1
|
Nguyen LNT, Do XH, Pham HB, Duy-Thanh D, Than UTT, Nguyen TH, Nguyen VB, Le DS, Nguyen DT, Kieu KT, Nguyen PT, Vu MD, Tran NT, Nguyen TL, Nghiem LTH, Nguyen TD, Nguyen NTH, Hoang NTM. Different Biocompatibility and Radioprotective Activity of Squid Melanin Nanoparticles on Human Stromal Cells. ACS OMEGA 2024; 9:36926-36938. [PMID: 39246473 PMCID: PMC11375714 DOI: 10.1021/acsomega.3c09351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
Squid ink melanin nanoparticles (NPs) have recently been demonstrated to have a number of bioactivities; however, their biocompatibility has been poorly investigated. In this study, we aimed to evaluate the effects of this NP on stromal cells, including human fibroblasts (hFBs), human umbilical vein endothelial cells (hUVECs), and human umbilical cord-derived mesenchymal stem cells (UCMSCs), and on the development of zebrafish embryos under normal X-ray irradiation conditions. The NPs showed high biocompatibility with low cytotoxicity, no cell senescence induction, and no effect on cell migration in hFBs or cell differentiation in UCMSCs. Nonetheless, this compound prevented cell movement in UCMSCs and significantly suppressed tube formation in hUVECs at a dose of 25 μg/mL. The NPs successfully penetrated the hUVECs but not the other two stromal cell types. The expression levels of functional genes involved in angiogenesis, apoptosis, antioxidant activity, and radiation sensitivity were altered in NPs subjected to hUVECs but were not affected in hFBs and UCMSCs. Melanin NPs significantly rescued cell viability and gene expression in irradiated hFBs and UCMSCs but not in hUVECs. In vivo treatments of zebrafish embryos showed that melanin NPs were nontoxic whether alone or under X-ray irradiation. These findings suggested that nanosized squid ink melanin had biocompatibility with selective stromal cells and was safe for early development.
Collapse
Affiliation(s)
- Le-Na Thi Nguyen
- VNU University of Science, Vietnam National University, Hanoi 10000, Vietnam
| | - Xuan-Hai Do
- Vietnam Military Medical University, Hanoi 10000, Vietnam
| | - Hanh B Pham
- VNU University of Science, Vietnam National University, Hanoi 10000, Vietnam
| | - Dinh Duy-Thanh
- VNU University of Science, Vietnam National University, Hanoi 10000, Vietnam
| | - Uyen Thi Trang Than
- Vinmec HiTech Center & Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi 10000, Vietnam
| | - Thu-Huyen Nguyen
- VinMec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi 10000, Vietnam
| | - Van-Ba Nguyen
- Vietnam Military Medical University, Hanoi 10000, Vietnam
| | - Duc-Son Le
- VNU University of Science, Vietnam National University, Hanoi 10000, Vietnam
| | - Dinh-Thang Nguyen
- VNU University of Science, Vietnam National University, Hanoi 10000, Vietnam
| | - Kien Trung Kieu
- VNU University of Science, Vietnam National University, Hanoi 10000, Vietnam
| | | | - Manh Duc Vu
- Vietnam Military Medical University, Hanoi 10000, Vietnam
| | - Nghia Trung Tran
- VNU University of Science, Vietnam National University, Hanoi 10000, Vietnam
| | - Thanh Lai Nguyen
- VNU University of Science, Vietnam National University, Hanoi 10000, Vietnam
| | - Lien T H Nghiem
- Institute of Physics, Vietnam Academy of Science and Technology, Hanoi 10000, Vietnam
| | - Toan D Nguyen
- Institute of Physics, Vietnam Academy of Science and Technology, Hanoi 10000, Vietnam
| | | | - Nhung-Thi My Hoang
- VNU University of Science, Vietnam National University, Hanoi 10000, Vietnam
- Center of Applied Sciences, Regenerative Medicine and Advanced Technologies, Vinmec Healthcare System, Hanoi10000, Vietnam
| |
Collapse
|
2
|
Baselga M, Güemes A, Yus C, Alejo T, Sebastián V, Arribas D, Mendoza G, Monleón E, Arruebo M. Melanin-Based Nanoparticles for Lymph Node Tattooing: Experimental, Histopathological and Ultrastructural Study. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1149. [PMID: 38998754 PMCID: PMC11243654 DOI: 10.3390/nano14131149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
In breast cancer, Targeted Axillary Dissection (TAD) allows for the selective excision of the sentinel lymph node (SLN) during primary tumor surgery. TAD consists of the resection of labelled SLNs prior to neoadjuvant chemotherapy (NACT). Numerous clinical and preclinical studies have explored the use of carbon-based colloids for SLN tattooing prior to NACT. However, carbon vectors show varying degrees of inflammatory reactions and, in about one fifth of cases, carbon particles migrate via the lymphatic pathway to other nodes, causing the SLN to mismatch the tattooed node. To overcome these limitations, in this study, we explored the use of melanin as a staining endogenous pigment. We synthesized and characterized melanin-loaded polymeric nanoparticles (Mel-NPs) and used them to tattoo lymph nodes in pig animal models given the similarity in the size of the human and pig nodes. Mel-NPs tattooed lymph nodes showed high identification rates, reaching 83.3% positive identification 16 weeks after tattooing. We did not observe any reduction in the identification as time increased, implying that the colloid is stable in the lymph node tissue. In addition, we performed histological and ultrastructural studies to characterize the biological behavior of the tag. We observed foreign-body-like granulomatous inflammatory responses associated with Mel-NPs, characterized by the formation of multinucleated giant cells. In addition, electron microscopy studies showed that uptake is mainly performed by macrophages, and that macrophages undergo cellular damage associated with particle uptake.
Collapse
Affiliation(s)
- Marta Baselga
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain
| | - Antonio Güemes
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain
- Department of Surgery, University of Zaragoza, 50009 Zaragoza, Spain
| | - Cristina Yus
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragon, CSIC-University of Zaragoza, 50009 Zaragoza, Spain
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro, 50018 Zaragoza, Spain
| | - Teresa Alejo
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragon, CSIC-University of Zaragoza, 50009 Zaragoza, Spain
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro, 50018 Zaragoza, Spain
| | - Víctor Sebastián
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragon, CSIC-University of Zaragoza, 50009 Zaragoza, Spain
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro, 50018 Zaragoza, Spain
| | - Dolores Arribas
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain
- Department of Surgery, University of Zaragoza, 50009 Zaragoza, Spain
| | - Gracia Mendoza
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain
| | - Eva Monleón
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain
- Department of Human Anatomy and Histology, University of Zaragoza, 50009 Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, University of Zaragoza, 50009 Zaragoza, Spain
| | - Manuel Arruebo
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragon, CSIC-University of Zaragoza, 50009 Zaragoza, Spain
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro, 50018 Zaragoza, Spain
| |
Collapse
|
3
|
Bousbaa H. Novel Anticancer Strategies II. Pharmaceutics 2023; 15:pharmaceutics15020605. [PMID: 36839927 PMCID: PMC9959780 DOI: 10.3390/pharmaceutics15020605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Owing to the exceptional complexity of the development and progression of cancer, diverse cancer types are alarmingly increasing worldwide [...].
Collapse
Affiliation(s)
- Hassan Bousbaa
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra 1317, 4585-116 Gandra, Portugal;
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
4
|
Kabay G, Meydan AE, Eom T, Shim BS, Mutlu M, Kaleli-Can G. Stimuli-responsive nanoparticle-nanofiber hybrids for drug delivery and photodynamic therapy. Int J Pharm 2022; 630:122442. [PMID: 36442721 DOI: 10.1016/j.ijpharm.2022.122442] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Hybrid nanomaterials possess integrated multi-components to syncretize various properties and functions within a single entity. Owing to this synergistic effect, they promise efficient anti-cancer therapy. In line with this target, we produced stimuli-responsive nanoparticle-nanofiber hybrids (NNHs) via embedding photoresponsive natural melanin nanoparticles (MNPs) within a biocompatible polycaprolactone (PCL) nanofiber matrix. Electrospinning was performed to produce monolithic and core-shell structured NNHs using a single and a coaxial nozzle. The NNHs were upgraded to drug delivery systems by model hydrophilic drug-ampicillin (amp)-loading. The drug release results showed that monolithic PCL meshes displayed a burst release, whereas nanohybrid formation with MNPs improved the release profile toward Fickian diffusion. Core-shell NNH presented a more sustained drug release profile than its MNP-free replica and monolithic NNH because its encapsulating shell layer hindered the diffusion of the drug. The photodynamic therapy accompanied by UV-A-irradiation on monolithic and core-shell NNHs yielded up to 34 % and 37 % malignant melanoma cell death. Moreover, this study proved the potency of MNPs-enhanced NNHs in drug delivery and photodynamic therapy applications. Even so, more efforts should be concerted to unlock unknown features of the NNHs, which have the power to advance emerging areas, including but not limited to material science, biosensing, and theranostics.
Collapse
Affiliation(s)
- Gözde Kabay
- Plasma Aided Biomedical Research Group (pabmed), Department of Biomedical Engineering, TOBB University of Economics and Technology, 06560 Ankara, Turkey; Karlsruhe Institute of Technology, Institute of Functional Interfaces - IFG, 76344 Karlsruhe, Germany.
| | - Ahmet Ersin Meydan
- Plasma Aided Biomedical Research Group (pabmed), Department of Biomedical Engineering, TOBB University of Economics and Technology, 06560 Ankara, Turkey; Department of Molecular Medicine, Graduate School of Health Sciences, TOBB University of Economics and Technology, 06560 Ankara, Turkey
| | - Taesik Eom
- Soft Matter Laboratory, Department of Chemical Engineering, Inha University, Incheon 402-751, South Korea
| | - Bong Sup Shim
- Soft Matter Laboratory, Department of Chemical Engineering, Inha University, Incheon 402-751, South Korea
| | - Mehmet Mutlu
- Plasma Aided Biomedical Research Group (pabmed), Department of Biomedical Engineering, TOBB University of Economics and Technology, 06560 Ankara, Turkey; Department of Material Science and Engineering, Faculty of Engineering, Ostim Technical University, 06374 Ankara, Turkey
| | - Gizem Kaleli-Can
- Plasma Aided Biomedical Research Group (pabmed), Department of Biomedical Engineering, TOBB University of Economics and Technology, 06560 Ankara, Turkey; Department of Biomedical Engineering, İzmir Democracy University, 35140 İzmir, Turkey.
| |
Collapse
|
5
|
Marcovici I, Coricovac D, Pinzaru I, Macasoi IG, Popescu R, Chioibas R, Zupko I, Dehelean CA. Melanin and Melanin-Functionalized Nanoparticles as Promising Tools in Cancer Research-A Review. Cancers (Basel) 2022; 14:1838. [PMID: 35406610 PMCID: PMC8998143 DOI: 10.3390/cancers14071838] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 12/25/2022] Open
Abstract
Cancer poses an ongoing global challenge, despite the substantial progress made in the prevention, diagnosis, and treatment of the disease. The existing therapeutic methods remain limited by undesirable outcomes such as systemic toxicity and lack of specificity or long-term efficacy, although innovative alternatives are being continuously investigated. By offering a means for the targeted delivery of therapeutics, nanotechnology (NT) has emerged as a state-of-the-art solution for augmenting the efficiency of currently available cancer therapies while combating their drawbacks. Melanin, a polymeric pigment of natural origin that is widely spread among many living organisms, became a promising candidate for NT-based cancer treatment owing to its unique physicochemical properties (e.g., high biocompatibility, redox behavior, light absorption, chelating ability) and innate antioxidant, photoprotective, anti-inflammatory, and antitumor effects. The latest research on melanin and melanin-like nanoparticles has extended considerably on many fronts, allowing not only efficient cancer treatments via both traditional and modern methods, but also early disease detection and diagnosis. The current paper provides an updated insight into the applicability of melanin in cancer therapy as antitumor agent, molecular target, and delivery nanoplatform.
Collapse
Affiliation(s)
- Iasmina Marcovici
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (D.C.); (I.G.M.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (D.C.); (I.G.M.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Iulia Pinzaru
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (D.C.); (I.G.M.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Ioana Gabriela Macasoi
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (D.C.); (I.G.M.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Roxana Popescu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (R.P.); (R.C.)
- Research Center ANAPATMOL, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Raul Chioibas
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (R.P.); (R.C.)
| | - Istvan Zupko
- Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (D.C.); (I.G.M.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| |
Collapse
|