1
|
Moldovan A, Cuc S, Gasparik C, Sarosi C, Moldovan M, Ilie N, Petean I, Rusu LM, Ionescu A, Pastrav M. Effect of Experimental Bleaching Gels With Enzymes on Composite and Enamel. Int Dent J 2025; 75:1234-1245. [PMID: 39266399 PMCID: PMC11976588 DOI: 10.1016/j.identj.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/14/2024] Open
Abstract
INTRODUCTION AND AIMS Potential secondary or toxic effects of peroxide-based whitening gels have driven the search for alternative methods that use natural compounds with gentle action on tooth enamel that provide remineralizing benefits. METHODS This study introduces four innovative experimental whitening gels (GC, G1, G3, G4) formulated with enzymes (Bromelaine and Papaine) and natural extracts, along with SiO2. The efficacy of these gels was tested on nanohybrid dental composite (EsCOM100, Spident Company) and dental enamel stained with coffee and natural juice (Tedi) over 10 days. The structural changes in samples before and after bleaching were examined using scanning electron microscopy and atomic force microscopy. Additionally, cytotoxicity tests were conducted on the gels using mesenchymal stem cells from human dental pulp (dMSC) and human keratinocytes (HaCaT). Antibacterial activity was assessed on five strains (Streptococcus mutans. Porphyromonas gingivalis; Enterococcus faecalis; Escherichia coli; Staphylococcus aureus). RESULTS Coffee and natural juice stains significantly increase the roughness of composite and enamel surfaces by forming deposits. The enzymatic action of bromelain and papain effectively disorganizes and removes these clusters, significantly reducing surface roughness. CONCLUSION Notably, the gel containing papain and nanostructured SiO2 proved to be the most effective in removing coffee stains from both composite surfaces and enamel. On the other hand, the gel with bromelain and nanostructured SiO2 was the most efficient in removing natural juice stains. The absence of SiO2 in the experimental gels slightly decreased the enzymes' effectiveness in stain removal. The antibacterial activity observed in the experimental gels is attributed solely to the enzymatic compounds.
Collapse
Affiliation(s)
- Amalia Moldovan
- Physics and Chemistry Department, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Stanca Cuc
- "Raluca Ripan" Institute of Research in Chemistry, "Babes Bolyai" University, Cluj-Napoca, Romania.
| | - Cristina Gasparik
- Department of Prosthetic Dentistry and Dental Materials, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Codruța Sarosi
- "Raluca Ripan" Institute of Research in Chemistry, "Babes Bolyai" University, Cluj-Napoca, Romania
| | - Marioara Moldovan
- "Raluca Ripan" Institute of Research in Chemistry, "Babes Bolyai" University, Cluj-Napoca, Romania.
| | - Nicoleta Ilie
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig - Maximilians - University, Munich, Germany
| | - Ioan Petean
- Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Laura Monica Rusu
- Department of Dental Materials, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei Ionescu
- Department of Biomedical, Surgical and Dental Sciences, Oral Microbiology and Biomaterials Laboratory, Università Degli Studi di Milano, Milano, Italy
| | - Mihaela Pastrav
- Department of Orthodontics, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
2
|
Ganea M, Georgiana Ioana PC, Ghitea TC, Ștefan L, Groza F, Frent OD, Nagy C, Iova CS, Schwarz-Madar AF, Ciavoi G, Vicas LG, Constanta PD, Moisa C. Development and Evaluation of Gelatin-Based Gummy Jellies Enriched with Oregano Oil: Impact on Functional Properties and Controlled Release. Foods 2025; 14:479. [PMID: 39942072 PMCID: PMC11817771 DOI: 10.3390/foods14030479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Functional foods play a crucial role in contemporary dietary strategies. This study investigates the incorporation of oregano oil, a bioactive extract that is known for its antimicrobial and antioxidant properties, into gelatin-based gummy jellies to develop functional food products with controlled release properties. The jellies were evaluated for mass uniformity, swelling index, disintegration time, and tensile strength under simulated oral and gastric conditions. The results showed that oregano oil significantly reduced the swelling index (e.g., 128.76 ± 0.67% at pH 5) and prolonged the disintegration time (e.g., 6-18 min across pH environments), highlighting its potential for controlled release. The mechanical strength remained stable (5.2 ± 0.3 N), ensuring structural integrity. These findings suggest that oregano-oil-enriched gummy jellies offer health benefits, although further studies are needed to explore their long-term stability and bioavailability.
Collapse
Affiliation(s)
- Mariana Ganea
- Pharmacy Department, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (M.G.); (O.D.F.); (L.G.V.); (C.M.)
| | - Potra Cicalau Georgiana Ioana
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (P.C.G.I.); (G.C.)
| | - Timea Claudia Ghitea
- Pharmacy Department, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (M.G.); (O.D.F.); (L.G.V.); (C.M.)
| | - Liana Ștefan
- Department of Obstetrics and Gynecology, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (L.Ș.); (A.F.S.-M.); (P.D.C.)
| | - Florina Groza
- Department of Preclinics, Faculty of Medicine and Pharmacy, University of Oradea, 410068 Oradea, Romania; (F.G.); (C.S.I.)
| | - Olimpia Daniela Frent
- Pharmacy Department, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (M.G.); (O.D.F.); (L.G.V.); (C.M.)
| | - Csaba Nagy
- Doctoral School of Biomedical Science, University of Oradea, No. 1 University Street, 410087 Oradea, Romania;
| | - Claudiu Sorin Iova
- Department of Preclinics, Faculty of Medicine and Pharmacy, University of Oradea, 410068 Oradea, Romania; (F.G.); (C.S.I.)
| | - Andrada Florina Schwarz-Madar
- Department of Obstetrics and Gynecology, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (L.Ș.); (A.F.S.-M.); (P.D.C.)
| | - Gabriela Ciavoi
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (P.C.G.I.); (G.C.)
| | - Laura Gratiela Vicas
- Pharmacy Department, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (M.G.); (O.D.F.); (L.G.V.); (C.M.)
| | - Pelea Diana Constanta
- Department of Obstetrics and Gynecology, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (L.Ș.); (A.F.S.-M.); (P.D.C.)
| | - Corina Moisa
- Pharmacy Department, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (M.G.); (O.D.F.); (L.G.V.); (C.M.)
| |
Collapse
|
3
|
Gross IP, Lima AL, Sousa EC, Souza MS, Cunha-Filho M, da Silva ICR, Orsi DC, Sá-Barreto LL. Antimicrobial and acaricide sanitizer tablets produced by wet granulation of spray-dried soap and clove oil-loaded microemulsion. PLoS One 2024; 19:e0313517. [PMID: 39527597 PMCID: PMC11554217 DOI: 10.1371/journal.pone.0313517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
A novel sanitizer tablet containing clove essential oil (CO) microemulsion was developed. A preformulation study using nuclear magnetic resonance and thermal analyses showed component compatibility. The main components of the samples remained intact despite a color change, probably due to a strong acid-base interaction between eugenol and diethanolamine. The CO microemulsion showed acaricidal and larvicidal activities superior to the commercial product, with product efficacy of 99.9% and larvae mortality of 94%. Optimal spray-drying conditions were achieved with inlet and outlet temperatures of 50°C and 40°C, respectively, an aspiration rate of 1 m3 min⁻1, and a 0.25 L h⁻1 injection flow. The feed suspension comprised 50% (v/v) liquid soap, 37.5% (v/v) water, 12.5% (v/v) ethanol, and 5.0% (w/v) silica. This formulation and processing parameters allowed for successful free-flow powder formation, providing a suitable matrix for incorporating the CO microemulsion via wet granulation without heating. Finally, sanitizer tablets produced from such granules resulted in a uniform product with low weight variation (coefficient of variation of 0.15%), eugenol content of 95.5% ± 3.3, and friability of 0.58%. Furthermore, the tablets showed rapid aqueous dispersion, forming a colloidal system with particle sizes of 221 nm and a zeta potential of -17.2 mV. Antimicrobial activity tests demonstrated the effectiveness of the sanitizer tablet against bacteria and fungi, exhibiting comparable antimicrobial potency to isolated CO. Hence, the sanitizer tablet developed represents a promising candidate as a practical and efficient solution for pest control, offering strong antimicrobial and acaricidal activity.
Collapse
Affiliation(s)
- Idejan P. Gross
- Laboratory of Food, Drugs and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Ana Luiza Lima
- Laboratory of Food, Drugs and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Evalina C. Sousa
- Faculty of Ceilandia, University of Brasilia (UnB), Brasília, DF, Brazil
| | - Maiane S. Souza
- Faculty of Ceilandia, University of Brasilia (UnB), Brasília, DF, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drugs and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | | | | | | |
Collapse
|
4
|
Bogdan C, Hales D, Cornilă A, Casian T, Iovanov R, Tomuță I, Iurian S. Texture analysis – a versatile tool for pharmaceutical evaluation of solid oral dosage forms. Int J Pharm 2023; 638:122916. [PMID: 37019322 DOI: 10.1016/j.ijpharm.2023.122916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
In the past few decades, texture analysis (TA) has gained importance as a valuable method for the characterization of solid oral dosage forms. As a result, an increasing number of scientific publications describe the textural methods that evaluate the extremely diverse category of solid pharmaceutical products. Within the current work, the use of texture analysis in the characterization of solid oral dosage forms is summarised with a focus on the evaluation of intermediate and finished oral pharmaceutical products. Several texture methods are reviewed regarding the applications in mechanical characterization, and mucoadhesion testing, but also in estimating the disintegration time and in vivo specific features of oral dosage forms. As there are no pharmacopoeial standards for pharmaceutical products tested through texture analysis, and there are important differences between reported results due to different experimental conditions, the choice of testing protocol and parameters is challenging. Thereby, this work aims to guide the research scientists and quality assurance professionals involved in different stages of drug development into the selection of optimal texture methodologies depending on the product characteristics and quality control needs.
Collapse
Affiliation(s)
- Cătălina Bogdan
- Department of Dermopharmacy and Cosmetics, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 12 I. Creangă Street, 400010 Cluj-Napoca, Romania
| | - Dana Hales
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania.
| | - Andreea Cornilă
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| | - Tibor Casian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| | - Rareș Iovanov
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| | - Sonia Iurian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Nutmeg Essential Oil, Red Clover, and Liquorice Extracts Microencapsulation Method Selection for the Release of Active Compounds from Gel Tablets of Different Bases. Pharmaceutics 2023; 15:pharmaceutics15030949. [PMID: 36986810 PMCID: PMC10057076 DOI: 10.3390/pharmaceutics15030949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The current study presents the most suitable method for encapsulating nutmeg essential oil with liquorice and red clover. Two widely used methods, spray-drying and freeze-drying, were employed to find the most suitable for essential oil volatile compounds’ protection. Results showed that freeze-dried capsules (LM) had a higher yield (85.34%) compared to the exact formulation of spray-dried microcapsules (SDM)—45.12%. All the antioxidant and total phenolic compounds’ results obtained with the LM sample were significantly higher compared with SDM. LM microcapsules were incorporated in two different bases with no additional sugar (gelatin and pectin) for targeted release. Pectin tablets had firmer and harder texture properties, while gelatin tablets had a more elastic texture. There was a significant impact on texture changes caused by microcapsules. Microencapsulated essential oil with extracts can be used alone or in a gel base (pectin or gelatin, depending on user preferences). It could be an effective product to protect the active volatile compounds and regulate the release of active compounds and give a pleasant taste.
Collapse
|
6
|
Yuan Y, He N, Dong L, Guo Q, Zhang X, Li B, Li L. Multiscale Shellac-Based Delivery Systems: From Macro- to Nanoscale. ACS NANO 2021; 15:18794-18821. [PMID: 34806863 DOI: 10.1021/acsnano.1c07121] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Delivery systems play a crucial role in enhancing the activity of active substances; however, they require complex processing techniques and raw material design to achieve the desired properties. In this regard, raw materials that can be easily processed for different delivery systems are garnering attention. Among these raw materials, shellac, which is the only pharmaceutically used resin of animal origin, has been widely used in the development of various delivery systems owing to its pH responsiveness, biocompatibility, and degradability. Notably, shellac performs better on encapsulating hydrophobic active substances than other natural polymers, such as polysaccharides and proteins. In addition, specially designed shellac-based delivery systems can also be used for the codelivery of hydrophilic and hydrophobic active substances. Shellac is most widely used for oral administration, as shellac-based delivery systems can form a compact structure through hydrophobic interaction, protecting transported active substances from the harsh environment of the stomach to achieve targeted delivery in the small intestine or colon. In this review, the advantages of shellac in delivery systems are discussed in detail. Multiscale shellac-based delivery systems from the macroscale to nanoscale are comprehensively introduced, including matrix tablets, films, enteric coatings, hydrogels, microcapsules, microparticles (beads/spheres), nanoparticles, and nanofibers. Furthermore, the hotspots, deficiencies, and future perspectives of shellac-based delivery system development are also analyzed. We hoped this review will increase the understanding of shellac-based delivery systems and inspire their further development.
Collapse
Affiliation(s)
- Yi Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Ni He
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Liya Dong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Qiyong Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Xia Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Bing Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Lin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|