shown tremendous potential to date in cancer gene therapy. Despite the considerable efforts in siRNA design and manufacturing, unsatisfactory delivery systems persist as a limitation for the application of siRNA-based drugs. In this work, the cholesterol, cell-penetrating peptide conjugate cRGD (R8-cRGD), and polyethylene glycol (PEG) were introduced into low-molecular-weight polyethyleneimine (LMW PEI) to form cRGD-R9-cholesterol-PEI-PEG (RRCPP) nanoparticles with specific targeting and highly penetrating abilities. The enhanced siRNA uptake efficiency of the RRCPP delivery system benefited from R8-cRGD modification. Wee1 is an oncogenic nuclear kinase that can regulate the cell cycle as a crucial G2/M checkpoint. Overexpression of Wee1 in melanoma may lead to a poor prognosis. In the present study, RRCPP nanoparticles were designed for Wee1 siRNA delivery to form an RRCPP/siWee1 complex, which significantly silenced the expression of the WEE1 gene (>60% inhibition) and induced B16 tumor cell apoptosis by abrogating the G2M checkpoint and DNA damage in vitro. Furthermore, the RRCPP/siWee1 complex suppressed B16 tumor growth in a subcutaneous xenograft model (nearly 85% inhibition rate) and lung metastasis (nearly 66% inhibition rate) with ideal in vivo safety. Briefly, our results support the validity of RRCPP as a potential Wee1 siRNA carrier for melanoma gene therapy.
Collapse
Affiliation(s)
- Xueyan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Anqi Cai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Yan Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Yuanfa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, People's Republic of China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|