1
|
Ghosh S, Basak A. Gellan gum-based microbeads for Colon-targeted drug delivery: A promising polysaccharide for controlled and site-specific release. Int J Biol Macromol 2025; 310:143276. [PMID: 40258547 DOI: 10.1016/j.ijbiomac.2025.143276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/30/2025] [Accepted: 04/16/2025] [Indexed: 04/23/2025]
Abstract
Targeting drug delivery to the colon presents significant challenges due to unfavorable pH conditions and enzymatic activity in the upper gastrointestinal tract. This obstacle can be overcome with colon-targeted microbeads, which have led to significant advancements in treating colonic diseases such as inflammatory bowel disease and colorectal cancer, as well as in achieving sustained delivery of macromolecules like peptides and proteins. Polysaccharide-based microbeads (MBs) formulated with gellan gum (GLG) offer a robust platform for controlled and site-specific drug release. GLG, a natural anionic polysaccharide, is renowned for its gelation properties in the presence of divalent cations, biocompatibility, and enzymatic degradability, making it ideal for colon-specific applications. In this review, we explored the potential of GLG-MBs for colon-targeted drug delivery and their physicochemical properties, drug release mechanisms, formulation strategies, therapeutic applications, methods for analytical characterizations, highlighting their advantages over conventional drug delivery, and target specificity towards the colonic disease. Furthermore, we discussed the significant limitations of GLG-MBs, such as burst release, processing, scaling up production, regulatory challenges, and clinical uniformity towards colonic environments. We explored the strategies to overcome key limitations in clinical translation, such as uniformity and regulatory hurdles. The review concludes by outlining the direction of advancing GLG-MBs, emphasizing their potential in achieving efficient and targeted drug delivery towards the colon.
Collapse
Affiliation(s)
- Soumyadip Ghosh
- Department of Pharmaceutics, Calcutta Institute of Pharmaceutical Technology and Allied Health Sciences, Banitabla, Uluberia, Howrah-711316, West Bengal, India.
| | - Ankita Basak
- Department of Pharmaceutics, Calcutta Institute of Pharmaceutical Technology and Allied Health Sciences, Banitabla, Uluberia, Howrah-711316, West Bengal, India
| |
Collapse
|
2
|
Shang P, Xiang Y, Xing C, Chen S, Yuan F. Procyanidin-crosslinked gradient silk fibroin composite nanofiber scaffold with sandwich structure for rotator cuff repair. BIOMATERIALS ADVANCES 2025; 169:214183. [PMID: 39813740 DOI: 10.1016/j.bioadv.2025.214183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Improving the regeneration of the tendon-bone interface (TBI) helps to decrease the risk of rotator cuff retears after repair surgeries. Unfortunately, the lack of inherent healing capacity of the TBI, insufficient mechanical properties, and abnormal and persistent inflammation during repair are the key factors leading to suboptimal healing of the rotator cuff. Therefore, a high-strength rotator cuff repair material capable of regulating the unbalanced immune response and enhancing the regeneration of the TBI is urgently needed. In this study, a novel sandwiched silk fibroin composite nanofiber scaffold with a biomimetic gradient structure was prepared through layer-by-layer continuous electrospinning, and then procyanidin was utilized to further enhance the mechanical properties and biological activities of the scaffold. The physicochemical characterization revealed that the procyanidin-crosslinked sandwiched gradient scaffold (GMPC) possessed an appropriate porosity and pore size and superior mechanical properties. Cytocompatibility assessment and immunofluorescence staining indicated that GMPC allowed rapid adhesion, proliferation, and infiltration of osteoblasts. ELISA and macrophage polarization experiments further confirmed that GMPC could effectively inhibit excessive inflammation in injured tissues and regulate the polarization of macrophages to the beneficial phenotype. Therefore, the procyanidin-crosslinked sandwiched gradient nanofiber scaffold might be a promising candidate for rotator cuff repair.
Collapse
Affiliation(s)
- Panpan Shang
- School of Food and Pharmacy, Shanghai Zhongqiao Vocational and Technical University, 3888 Caolang Rd., Shanghai 201514, PR China; School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, PR China.
| | - Yu Xiang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd., Shanghai 200233, PR China
| | - Chenchen Xing
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, PR China
| | - Sihao Chen
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, PR China.
| | - Feng Yuan
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd., Shanghai 200233, PR China.
| |
Collapse
|
3
|
Chen R, Chen F, Chen K, Xu J. Advances in the application of hydrogel-based scaffolds for tendon repair. Genes Dis 2024; 11:101019. [PMID: 38560496 PMCID: PMC10978548 DOI: 10.1016/j.gendis.2023.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 04/04/2024] Open
Abstract
Tendon injuries often lead to joint dysfunction due to the limited self-regeneration capacity of tendons. Repairing tendons is a major challenge for surgeons and imposes a significant financial burden on society. Therefore, there is an urgent need to develop effective strategies for repairing injured tendons. Tendon tissue engineering using hydrogels has emerged as a promising approach that has attracted considerable interest. Hydrogels possess excellent biocompatibility and biodegradability, enabling them to create an extracellular matrix-like growth environment for cells. They can also serve as a carrier for cells or other substances to accelerate tendon repair. In the past decade, numerous studies have made significant progress in the preparation of hydrogel scaffolds for tendon healing. This review aims to provide an overview of recent research on the materials of hydrogel-based scaffolds used for tendon tissue engineering and discusses the delivery systems based on them.
Collapse
Affiliation(s)
- Renqiang Chen
- Department of Orthopedics, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Fanglin Chen
- Department of Orthopedics, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Kenian Chen
- Department of Orthopedics, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Jian Xu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
4
|
Rajalekshmi R, Agrawal DK. Understanding Fibrous Tissue in the Effective Healing of Rotator Cuff Injury. JOURNAL OF SURGERY AND RESEARCH 2024; 7:215-228. [PMID: 38872898 PMCID: PMC11174978 DOI: 10.26502/jsr.10020363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The rotator cuff is a crucial group of muscles and tendons in the shoulder complex that plays a significant role in the stabilization of the glenohumeral joint and enabling a wide range of motion. Rotator cuff tendon tears can occur due to sudden injuries or degenerative processes that develop gradually over time, whether they are partial or full thickness. These injuries are common causes of shoulder pain and functional impairment, and their complex nature highlights the essential role of the rotator cuff in shoulder function. Scar formation is a crucial aspect of the healing process initiated following a rotator cuff tendon tear, but excessive fibrous tissue development can potentially lead to stiffness, discomfort, and movement limitations. Age is a critical risk factor, with the prevalence of these tears increasing among older individuals. This comprehensive review aims to delve deeper into the anatomy and injury mechanisms of the rotator cuff. Furthermore, it will inspect the signaling pathways involved in fibrous tissue development, evaluate the various factors affecting the healing environment, and discuss proactive measures aimed at reducing excessive fibrous tissue formation. Lastly, this review identifed gaps within existing knowledge to advance methods for better management of rotator cuff tendon injuries.
Collapse
Affiliation(s)
- Resmi Rajalekshmi
- Department of Translational Research, College of the Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California USA
| | - Devendra K Agrawal
- Department of Translational Research, College of the Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California USA
| |
Collapse
|
5
|
Chen Y, Li Y, Zhu W, Liu Q. Biomimetic gradient scaffolds for the tissue engineering and regeneration of rotator cuff enthesis. Biofabrication 2024; 16:032005. [PMID: 38697099 DOI: 10.1088/1758-5090/ad467d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
Rotator cuff tear is one of the most common musculoskeletal disorders, which often results in recurrent shoulder pain and limited movement. Enthesis is a structurally complex and functionally critical interface connecting tendon and bone that plays an essential role in maintaining integrity of the shoulder joint. Despite the availability of advanced surgical procedures for rotator cuff repair, there is a high rate of failure following surgery due to suboptimal enthesis healing and regeneration. Novel strategies based on tissue engineering are gaining popularity in improving tendon-bone interface (TBI) regeneration. Through incorporating physical and biochemical cues into scaffold design which mimics the structure and composition of native enthesis is advantageous to guide specific differentiation of seeding cells and facilitate the formation of functional tissues. In this review, we summarize the current state of research in enthesis tissue engineering highlighting the development and application of biomimetic scaffolds that replicate the gradient TBI. We also discuss the latest techniques for fabricating potential translatable scaffolds such as 3D bioprinting and microfluidic device. While preclinical studies have demonstrated encouraging results of biomimetic gradient scaffolds, the translation of these findings into clinical applications necessitates a comprehensive understanding of their safety and long-term efficacy.
Collapse
Affiliation(s)
- Yang Chen
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yexin Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Weihong Zhu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Qian Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
6
|
Zhang Y. Clinical effects of sodium hyaluronate combined with platelet-rich plasma injection on rotator cuff injury in arthroscopic repair. Regen Ther 2023; 24:161-166. [PMID: 37448853 PMCID: PMC10338189 DOI: 10.1016/j.reth.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/23/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Objective Rotator cuff injury is one prevalent shoulder condition that often leads to pain and dysfunction. The study explored the clinical effects of sodium hyaluronate combined with platelet-rich plasma (PRP) injection on rotator cuff injury in arthroscopic repair. Methods A total of 92 cases with rotator cuff injury were randomly divided into the control group (n = 46, treated with shoulder arthroscopy repair combined with subacromial space injection of sodium hyaluronate) and the experimental group (n = 46, treated with subacromial space injection of autologous PRP on the basis of the treatment in the control group). Visual analogue scale (VAS), Constant-Murley scale (CMS), University of California, Los Angeles (UCLA), American Shoulder and Elbow Society (ASES), and quality of life (QOL) scores, as well as complications were compared in the two groups before surgery and at 3 and 6 months after surgery. Shoulder range of motion (ROM) was measured before and after surgery. Results VAS scores of patients in the two groups at 3 and 6 months after surgery were lower than those before surgery, and the VAS scores of patients in the experimental group at 3 and 6 months after surgery were much lower than those in the control group (all P < 0.05). The scores of CMS, UCLA, ASES, and QOL, and shoulder ROM in both groups at 3 and 6 months after surgery were higher than those before surgery, and these shoulder joint function scores, QOL and shoulder ROM in the experimental group at 3 and 6 months after surgery were higher than those in the control group (all P < 0.05). No statistically significant difference presented in the incidence of complications between the two groups (P > 0.05). Conclusion Arthroscopic rotator cuff repair and sodium hyaluronate combined with PRP injection can effectively reduce pain symptoms, improve shoulder joint function and shoulder ROM, and improve QOL in patients with rotator cuff injury.
Collapse
Affiliation(s)
- Yunfeng Zhang
- Department of Joint Surgery, Ningbo Sixth Hospital, 1059 East Zhongshan Road, YinZhou District, Ningbo 315000, Zhejiang, China
| |
Collapse
|
7
|
Rhee SM, Jeon S, Han J, Kim YH, Jeong HJ, Park JH, Oh JH. The Effect of Combining Hyaluronic Acid and Human Dermal Fibroblasts on Tendon Healing. Am J Sports Med 2023; 51:3243-3250. [PMID: 37681499 DOI: 10.1177/03635465231191779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
BACKGROUND The incidence of rotator cuff tears is rapidly increasing, and operative techniques for rotator cuff repair have been developed. However, the rates of postoperative retear remain high. PURPOSE/HYPOTHESIS The purpose was to determine the effects of human dermal fibroblasts (HDFs) with hyaluronic acid (HA) on tendon-to-bone healing in a rabbit model of chronic rotator cuff tear injury. It was hypothesized that HA would enhance HDF proliferation and that a combination of HA and HDFs would produce a synergistic effect on the healing of repaired rotator cuff tendons of rabbits. STUDY DESIGN Controlled laboratory study. METHODS For in vitro study, HDFs were plated on a 24-well plate. After 1 day, 2 wells were designated as the test group and treated with 0.75% HA in phenol red-free Dulbecco's modified Eagle medium (DMEM). An other 2 wells served as control groups and were treated with the same volume of phenol red-free DMEM without HA. Each group was duplicated, resulting in a total of 4 wells, with 2 wells in each group for replication purposes. The cells were incubated for 24 hours, followed by 72-hour cultivation. Absorbance ratios at 96 and 24 hours were compared to evaluate cell proliferation. For the in vivo study, a total of 24 rabbits were randomly allocated to groups A, B, and C (n = 8 each). Supraspinatus tendons were detached bilaterally and left for 6 weeks to establish a chronic rotator tear model. Torn tendons were subsequently repaired using the following injections: group A, 0.5 × 106 HDFs with HA; group B, HA only; and group C, saline only. At 12 weeks after repair, biomechanical tests and histological evaluation were performed. RESULTS In vitro study showed that HDF proliferation significantly increased with HA (HDFs with HA vs HDFs without HA; 3.96 ± 0.09 vs 2.53 ± 0.15; P < .01). In vivo, group A showed significantly higher load-to-failure values than the other groups (53.8 ± 6.9 N/kg for group A, 30.6 ± 6.4 N/kg for group B, and 24.3 ± 7.6 N/kg for group C; P < .001). Histological evaluation confirmed that group A showed higher collagen fiber density and better collagen fiber continuity, tendon-to-bone interface maturation, and nuclear shape than the other groups (all P < .05). CONCLUSION This controlled laboratory study verified the potential of the combination of HDFs and HA in enhancing healing in a chronic rotator cuff tear rabbit model. CLINICAL RELEVANCE A potential synergistic effect on rotator cuff tendon healing may be expected from a combination of HDFs and HA.
Collapse
Affiliation(s)
- Sung-Min Rhee
- Shoulder & Elbow Clinic, Department of Orthopaedic Surgery, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Saewha Jeon
- Cutigen Research Institute, Tego Science Inc, Seoul, Republic of Korea
| | - Jikhyon Han
- Cutigen Research Institute, Tego Science Inc, Seoul, Republic of Korea
| | - Yun Hee Kim
- Cutigen Research Institute, Tego Science Inc, Seoul, Republic of Korea
| | - Hyeon Jang Jeong
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Joo Hyun Park
- Department of Orthopaedic Surgery, College of Medicine, Dongguk University Hospital, Goyang-si, Republic of Korea
| | - Joo Han Oh
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| |
Collapse
|
8
|
Fang S, You M, Wei J, Chen P. Caveolin-1 is involved in fatty infiltration and bone-tendon healing of rotator cuff tear. Mol Med 2023; 29:33. [PMID: 36918760 PMCID: PMC10015686 DOI: 10.1186/s10020-023-00627-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/17/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Caveolin-1 has been predicted, based on RNA transcriptome sequencing, as a key gene in rotator cuff tear (RCT) and it is related to fatty infiltration. This study aims to elucidate the upstream and downstream mechanism of Caveolin-1 in fatty infiltration and bone-tendon healing after RCT in rat models. METHODS Differentially expressed genes related to RCT were screened, followed by functional enrichment analysis and protein-protein interaction analysis. GATA6 was overexpressed and Caveolin-1 was knocked down in tendon stem cells (TSCs) to evaluate their effects on the adipogenic differentiation of TSCs. In addition, a RCT rat model was constructed and injected with lentivirus carrying oe-GATA6, oe-Caveolin-1 alone or in combination to assess their roles in fatty infiltration and bone-tendon healing. RESULTS AND CONCLUSION: Caveolin-1 was identified as a key gene involved in the RCT process. In vitro results demonstrated that Caveolin-1 knockdown inhibited adipogenic differentiation of TSCs by activating the cAMP/PKA pathway. GATA6 inhibited the transcription of Caveolin-1 and inhibited its expression, thus suppressing the adipogenic differentiation of TSCs. In vivo data confirmed that GATA6 overexpression activated the cAMP/PKA pathway by downregulating Caveolin-1 and consequently repressed fatty infiltration, promoted bone-tendon healing, improved biomechanical properties and reduced the rupture risk of injured tendon in rats after RCT. Overall, this study provides novel insights into the mechanistic action of Caveolin-1 in the fatty infiltration and bone-tendon healing after RCT.
Collapse
Affiliation(s)
- Shanhong Fang
- Department of Sports Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350212, China.,Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fujian Province, 350005, Fuzhou, China
| | - Mengqiang You
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fujian Province, 350005, Fuzhou, China
| | - Jie Wei
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fujian Province, 350005, Fuzhou, China
| | - Peng Chen
- Department of Sports Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350212, China. .,Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fujian Province, 350005, Fuzhou, China.
| |
Collapse
|
9
|
Chen CY, Kuo SM, Wu GX, Yang SW. Synergistic prevention and reparative effects of sesquiterpene farnesol in a rabbit model of surgical resection-induced osteoarthritis. APL Bioeng 2023; 7:016105. [PMID: 36647547 PMCID: PMC9840532 DOI: 10.1063/5.0129530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/27/2022] [Indexed: 01/14/2023] Open
Abstract
Articular cartilage may regenerate poorly after injury or during aging. In vitro, farnesol can modulate extracellular matrix synthesis and restore chondrocyte phenotypes by increasing type II collagen (COL II) and glycosaminoglycan (GAG) production. Here, we evaluated farnesol's preventive and reparative effects against osteoarthritis (OA) in vivo. We induced OA in rabbits through resection of the lateral collateral ligament and meniscus. After 2 weeks, the affected limb was treated with 0.5 ml of 0.4 mM farnesol, hyaluronan (HA) nanoparticle-encapsulated 0.8 mM farnesol (Farn/HA), or HA nanoparticles intra-articularly. After 2 and 6 treatment weeks, synovial inflammatory cytokine levels were analyzed. We also removed the entire joint cartilage from lateral femoral condyles for histological investigation. The half-maximum inhibitory concentration of farnesol was 0.5 mM. Farn/HA had relatively low cytotoxicity showing cells remained viable after being treated with 1 mM a concentration Farn/HA. Untreated lateral condyle exhibited extensive wear. By contrast, 0.4 mM farnesol or 0.8 mM Farn/HA led to a relatively transparent and bright appearance. After 2 and 6 treatment weeks, farnesol, particularly 0.8 mM Farn/HA, reduced matrix metalloproteinase 1 and 13 levels considerably. Therefore, 0.8 mM Farn/HA, which enabled slow drug release, demonstrated the highest anti-inflammatory and OA preventive effects. After 6 treatment weeks, farnesol also promoted COL II and GAG synthesis and, thus, aided healing.
Collapse
Affiliation(s)
| | - Shyh Ming Kuo
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan
| | - Guan Xuan Wu
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan
| | - Shan Wei Yang
- Department of Orthopedics, Kaohsiung Veterans General Hospital, Kaohsiung Veterans General Hospital, Kaohsiung City 81346, Taiwan,Author to whom correspondence should be addressed:. Tel.: 887 7 342 2121. ext. 73048. Fax: 886 7 342 2228
| |
Collapse
|
10
|
Xu Z, Fang Y, Chen Y, Zhao Y, Wei W, Teng C. Hydrogel Development for Rotator Cuff Repair. Front Bioeng Biotechnol 2022; 10:851660. [PMID: 35782490 PMCID: PMC9240348 DOI: 10.3389/fbioe.2022.851660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Rotator cuff tears (RCTs) are common in shoulder disease and disability. Despite significant advances in surgical repair techniques, 20–70% of patients still have postoperative rotator cuff dysfunction. These functional defects may be related to retear or rotator cuff quality deterioration due to tendon retraction and scar tissue at the repair site. As an effective delivery system, hydrogel scaffolds may improve the healing of RCTs and be a useful treatment for irreparable rotator cuff injuries. Although many studies have tested this hypothesis, most are limited to laboratory animal experiments. This review summarizes differences in hydrogel scaffold construction, active ingredients, and application methods in recent research. Efforts to determine the indications of hydrogel scaffolds (with different constructions and cargos) for various types of RCTs, as well as the effectiveness and reliability of application methods and devices, are also discussed.
Collapse
Affiliation(s)
- Zhengyu Xu
- Department of Orthopaedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yifei Fang
- Department of Orthopaedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yao Chen
- Department of Orthopaedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yushuang Zhao
- Department of Orthopaedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Wei Wei
- Department of Orthopaedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Wei Wei, ; Chong Teng,
| | - Chong Teng
- Department of Orthopaedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- *Correspondence: Wei Wei, ; Chong Teng,
| |
Collapse
|
11
|
Restoration of the Phenotype of Dedifferentiated Rabbit Chondrocytes by Sesquiterpene Farnesol. Pharmaceutics 2022; 14:pharmaceutics14010186. [PMID: 35057081 PMCID: PMC8779926 DOI: 10.3390/pharmaceutics14010186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Osteoarthritis (OA) is a joint disorder characterized by the progressive degeneration of articular cartilage. The phenotype and metabolism behavior of chondrocytes plays crucial roles in maintaining articular cartilage function. Chondrocytes dedifferentiate and lose their cartilage phenotype after successive subcultures or inflammation and synthesize collagen I and X (COL I and COL X). Farnesol, a sesquiterpene compound, has an anti-inflammatory effect and promotes collagen synthesis. However, its potent restoration effects on differentiated chondrocytes have seldom been evaluated. The presented study investigated farnesol's effect on phenotype restoration by examining collagen and glycosaminoglycan (GAG) synthesis from dedifferentiated chondrocytes. The results indicated that chondrocytes gradually dedifferentiated through cellular morphology change, reduced expressions of COL II and SOX9, increased the expression of COL X and diminished GAG synthesis during four passages of subcultures. Pure farnesol and hyaluronan-encapsulated farnesol nanoparticles promote COL II synthesis. GAG synthesis significantly increased 2.5-fold after a farnesol treatment of dedifferentiated chondrocytes, indicating the restoration of chondrocyte functions. In addition, farnesol drastically increased the synthesis of COL II (2.5-fold) and GAG (15-fold) on interleukin-1β-induced dedifferentiated chondrocytes. A significant reduction of COL I, COL X and proinflammatory cytokine prostaglandin E2 was observed. In summary, farnesol may serve as a therapeutic agent in OA treatment.
Collapse
|