1
|
Jabbar AA, Al-Ani I, Al-Shdefat RI, Ghazal N, Jaffal A, Fayed MH. Design of Experiment Approach for Enhancing the Dissolution Profile and Robustness of Loratadine Tablet Using D-α-Tocopheryl Polyethylene Glycol 1000 Succinate. Pharmaceutics 2025; 17:380. [PMID: 40143043 PMCID: PMC11946126 DOI: 10.3390/pharmaceutics17030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Formulating poorly water-soluble drugs poses significant challenges due to their limited solubility and bioavailability. Loratadine (LTD), classified as a BCS II molecule, exhibits notably low solubility, leading to reduced bioavailability. Objective: This study aims to enhance the dissolution rate of LTD through the utilization of the wet granulation process using Tocopheryl polyethylene glycol 1000 succinate (TPGS). Methods: A Design-of-Experiment methodology was adopted to investigate and optimize the formulation variables for preparing an oral delivery system of LTD with improved dissolution properties. The levels of TPGS (2-6% w/w), as a surfactant, and sodium starch glycolate (SSG; 2-8% w/w), as a super-disintegrant, were established as independent variables in the formulations. Loratadine was granulated in the presence of TPGS, and the resultant granules were subsequently compressed into tablets. The granules and tablets produced were then subjected to characterization. Results: ANOVA analysis indicated that both TPGS and SSG had a significant (p < 0.05) influence on the critical characteristics of the obtained granules and tablets, with TPGS showing a particularly notable effect. The optimal concentrations of TPGS and SSG for the development of LTD tablets with the necessary quality attributes were identified as 5.0% w/w and 2.0% w/w, respectively, through optimization utilizing the desirability function. The tablets produced at these optimized concentrations displayed favorable properties concerning their mechanical strength (5.72 ± 0.32 KP), disintegration time (7.11 ± 1.08 min.), and release profile (86.21 ± 1.61%). Conclusions: In conclusion, incorporating TPGS in the granulation process shows promise in improving the dissolution profile of poorly water-soluble drugs and demonstrated formulation robustness.
Collapse
Affiliation(s)
- Alhasan A. Jabbar
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan; (A.A.J.); (I.A.-A.); (A.J.)
| | - Israa Al-Ani
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan; (A.A.J.); (I.A.-A.); (A.J.)
| | | | - Nadia Ghazal
- Faculty of Pharmacy, Jadara University, Irbid 21110, Jordan; (R.I.A.-S.); (N.G.)
| | - Anwar Jaffal
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan; (A.A.J.); (I.A.-A.); (A.J.)
| | - Mohamed H. Fayed
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Albatin, Hafr Albatin 1991, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt
| |
Collapse
|
2
|
Fu Y, Wang A, Tang R, Li S, Tian X, Xia X, Ren J, Yang S, Chen R, Zhu S, Feng X, Yao J, Wei Y, Dong X, Ling Y, Yi F, Deng Q, Guo C, Sui Y, Han S, Wen G, Li C, Dong A, Sun X, Wang Z, Shi X, Liu B, Fan D. Sublingual Edaravone Dexborneol for the Treatment of Acute Ischemic Stroke: The TASTE-SL Randomized Clinical Trial. JAMA Neurol 2024; 81:2815107. [PMID: 38372981 PMCID: PMC10877503 DOI: 10.1001/jamaneurol.2023.5716] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/11/2023] [Indexed: 02/20/2024]
Abstract
Importance Sublingual edaravone dexborneol, which can rapidly diffuse and be absorbed through the oral mucosa after sublingual exposure, is a multitarget brain cytoprotection composed of antioxidant and anti-inflammatory ingredients edaravone and dexborneol. Objective To investigate the efficacy and safety of sublingual edaravone dexborneol on 90-day functional outcome in patients with acute ischemic stroke (AIS). Design, Setting, and Participants This was a double-blind, placebo-controlled, multicenter, parallel-group, phase 3 randomized clinical trial conducted from June 28, 2021, to August 10, 2022, with 90-day follow-up. Participants were recruited from 33 centers in China. Patients randomly assigned to treatment groups were aged 18 to 80 years and had a National Institutes of Health Stroke Scale score between 6 and 20, a total motor deficit score of the upper and lower limbs of 2 or greater, a clinically diagnosed AIS symptom within 48 hours, and a modified Rankin Scale (mRS) score of 1 or less before stroke. Patients who did not meet the eligibility criteria or declined to participate were excluded. Intervention Patients were assigned, in a 1:1 ratio, to receive sublingual edaravone dexborneol (edaravone, 30 mg; dexborneol, 6 mg) or placebo (edaravone, 0 mg; dexborneol, 60 μg) twice daily for 14 days and were followed up until 90 days. Main Outcomes and Measures The primary efficacy outcome was the proportion of patients with mRS score of 1 or less on day 90 after randomization. Results Of 956 patients, 42 were excluded. A total of 914 patients (median [IQR] age, 64.0 [56.0-70.0] years; 608 male [66.5%]) were randomly allocated to the edaravone dexborneol group (450 [49.2%]) or placebo group (464 [50.8%]). The edaravone dexborneol group showed a significantly higher proportion of patients experiencing good functional outcomes on day 90 after randomization compared with the placebo group (290 [64.4%] vs 254 [54.7%]; risk difference, 9.70%; 95% CI, 3.37%-16.03%; odds ratio, 1.50; 95% CI, 1.15-1.95, P = .003). The rate of adverse events was similar between the 2 groups (89.8% [405 of 450] vs 90.1% [418 of 464]). Conclusion and Relevance Among patients with AIS within 48 hours, sublingual edaravone dexborneol could improve the proportion of those achieving a favorable functional outcome at 90 days compared with placebo. Trial Registration ClinicalTrials.gov Identifier: NCT04950920.
Collapse
Affiliation(s)
- Yu Fu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Anxin Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Renhong Tang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Shuya Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xue Tian
- Department of Clinical Epidemiology and Clinical Trial, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Xue Xia
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinsheng Ren
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
- Simcere Pharmaceutical Group Limited, Nanjing, China
| | - Shibao Yang
- Neurodawn Pharmaceutical Co Ltd, Nanjing, China
| | - Rong Chen
- Neurodawn Pharmaceutical Co Ltd, Nanjing, China
| | - Shunwei Zhu
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
- Simcere Pharmaceutical Group Limited, Nanjing, China
| | - Xiaofei Feng
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
- Simcere Pharmaceutical Group Limited, Nanjing, China
| | | | - Yan Wei
- Harrision International Peace Hospital, Hengshui, China
| | | | - Yun Ling
- Nanshi Hospital of Nanyang, Nanyang, China
| | - Fei Yi
- Pingxiang People’s Hospital, Pingxiang, China
| | - Qian Deng
- The First Affiliated Hospital of Nanyang Medical College, Nanyang, China
| | - Cunju Guo
- Liaocheng People’s Hospital, Liaocheng, China
| | - Yi Sui
- The First People’s Hospital of Shenyang, Shenyang, China
| | - Shugen Han
- Mei He Kou Central Hospital, Jilin, China
| | | | | | | | - Xin Sun
- The First Hospital of Jilin University, Jilin, China
| | - Zhimin Wang
- Taizhou First People’s Hospital, Zhejiang, China
| | | | - Bo Liu
- The First Affiliated Hospital Baotou Medical College, Baotou, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
3
|
Alalaiwe A, Alsenaidy MA, Almalki ZS, Fayed MH. Development and Optimization of Sildenafil Orodispersible Mini-Tablets (ODMTs) for Treatment of Pediatric Pulmonary Hypertension Using Response Surface Methodology. Pharmaceutics 2023; 15:pharmaceutics15030923. [PMID: 36986784 PMCID: PMC10056513 DOI: 10.3390/pharmaceutics15030923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/19/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
The availability of age-appropriate oral dosage forms for pediatric patients has remained a challenge. Orodispersible mini-tablets (ODMTs) are a promising delivery system for pediatric patients. The purpose of this work was the development and optimization of sildenafil ODMTs as a new dosage form for the treatment of pulmonary hypertension in children using a design-of-experiment (DoE) approach. A two-factor, three levels (32) full-factorial design was employed to obtain the optimized formulation. The levels of microcrystalline cellulose (MCC; 10–40% w/w) and partially pre-gelatinized starch (PPGS; 2–10% w/w) were set as independent formulation variables. In addition, mechanical strength, disintegration time (DT), and percent drug release were set as critical quality attributes (CQAs) of sildenafil ODMTs. Further, formulation variables were optimized using the desirability function. ANOVA analysis proved that MCC and PPGS had a significant (p < 0.05) impact on CQAs of sildenafil ODMTs with a pronounced influence of PPGS. The optimized formulation was achieved at low (10% w/w) and high (10% w/w) levels of MCC and PPGS, respectively. The optimized sildenafil ODMTs showed crushing strength of 4.72 ± 0.34 KP, friability of 0.71 ± 0.04%, DT of 39.11 ± 1.03 s, and sildenafil release of 86.21 ± 2.41% after 30 min that achieves the USP acceptance criteria for ODMTs. Validation experiments have shown that the acceptable prediction error (<5%) indicated the robustness of the generated design. In conclusion, sildenafil ODMTs have been developed as a suitable oral formulation for the treatment of pediatric pulmonary hypertension using the fluid bed granulation process and the DoE approach.
Collapse
Affiliation(s)
- Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Mohammad A. Alsenaidy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ziyad S. Almalki
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Mohamed H. Fayed
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt
- Correspondence:
| |
Collapse
|
4
|
Elim D, Fitri AMN, Mahfud MAS, Afika N, Sultan NAF, Hijrah, Asri RM, Permana AD. Hydrogel forming microneedle-mediated transdermal delivery of sildenafil citrate from polyethylene glycol reservoir: An ex vivo proof of concept study. Colloids Surf B Biointerfaces 2023; 222:113018. [PMID: 36435027 DOI: 10.1016/j.colsurfb.2022.113018] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Erectile dysfunction (ED) is a disorder that often occurs in men worldwide. One of the drugs used as the first-line therapy for erectile dysfunction is sildenafil citrate (SC). Unfortunately, SC was commonly found in oral, injection, and transdermal dosage forms with some limitations, mainly related to low oral bioavailability caused by the occurrence of first-pass metabolism in the liver, and poor patient comfort and compliance. Therefore, it was essential to develop dosage forms to overcome these limitations. We developed hydrogel-forming microneedles (HFM) that can facilitate transdermal delivery of SC by penetrating the stratum corneum. HFM was made using polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) as polymers and several variations of tartaric acid as crosslinking agents. The evaluation of swelling properties, mechanical resistance, and penetration ability showed that the HFM produced had good insertion properties and swelling capabilities ranging from 300% to 700%. This HFM was designed to be integrated with a polyethylene glycol (PEG) reservoir prepared using several types of PEG with different molecular weights. The ex vivo permeation study showed that up to 80% of SC (equivalent to 20.2 ± 0.29 mg/mL) was delivered transdermally from this combined dosage form. For the first time, SC has been successfully developed into an HFM that was integrated with a PEG reservoir which was non-irritating, safe, and painless. It also had promising results for increasing the effectiveness of ED therapy.
Collapse
Affiliation(s)
- Diany Elim
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | | | - Nur Afika
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | - Hijrah
- Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | | | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
| |
Collapse
|
5
|
Nurul Fitri AM, Elim D, Sya'ban Mahfud MA, Fitri Sultan NA, Saputra MD, Afika N, Friandini RA, Natsir Djide NJ, Permana AD. Polymeric hydrogel forming microneedle-mediated transdermal delivery of sildenafil citrate from direct-compressed tablet reservoir for potential improvement of pulmonary hypertension therapy. Int J Pharm 2023; 631:122549. [PMID: 36572265 DOI: 10.1016/j.ijpharm.2022.122549] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
Pulmonary hypertension (PH) is a cardiovascular disease affecting patient's life. Sildenafil citrate (SC), the first-line treatment, is present in oral and injectable forms with some drawbacks, primarily poor patient's comfort and low oral bioavailability. To counter these limitations, stratum corneum-penetrating hydrogel-forming microneedles (HFM) was created, making it easier to distribute SC transdermally. HFM was fabricated using polyvinyl alcohol (PVA) and two variations of polyvinyl pyrrolidone's (PVP) concentration as polymers and citric acid (CA) as crosslinking agent. The crosslinking time was also variated. The assessment of swelling, insertion characteristics, and mechanical resistance revealed that it possessed swelling capacities up to 470 % and strong insertion capabilities. This HFM was integrated with a tablet reservoir prepared using several concentrations of sodium starch glycolate (SSG) as super disintegrant. The tablet reservoir's hardness, dissolution rate, XRD, and FTIR profiles were evaluated and the results showed that 4 % of SSG was the option for enhancing SC's solubility. According to ex vivo study, this system released 24.12 ± 0.92 % of SC. For the first time, SC was successfully incorporated into a system of HFM and tablet reservoir and was non-toxic, showing promise in terms of improving PAH therapy's efficacy following comprehensive in vivo studies in the future.
Collapse
Affiliation(s)
| | - Diany Elim
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | | | | | - Nur Afika
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | | | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
| |
Collapse
|
6
|
Sheta NM, Boshra SA, Mamdouh MA, Abdel-Haleem KM. Design and optimization of silymarin loaded in lyophilized fast melt tablets to attenuate lung toxicity induced via HgCl 2 in rats. Drug Deliv 2022; 29:1299-1311. [PMID: 35470762 PMCID: PMC9045763 DOI: 10.1080/10717544.2022.2068696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
The present study aimed to develop fast melting tablets (FMTs) using silymarin (SM) owing to FMTs rapid disintegration and dissolution. FMTs represent a pathway to help patients to increase their compliance level of treatment via facile administration without water or chewing beside reduction cost. One of the methods for FMTs formulation is lyophilization. Optimization of SM-FMTs was developed via a 32 factorial design. All prepared SM-FMTs were evaluated for weight variation, thickness, breaking force, friability, content uniformity, disintegration time (DT), and % SM released. The optimized FMT formula was selected based on the criteria of scoring the fastest DT and highest % SM released after 10 min (Q10). Optimized FMT was subjected to Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM) besides investigating its lung-protective efficacy. All SM-FMT tablets showed acceptable properties within the pharmacopeial standards. Optimized FMT (F7) scored a DT of 12.5 ± 0.64 Sec and % SM released at Q10 of 82.69 ± 2.88%. No incompatibilities were found between SM and excipients, it showed a porous structure under SEM. The optimized formula decreased cytokines, up-regulated miRNA133a, and down-regulated miRNA-155 and COX-2 involved in the protection against lung toxicity prompted by HgCl2 in a manner comparable to free SM at the same dosage.
Collapse
Affiliation(s)
- Nermin M. Sheta
- Pharmaceutics Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Sylvia A. Boshra
- Biochemistry Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Mohamed A. Mamdouh
- Pharmaceutics Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | | |
Collapse
|
7
|
Fayed MH, Alalaiwe A, Almalki ZS, Helal DA. Design Space Approach for the Optimization of Green Fluidized Bed Granulation Process in the Granulation of a Poorly Water-Soluble Fenofibrate Using Design of Experiment. Pharmaceutics 2022; 14:pharmaceutics14071471. [PMID: 35890366 PMCID: PMC9316798 DOI: 10.3390/pharmaceutics14071471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 01/09/2023] Open
Abstract
In the pharmaceutical industry, the systematic optimization of process variables using a quality-by-design (QbD) approach is highly precise, economic and ensures product quality. The current research presents the implementation of a design-of-experiment (DoE) driven QbD approach for the optimization of key process variables of the green fluidized bed granulation (GFBG) process. A 32 full-factorial design was performed to explore the effect of water amount (X1; 1–6% w/w) and spray rate (X2; 2–8 g/min) as key process variables on critical quality attributes (CQAs) of granules and tablets. Regression analysis have demonstrated that changing the levels of X1 and X2 significantly affect (p ≤ 0.05) the CQAs of granules and tablets. Particularly, X1 was found to have the pronounced effect on the CQAs. The GFBG process was optimized, and a design space (DS) was built using numerical optimization. It was found that X1 and X2 at high (5.69% w/w) and low (2 g/min) levels, respectively, demonstrated the optimum operating conditions. By optimizing X1 and X2, GFBG could enhance the disintegration and dissolution of tablets containing a poorly water-soluble drug. The prediction error values of dependent responses were less than 5% that confirm validity, robustness and accuracy of the generated DS in optimization of GFBG.
Collapse
Affiliation(s)
- Mohamed H. Fayed
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt;
- Correspondence:
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Ziyad S. Almalki
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Doaa A. Helal
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt;
| |
Collapse
|
8
|
Erzengin S, Guler E, Eser E, Polat EB, Gunduz O, Cam ME. In vitro and in vivo evaluation of 3D printed sodium alginate/polyethylene glycol scaffolds for sublingual delivery of insulin: Preparation, characterization, and pharmacokinetics. Int J Biol Macromol 2022; 204:429-440. [DOI: 10.1016/j.ijbiomac.2022.02.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 12/24/2022]
|
9
|
Zhao H, Zhao L, Lin X, Shen L. An update on microcrystalline cellulose in direct compression: Functionality, critical material attributes, and co-processed excipients. Carbohydr Polym 2022; 278:118968. [PMID: 34973783 DOI: 10.1016/j.carbpol.2021.118968] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/02/2022]
Abstract
Microcrystalline cellulose (MCC) is one of the most popular cellulose derivatives in the pharmaceutical industry. Thanks to its outstanding tabletability, MCC is generally included in direct compression (DC) tablet formulations containing poor-tabletability active pharmaceutical ingredients. Nowadays, numerous grades of MCC from various brands are accessible for pharmaceutical manufacturers, leading to variability in MCC properties. Hence, it seems to be worthy and urgent to evaluate the influences of MCC variability on tablet quality and to identify critical material attributes (CMAs) based on the idea of Quality by Control. Besides, MCC-based co-processed excipients can effectively combine the functions of the filler, binder, disintegrant, lubricant, glidant, or flavor, and thus have drawn extensive interest. In this review, we focused specifically on the recent advances and development of MCC on DC tableting, including the functions in tablet formulations, potential CMAs, and MCC-based co-possessed excipients, therefore providing a reference for further studies.
Collapse
Affiliation(s)
- Haiyue Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China
| | - Lijie Zhao
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China.
| | - Xiao Lin
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China.
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China.
| |
Collapse
|
10
|
Majid H, Puzik A, Maier T, Merk R, Bartel A, Mueller HC, Burckhardt BB. Formulation Development of Sublingual Cyclobenzaprine Tablets Empowered by Standardized and Physiologically Relevant Ex Vivo Permeation Studies. Pharmaceutics 2021; 13:pharmaceutics13091409. [PMID: 34575485 PMCID: PMC8472530 DOI: 10.3390/pharmaceutics13091409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022] Open
Abstract
Suitable ex vivo models are required as predictive tools of oromucosal permeability between in vitro characterizations and in vivo studies in order to support the development of novel intraoral formulations. To counter a lack of clinical relevance and observed method heterogenicity, a standardized, controlled and physiologically relevant ex vivo permeation model was established. This model combined the Kerski diffusion cell, process automation, novel assays for tissue integrity and viability, and sensitive LC-MS/MS analysis. The study aimed to assess the effectiveness of the permeation model in the sublingual formulation development of cyclobenzaprine, a promising agent for the treatment of psychological disorders. A 4.68-fold enhancement was achieved through permeation model-led focused formulation development. Here, findings from the preformulation with regard to pH and microenvironment-modulating excipients proved supportive. Moreover, monitoring of drug metabolism during transmucosal permeation was incorporated into the model. In addition, it was feasible to assess the impact of dosage form alterations under stress conditions, with the detection of a 33.85% lower permeation due to salt disproportionation. Integrating the coherent processes of disintegration, dissolution, permeation, and metabolization within a physiological study design, the model enabled successful formulation development for cyclobenzaprine sublingual tablets and targeted development of patient-oriented drugs for the oral cavity.
Collapse
Affiliation(s)
- Haidara Majid
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, 40225 Dusseldorf, Germany; (H.M.); (A.B.)
| | - Andreas Puzik
- Hexal AG, Analytical Development, 83607 Holzkirchen, Germany; (A.P.); (T.M.); (R.M.); (H.-C.M.)
| | - Tanja Maier
- Hexal AG, Analytical Development, 83607 Holzkirchen, Germany; (A.P.); (T.M.); (R.M.); (H.-C.M.)
| | - Raphaela Merk
- Hexal AG, Analytical Development, 83607 Holzkirchen, Germany; (A.P.); (T.M.); (R.M.); (H.-C.M.)
| | - Anke Bartel
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, 40225 Dusseldorf, Germany; (H.M.); (A.B.)
| | - Hans-Christian Mueller
- Hexal AG, Analytical Development, 83607 Holzkirchen, Germany; (A.P.); (T.M.); (R.M.); (H.-C.M.)
| | - Bjoern B. Burckhardt
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, 40225 Dusseldorf, Germany; (H.M.); (A.B.)
- Correspondence:
| |
Collapse
|
11
|
Di Prima G, Angellotti G, Scarpaci AG, Murgia D, D’agostino F, Campisi G, De Caro V. Improvement of Resveratrol Permeation through Sublingual Mucosa: Chemical Permeation Enhancers versus Spray Drying Technique to Obtain Fast-Disintegrating Sublingual Mini-Tablets. Pharmaceutics 2021; 13:1370. [PMID: 34575446 PMCID: PMC8470294 DOI: 10.3390/pharmaceutics13091370] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 12/24/2022] Open
Abstract
Resveratrol (RSV) is a natural polyphenol with several interesting broad-spectrum pharmacological properties. However, it is characterized by poor oral bioavailability, extensive first-pass effect metabolism and low stability. Indeed, RSV could benefit from the advantage of the sublingual route of administration. In this view, RSV attitudes to crossing the porcine sublingual mucosa were evaluated and promoted both by six different chemical permeation enhancers (CPEs) as well as by preparing four innovative fast-disintegrating sublingual mini-tablets by spray drying followed by direct compression. Since RSV by itself exhibits a low permeation aptitude, this could be significantly enhanced by the use of CPEs as well as by embedding RSV in a spray-dried powder to be compressed in order to prepare fast-disintegrating mini-tablets. The most promising observed CPEs (menthol, lysine and urea) were then inserted into the most promising spray-dried excipients' compositions (RSV-B and RSV-C), thus preparing CPE-loaded mini-tablets. However, this procedure leads to unsatisfactory results which preclude the possibility of merging the two proposed approaches. Finally, the best spray-dried composition (RSV-B) was further evaluated by SEM, FTIR, XRD and disintegration as well as dissolution behavior to prove its effectiveness as a sublingual fast-disintegrating formulation.
Collapse
Affiliation(s)
- Giulia Di Prima
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (G.A.); (A.G.S.); (D.M.); (V.D.C.)
| | - Giuseppe Angellotti
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (G.A.); (A.G.S.); (D.M.); (V.D.C.)
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, 90127 Palermo, Italy;
| | - Amalia Giulia Scarpaci
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (G.A.); (A.G.S.); (D.M.); (V.D.C.)
| | - Denise Murgia
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (G.A.); (A.G.S.); (D.M.); (V.D.C.)
| | - Fabio D’agostino
- Istituto per lo Studio degli Impatti Antropici e Sostenibilità dell’Ambiente Marino, Consiglio Nazionale delle Ricerche (IAS—CNR), Campobello di Mazara, 91021 Trapani, Italy;
| | - Giuseppina Campisi
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, 90127 Palermo, Italy;
| | - Viviana De Caro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (G.A.); (A.G.S.); (D.M.); (V.D.C.)
| |
Collapse
|