1
|
Omidian H, Akhzarmehr A, Gill EJ. Cyclodextrin-Hydrogel Hybrids in Advanced Drug Delivery. Gels 2025; 11:177. [PMID: 40136882 PMCID: PMC11941801 DOI: 10.3390/gels11030177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
Cyclodextrin (CD)-hydrogel hybrids have emerged as versatile and multifunctional drug delivery systems, offering enhanced solubility, controlled drug release, and improved bioavailability. By combining the inclusion complexation properties of CDs with the swelling and retention capabilities of hydrogels, these hybrid systems overcome key challenges in conventional drug formulations. This review explores CD composition, hydrogel polymer selection, fabrication techniques, key drug release factors, and real-world therapeutic applications. Additionally, the latest advancements in stimuli-responsive hydrogels, nanogels, and microneedle-based drug delivery are discussed. While CD-hydrogel systems demonstrate significant potential, scalability, regulatory hurdles, and clinical translation remain key challenges. Future research should focus on smart hydrogels, improved drug loading strategies, and enhanced clinical validation to bridge the gap between laboratory innovations and commercial applications.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (A.A.); (E.J.G.)
| | | | | |
Collapse
|
2
|
Szalai B, Budai-Szűcs M, Kovács A, Berkó S, Gróf I, Deli MA, Katona G, Balogh GT, Jójárt-Laczkovich O. The effect of mucoadhesive polymers on ocular permeation of thermoresponsive in situ gel containing dexamethasone-cyclodextrin complex. Int J Pharm 2024; 667:124848. [PMID: 39447934 DOI: 10.1016/j.ijpharm.2024.124848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Dexamethasone (DXM) is a commonly used corticosteroid in the treatment of ocular inflammatory conditions that affect more and more people. The aim of this study was to evaluate the effect of the combination of hydroxypropyl-β-cyclodextrin (HPBCD), in situ gelling formulations, and other mucoadhesive polymers, i.e., hydroxypropyl methylcellulose (HPMC) and zinc-hyaluronate (ZnHA), on permeation by applying in vitro and ex vivo ophthalmic permeation models. Additionally, gelling properties, in vitro drug release, and mucoadhesion were measured to determine the impact of these factors on permeation and ultimately on bioavailability. The results showed that GEL1 and GEL2 had an optimal gelling temperature, 36.3 ℃ and 34.6 ℃, respectively. Moreover, the combination of Poloxamer 407 (P407) with other polymers improved the mucoadhesion (GEL1: 1333.7 mN) compared with formulations containing only P407 (P12: 721.8 mN). Both HPBCD and the gel matrix had a considerable influence on the drug release and permeability of DXM, and the combination could facilitate the permeation into the aqueous humor. After 30 min of treatment, the DXM concentration in the aqueous humor was 1.16-1.37 µg∕mL in case of the gels, whereas DXM could not be detected when treated with the DXM suspension. The results of the experiments using an in vitro cell line indicated that the formulations could be considered safe for topical treatment of the eye. In conclusion, with application of a small amount of HPMC (0.2 % w∕w), the concentration of P407 could be reduced to 12 % w/w while maintaining the ideal gelling properties and gel structure without negatively affecting permeability compared with the formulation containing a higher amount of P407. Furthermore, the gel matrix may also provide programmed and elongated drug release.
Collapse
Affiliation(s)
- Boglárka Szalai
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös u., Szeged H-6720, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös u., Szeged H-6720, Hungary
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös u., Szeged H-6720, Hungary
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös u., Szeged H-6720, Hungary
| | - Ilona Gróf
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, 62 Temesvári krt., Szeged H-6726, Hungary
| | - Mária A Deli
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, 62 Temesvári krt., Szeged H-6726, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös u., Szeged H-6720, Hungary
| | - György T Balogh
- Department of Pharmaceutical Chemistry, Semmelweis University, 7-9 Hőgyes Endre u., Budapest H-1092, Hungary; Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rakpart 3., Budapest H -1111, Hungary
| | - Orsolya Jójárt-Laczkovich
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös u., Szeged H-6720, Hungary.
| |
Collapse
|
3
|
Xu D, Song XJ, Chen X, Wang JW, Cui YL. Advances and future perspectives of intranasal drug delivery: A scientometric review. J Control Release 2024; 367:366-384. [PMID: 38286336 DOI: 10.1016/j.jconrel.2024.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
Intranasal drug delivery is as a noninvasive and efficient approach extensively utilized for treating the local, central nervous system, and systemic diseases. Despite numerous reviews delving into the application of intranasal drug delivery across biomedical fields, a comprehensive analysis of advancements and future perspectives remains elusive. This review elucidates the research progress of intranasal drug delivery through a scientometric analysis. It scrutinizes several challenges to bolster research in this domain, encompassing a thorough exploration of entry and elimination mechanisms specific to intranasal delivery, the identification of drugs compatible with the nasal cavity, the selection of dosage forms to surmount limited drug-loading capacity and poor solubility, and the identification of diseases amenable to the intranasal delivery strategy. Overall, this review furnishes a perspective aimed at galvanizing future research and development concerning intranasal drug delivery.
Collapse
Affiliation(s)
- Dong Xu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi' an 710032, China
| | - Xu-Jiao Song
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Xue Chen
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Jing-Wen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi' an 710032, China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
4
|
Ganjali Koli M, Eshaghi Malekshah R, Hajiabadi H. Insights from molecular dynamics and DFT calculations into the interaction of 1,4-benzodiazepines with 2-hydroxypropyl-βCD in a theoretical study. Sci Rep 2023; 13:9866. [PMID: 37332009 DOI: 10.1038/s41598-023-36385-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023] Open
Abstract
This study delves into the interaction between benzodiazepine (BZD) drugs and 2-hydroxypropyl-β-cyclodextrin (2HPβCD), a cyclodextrin (CD) known to improve drug delivery and enhance therapeutic outcomes. We find that the 2HPβCD's atoms become more rigid in the presence of chlordiazepoxide (CDP), clonazepam (CLZ), and diazepam (DZM), whereas they become more flexible in the presence of nordazepam (NDM) and nitrazepam (NZP). We also investigated the structure of 2HPβCD and found that loading these drugs increases both the area and volume of the 2HPβCD cavity, making it more suitable for drug delivery. Moreover, this research found that all drugs exhibited negative values for the binding free energy, indicating thermodynamic favorability and improved solubility. The binding free energy order of the BZDs was consistent in both molecular dynamics and Monte Carlo methods, with CDP and DZM having the highest affinity for binding. We also analyzed the contribution of different interaction energies in binding between the carrier and the drugs and found that Van der Waals energy is the primary component. Our results indicate that the number of hydrogen bonds between 2HPβCD/water slightly decreases in the presence of BZDs, but the hydrogen bond's quality remains constant.
Collapse
Affiliation(s)
- Mokhtar Ganjali Koli
- InSilicoSci Computational Research Centre, Nikopardazesh Ltd., Karaj, Iran
- Department of Chemistry, University of Kurdistan, Sanandaj, Iran
| | | | - Hossein Hajiabadi
- InSilicoSci Computational Research Centre, Nikopardazesh Ltd., Karaj, Iran
| |
Collapse
|
5
|
Ghazwani M, Vasudevan R, Kandasamy G, Manusri N, Devanandan P, Puvvada RC, Veeramani VP, Paulsamy P, Venkatesan K, Chidmabaram K, Dhurke R. Formulation of Intranasal Mucoadhesive Thermotriggered In Situ Gel Containing Mirtazapine as an Antidepressant Drug. Gels 2023; 9:457. [PMID: 37367128 DOI: 10.3390/gels9060457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The purpose of the present work was to develop nanoemulsion-based formulations of mirtazapine for intranasal delivery using a spray actuator to target the brain for treating depression. Research on the solubility of medications in different oils, surfactants, co-surfactants, and solvents has been done. Using pseudo-ternary phase diagrams, the various ratios of the surfactant and co-surfactant mix were computed. Thermotriggered nanoemulsion was formulated using different concentrations of poloxamer 407 (i.e., 15%, 15.5%, 16%, 16.5% up to 22%). Similarly, mucoadhesive nanoemulsion using 0.1% Carbopol and water-based plain nanoemulsions were also prepared for comparative assessment. The developed nanoemulsions were analyzed for physicochemical properties, i.e., physical appearance, pH, viscosity, and drug content. Drug-excipient incompatibility was determined by Fourier transform infrared spectral (FTIR) analysis and differential scanning calorimetry (DSC). In vitro drug diffusion studies were conducted for optimized formulations. Among the three formulations, RD1 showed the highest percentage of drug release. Ex vivo drug diffusion studies were conducted on freshly excised sheep nasal mucosa with Franz diffusion cell simulated nasal fluid (SNF) for all three formulations up to 6 h, and the thermotriggered nanoemulsion (RD1) showed 71.42% drug release with 42.64 nm particle size and a poly dispersity index of 0.354. The zeta potential was found to be -6.58. Based on the above data, it was concluded that thermotriggered nanoemulsion (RD1) has great potential to be used as an intranasal gel for treating depression in patients. It can offer great benefits by reducing dosing frequency and improving bioavailability of mirtazapine by direct nose-to-brain delivery.
Collapse
Affiliation(s)
- Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Rajalakshimi Vasudevan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Geetha Kandasamy
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Naredla Manusri
- Department of Pharmaceutics, St. Peter's Institute of Pharmaceutical Sciences, Hanamkonda 506001, Telangana, India
| | - Praveen Devanandan
- Department of Pharmacy Practice, St. Peter's Institute of Pharmaceutical Sciences, Hanamkonda 506001, Telangana, India
| | - Ranadheer Chowdary Puvvada
- Department of Pharmacy Practice, St. Peter's Institute of Pharmaceutical Sciences, Hanamkonda 506001, Telangana, India
| | - Vinoth Prabhu Veeramani
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | | - Krishnaraju Venkatesan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Kumarappan Chidmabaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Rajeshri Dhurke
- Department of Pharmaceutics, St. Peter's Institute of Pharmaceutical Sciences, Hanamkonda 506001, Telangana, India
| |
Collapse
|
6
|
Mfoafo K, Omidi Y, Omidian H. Thermoresponsive mucoadhesive hybrid gels in advanced drug delivery systems. Int J Pharm 2023; 636:122799. [PMID: 36914019 DOI: 10.1016/j.ijpharm.2023.122799] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023]
Abstract
Thermoresponsive polymers have seen extensive use in the development of stimuli-responsive drug formulations for oral, buccal, nasal, ocular, topical, rectal, parenteral, and vaginal routes of administration. Despite their great potential, their use has been limited by various obstacles, such as undesirable high polymer concentration, wide gelation temperature, low gel strength, poor mucoadhesiveness, and short retention. Mucoadhesive polymers have been suggested to improve the mucoadhesive features of thermoresponsive gels, leading to increased drug bioavailability and efficacy. This article highlights the use of in-situ thermoresponsive mucoadhesive hydrogel blends or hybrids that have been developed and assessed in various routes of administration.
Collapse
Affiliation(s)
- Kwadwo Mfoafo
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Hossein Omidian
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
7
|
Cyclodextrin regulated natural polysaccharide hydrogels for biomedical applications-a review. Carbohydr Polym 2023; 313:120760. [PMID: 37182939 DOI: 10.1016/j.carbpol.2023.120760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023]
Abstract
Cyclodextrin and its derivative (CDs) are natural building blocks for linking with other components to afford functional biomaterials. Hydrogels are polymer network systems that can form hydrophilic three-dimensional network structures through different cross-linking methods and are developing as potential materials in biomedical applications. Natural polysaccharide hydrogels (NPHs) are widely adopted in biomedical field with good biocompatibility, biodegradability, low cytotoxicity, and versatility in emulating natural tissue properties. Compared with conventional NPHs, CD regulated natural polysaccharide hydrogels (CD-NPHs) maintain good biocompatibility, while improving poor mechanical qualities and unpredictable gelation times. Recently, there has been increasing and considerable usage of CD-NPHs while there is still no review comprehensively introducing their construction, classification, and application of these hydrogels from the material point of view regarding biomedical fields. To draw a complete picture of the current and future development of CD-NPHs, we systematically overview the classification of CD-NPHs, and provide a holistic view on the role of CD-NPHs in different biomedical fields, especially in drug delivery, wound dressing, cell encapsulation, and tissue engineering. Moreover, the current challenges and prospects of CD-NPHs are discussed rationally, providing an insight into developing vibrant fields of CD-NPHs-based biomedicine, and facilitating their translation from bench to clinical medicine.
Collapse
|
8
|
Intranasal Polymeric and Lipid-Based Nanocarriers for CNS Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15030746. [PMID: 36986607 PMCID: PMC10051709 DOI: 10.3390/pharmaceutics15030746] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Nanomedicine is currently focused on the design and development of nanocarriers that enhance drug delivery to the brain to address unmet clinical needs for treating neuropsychiatric disorders and neurological diseases. Polymer and lipid-based drug carriers are advantageous for delivery to the central nervous system (CNS) due to their safety profiles, drug-loading capacity, and controlled-release properties. Polymer and lipid-based nanoparticles (NPs) are reported to penetrate the blood–brain barrier (BBB) and have been extensively assessed in in vitro and animal models of glioblastoma, epilepsy, and neurodegenerative disease. Since approval by the Food and Drug Administration (FDA) of intranasal esketamine for treatment of major depressive disorder, intranasal administration has emerged as an attractive route to bypass the BBB for drug delivery to the CNS. NPs can be specifically designed for intranasal administration by tailoring their size and coating with mucoadhesive agents or other moieties that promote transport across the nasal mucosa. In this review, unique characteristics of polymeric and lipid-based nanocarriers desirable for drug delivery to the brain are explored in addition to their potential for drug repurposing for the treatment of CNS disorders. Progress in intranasal drug delivery using polymeric and lipid-based nanostructures for the development of treatments of various neurological diseases are also described.
Collapse
|
9
|
ElShagea HN, Makar RR, Salama AH, Elkasabgy NA, Basalious EB. Investigating the Targeting Power to Brain Tissues of Intranasal Rasagiline Mesylate-Loaded Transferosomal In Situ Gel for Efficient Treatment of Parkinson's Disease. Pharmaceutics 2023; 15:pharmaceutics15020533. [PMID: 36839855 PMCID: PMC9967009 DOI: 10.3390/pharmaceutics15020533] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Rasagiline mesylate (RSM) is a hydrophilic drug with poor oral bioavailability (36%) because of hepatic first-pass metabolism. The present study focuses on delivering RSM directly to the brain through its inclusion within transferosomal in situ gel administered through the intranasal (IN) route. Transferosomes were formed by the thin-film hydration method with the aid of Design-Expert® software by varying the edge activator (EA) type in the absence or presence of cholesterol. By desirability calculations, the optimum formulation was composed of phosphatidylcholine and sodium deoxycholate as an EA (5:1% w/w) with no cholesterol. The optimum formulation was 198.63 ± 34.98 nm in size and displayed an entrapment efficiency of 95.73 ± 0.09%. Transmission electron microscopy revealed discrete and spherical vesicles. Optimized transferosomes were further incorporated into an in situ gel composed of 0.5% pectin, 15% Pluronic® F-127, and 5% Pluronic® F-68 and tested for the in vivo performance. The systemic as well as brain kinetics were assessed in rats by comparing the IN-administered in situ gel to the IV aqueous solution. The optimum in situ gel showed safety and biocompatibility on rats' nasal mucosa with enhanced brain bioavailability (131.17%). Drug targeting efficiency and direct transport percentage indices (304.53% and 67.16%, respectively) supported successful brain targeting offering direct nose-to-brain drug delivery.
Collapse
Affiliation(s)
- Hala N. ElShagea
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Cairo 12451, Egypt
| | - Rana R. Makar
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Cairo 12451, Egypt
| | - Alaa H. Salama
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Cairo 12451, Egypt
- Pharmaceutical Technology Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Nermeen A. Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
- Correspondence:
| | - Emad B. Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| |
Collapse
|
10
|
Haasbroek-Pheiffer A, Van Niekerk S, Van der Kooy F, Cloete T, Steenekamp J, Hamman J. In vitro and ex vivo experimental models for evaluation of intranasal systemic drug delivery as well as direct nose-to-brain drug delivery. Biopharm Drug Dispos 2023; 44:94-112. [PMID: 36736328 DOI: 10.1002/bdd.2348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
The intranasal route of administration provides a noninvasive method to deliver drugs into the systemic circulation and/or directly into the brain. Direct nose-to-brain drug delivery offers the possibility to treat central nervous system diseases more effectively, as it can evade the blood-brain barrier. In vitro and ex vivo intranasal models provide a means to investigate physiological and pharmaceutical factors that could play a role in drug delivery across the nasal epithelium as well as to determine the mechanisms involved in drug absorption from the nose. The development and implementation of cost-effective pharmacokinetic models for intranasal drug delivery with good in vitro-in vivo correlation can accelerate pharmaceutical drug product development and improve economic and ecological aspects by reducing the time and costs spent on animal studies. Special considerations should be made with regard to the purpose of the in vitro/ex vivo study, namely, whether it is intended to predict systemic or brain delivery, source and site of tissue or cell sampling, viability window of selected model, and the experimental setup of diffusion chambers. The type of model implemented should suit the relevant needs and requirements of the project, researcher, and interlaboratory. This review aims to provide an overview of in vitro and ex vivo models that have been developed to study intranasal and direct nose-to-brain drug delivery.
Collapse
Affiliation(s)
- Anja Haasbroek-Pheiffer
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North-West University, Potchefstroom, South Africa
| | - Suzanne Van Niekerk
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North-West University, Potchefstroom, South Africa
| | - Frank Van der Kooy
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North-West University, Potchefstroom, South Africa
| | - Theunis Cloete
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North-West University, Potchefstroom, South Africa
| | - Jan Steenekamp
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North-West University, Potchefstroom, South Africa
| | - Josias Hamman
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North-West University, Potchefstroom, South Africa
| |
Collapse
|
11
|
Abdelmonem R, Al-Samadi IEI, El Nashar RM, Jasti BR, El-Nabarawi MA. Fabrication of nanostructured lipid carriers ocugel for enhancing Loratadine used in treatment of COVID-19 related symptoms: statistical optimization, in-vitro, ex-vivo, and in-vivo studies evaluation. Drug Deliv 2022; 29:2868-2882. [PMID: 36065090 PMCID: PMC9448409 DOI: 10.1080/10717544.2022.2115164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Loratadine (LORA), is a topical antihistamine utilized in the treatment of ocular symptoms of COVID-19. The study aimed to develop a Loratadine Nanostructured Lipid Carriers Ocugel (LORA-NLCs Ocugel), enhance its solubility, trans-corneal penetrability, and bioavailability. full-factorial design was established with 24 trials to investigate the impact of several variables upon NLCs properties. LORA-NLCs were fabricated by using hot melt emulsification combined with high-speed stirring and ultrasonication methods. All obtained formulae were assessed in terms of percent of entrapment efficiency (EE%), size of the particle (PS), zeta potential (ZP), as well as in-vitro release. Via using Design Expert® software the optimum formula was selected, characterized using FTIR, Raman spectroscopy, and stability studies. Gel-based of optimized LORA-NLCs was prepared using 4% HPMC k100m which was further evaluated in terms of physicochemical properties, Ex-vivo, and In-vivo studies. The optimized LORA-NLCs, comprising Compritol 888 ATO®, Labrasol®, and Span® 60 showed EE% of 95.78 ± 0.67%, PS of 156.11 ± 0.54 nm, ZP of -40.10 ± 0.55 Mv, and Qh6% of 99.67 ± 1.09%, respectively. Additionally, it illustrated a spherical morphology and compatibility of LORA with other excipients. Consequently, gel-based on optimized LORA-NLCs showed pH (7.11 ± 0.52), drug content (98.62%± 1.31%), viscosity 2736 cp, and Q12% (90.49 ± 1.32%). LORA-NLCs and LORA-NLCs Ocugel exhibited higher ex-vivo trans-corneal penetrability compared with the aqueous drug dispersion. Confocal laser scanning showed valuable penetration of fluoro-labeled optimized formula and LORA-NLCs Ocugel through corneal. The optimized formula was subjected to an ocular irritation test (Draize Test) that showed the absence of any signs of inflammation in rabbits, and histological analysis showed no effect or damage to rabbit eyeballs. Cmax and the AUC0-24 were higher in LORA-NLCs Ocugel compared with pure Lora dispersion-loaded gel The research findings confirmed that NLCs could enhance solubility, trans-corneal penetrability, and the bioavailability of LORA.
Collapse
Affiliation(s)
- Rehab Abdelmonem
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Inas Essam Ibrahim Al-Samadi
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Rasha M El Nashar
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Bhaskara R Jasti
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Healthy Science-Pacific University, Stockton, CA, USA
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University Giza, Giza, Egypt
| |
Collapse
|
12
|
Development and Characterization of Cyclodextrin-Based Nanogels as a New Ibuprofen Cutaneous Delivery System. Pharmaceutics 2022; 14:pharmaceutics14122567. [PMID: 36559061 PMCID: PMC9788478 DOI: 10.3390/pharmaceutics14122567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Nanogels combine the properties of hydrogels and nanocarrier systems, resulting in very effective drug delivery systems, including for cutaneous applications. Cyclodextrins (CDs) have been utilised to enhance the nanogels' loading ability towards poorly soluble drugs and promote/sustain drug release. However, formation of CD-based nanogels requires the use of specially modified CDs, or of crosslinking agents. The aim of this work was to develop a CD-based nanogel to improve the cutaneous delivery of ibuprofen by using the soluble β-cyclodextrin/epichlorohydrin polymer (EPIβCD) without adding any potentially toxic crosslinker. The use of EPIβCD enabled increasing ibuprofen loading due to its complexing/solubilizing power towards the poorly soluble drug and prolonging drug release over time due to the nanogel formation. DLS analysis proved that EPIβCD allowed the formation of nanostructures ranging from 60 up to 400 nm, depending on the gelling agent type and the gel preparation method. EPIβCD replacement with monomeric HPβCD did not lead in any case to nanogel formation. Permeation experiments using skin-simulating artificial membranes proved that the EPIβCD-based nanogel enhanced ibuprofen solubility and release, increasing its permeation rate up to 3.5 times, compared to a reference formulation without CD and to some commercial gel formulations, and also assured a sustained release. Moreover, EPIβCD replacement with HPβCD led to a marked increase in drug solubility and initial release rate, but did not provide a prolonged release due to the lack of a nano-matrix structure controlling drug diffusion.
Collapse
|
13
|
Corazza E, di Cagno MP, Bauer-Brandl A, Abruzzo A, Cerchiara T, Bigucci F, Luppi B. Drug delivery to the brain: In situ gelling formulation enhances carbamazepine diffusion through nasal mucosa models with mucin. Eur J Pharm Sci 2022; 179:106294. [PMID: 36116696 DOI: 10.1016/j.ejps.2022.106294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022]
Abstract
The objective of this work was to optimize a thermosensitive in situ gelling formulation to improve intranasal and nose-to-brain delivery of the antiepileptic drug carbamazepine (CBZ). A preliminary procedure of vehicles obtained just mixing different fractions of poloxamer 407 (P407) and poloxamer 188 (P188) revealed preparations with phase transition temperatures, times to gelation and pH values suitable for nasal delivery. Subsequently, the mucoadhesive properties of the most promising formulations were tuned by adding hydroxypropylmethylcellulose types of different viscosity grades, and the effect of the adhesive polymers was evaluated by testing in vitro time and strength of mucoadhesion on specimens of sheep nasal mucosa. The formulation that showed the greatest mucoadhesive potential in vitro, with a time and force of mucoadhesion equal to 1746,75 s and 3.66 × 10-4 N, respectively, was that composed of 22% P407, 5% P188 and 0.8% HPMC low-viscous and it was further investigated for its ability to increase drug solubility and to control the release of the drug. Lastly, the capability of the candidate vehicle to ensure drug permeation across the biomimetic membrane Permeapad®, an artificial phospholipid-based barrier with a stratified architecture, and the same barrier enriched with a mucin layer was verified. The final formulation was characterized by a pH value of 6.0, underwent gelation at 32.33°C in 37.85 s, thus showing all the features required by in situ gelling thermosensitive preparations designed for nasal delivery and, more notably, it conserved the ability to favor drug permeation in the presence of mucin. These findings suggest that the optimized gelling system could be a promising and easy to realize strategy to improve CBZ delivery to the brain exploiting both a direct and indirect pathway.
Collapse
Affiliation(s)
- Elisa Corazza
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| | - Massimiliano Pio di Cagno
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Sælands vei 3, Oslo 0371, Norway.
| | - Annette Bauer-Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Angela Abruzzo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| | - Teresa Cerchiara
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| | - Federica Bigucci
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| | - Barbara Luppi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| |
Collapse
|
14
|
Bimodal Release Two-In-One Clonazepam Matrix Lozenge Tablets for Managing Anxiety-Related Disorders: Formulation, Optimization and In Vivo Evaluation. Sci Pharm 2022. [DOI: 10.3390/scipharm90030043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Clonazepam (CLZ), an antipsychotic drug reported for its efficiency in managing anxiety-related disorders, is being marketed only as conventional tablets. Some patients have abstention to swallow the conventional tablets; therefore, the proposed study was aimed at developing a buccal lozenge tablet by direct compression of two types of optimized granules. Conazepam’s water solubility was first enhanced by a solid dispersion technique for a fast and better dissolution of type 1 granules, while the impact of gelling polymers was investigated on controlled-release type 2 granules. The optimized formulae met the acceptable pharmacopeial limits for tablets’ evaluation. A differential scanning calorimetry study revealed the compatibility between the drug and used excipients. All formulae gave a burst release of CLZ in the first hour of investigation, followed by a sustained release over 24 h. The formula that showed the highest prolonged in vitro release (99.0 + 0.1%), following the Higuchi diffusion model (R2 = 0.99), was then selected for further study. The formula succeeded in controlling the induced stress in a rat model with a significant impact on the behavioral tests throughout the experiment. The results were further confirmed by a pharmacokinetic study that showed a significant increase in Cmax, Tmax, and AUC (1.5, 2, and 3.9 folds), respectively, compared to oral suspension. The newly proposed delivery system has proven a better efficacy with a reduced dosing frequency.
Collapse
|
15
|
Nižić Nodilo L, Perkušić M, Ugrina I, Špoljarić D, Jakobušić Brala C, Amidžić Klarić D, Lovrić J, Saršon V, Safundžić Kučuk M, Zadravec D, Kalogjera L, Pepić I, Hafner A. In situ gelling nanosuspension as an advanced platform for fluticasone propionate nasal delivery. Eur J Pharm Biopharm 2022; 175:27-42. [PMID: 35489667 DOI: 10.1016/j.ejpb.2022.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/23/2022] [Accepted: 04/24/2022] [Indexed: 11/28/2022]
Abstract
In this work we present the development of in situ gelling nanosuspension as advanced form for fluticasone propionate nasal delivery. Drug nanocrystals were prepared by wet milling technique. Incorporation of drug nanocrystals into polymeric in situ gelling system with pectin and sodium hyaluronate as constitutive polymers was fine-tuned attaining appropriate formulation surface tension, viscosity and gelling ability. Drug nanonisation improved the release profile and enhanced formulation mucoadhesive properties. QbD approach combining formulation and administration parameters resulted in optimised nasal deposition profile, with 51.8% of the dose deposited in the middle meatus, the critical region in the treatment of rhinosinusitis and nasal polyposis. Results obtained in biocompatibility and physico-chemical stability studies confirmed the leading formulation potential for safe and efficient nasal corticosteroid delivery.
Collapse
Affiliation(s)
- Laura Nižić Nodilo
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Mirna Perkušić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Ivo Ugrina
- University of Split, Faculty of Science, Split, Croatia
| | | | | | | | - Jasmina Lovrić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Vesna Saršon
- Jadran-galenski laboratorij d.d, Rijeka, Croatia
| | | | - Dijana Zadravec
- Department of Diagnostic and Interventional Radiology, Sestre milosrdnice University Hospital Center, University of Zagreb, Zagreb, Croatia
| | - Livije Kalogjera
- ENT Department, Zagreb School of Medicine; University Hospital Center "Sestre milosrdnice", Zagreb, Croatia
| | - Ivan Pepić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia.
| | - Anita Hafner
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia.
| |
Collapse
|
16
|
Optimization of the Micellar-Based In Situ Gelling Systems Posaconazole with Quality by Design (QbD) Approach and Characterization by In Vitro Studies. Pharmaceutics 2022; 14:pharmaceutics14030526. [PMID: 35335902 PMCID: PMC8954786 DOI: 10.3390/pharmaceutics14030526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Fungal ocular infections can cause serious consequences, despite their low incidence. It has been reported that Posaconazole (PSC) is used in the treatment of fungal infections in different ocular tissues by diluting the oral suspension, and successful results were obtained despite low ocular permeation. Therefore, we optimized PSC-loaded ocular micelles and demonstrated that the permeation/penetration of PSC in ocular tissues was enhanced. Methods: The micellar-based in situ gels based on the QbD approach to increase the ocular bioavailability of PSC were developed. Different ratios of Poloxamer 407 and Poloxamer 188 were chosen as CMAs. Tsol/gel, gelling capacity and rheological behavior were chosen as CQA parameters. The data were evaluated by Minitab 18, and the formulations were optimized with the QbD approach. The in vitro release study, ocular toxicity, and anti-fungal activity of the optimized formulation were performed. Results: Optimized in situ gel shows viscoelastic property and becomes gel form at physiological temperatures even when diluted with the tear film. In addition, it has been shown that the formulation had high anti-fungal activity and did not have any ocular toxicity. Conclusions: In our previous studies, PSC-loaded ocular micelles were developed and optimized for the first time in the literature. With this study, the in situ gels of PSC for ocular application were developed and optimized for the first time. The optimized micellar-based in situ gel is a promising drug delivery system that may increase the ocular permeation and bioavailability of PSC.
Collapse
|
17
|
Fernández-Romero AM, Maestrelli F, García-Gil S, Talero E, Mura P, Rabasco AM, González-Rodríguez ML. Preparation, Characterization and Evaluation of the Anti-Inflammatory Activity of Epichlorohydrin-β-Cyclodextrin/Curcumin Binary Systems Embedded in a Pluronic ®/Hyaluronate Hydrogel. Int J Mol Sci 2021; 22:13566. [PMID: 34948364 PMCID: PMC8709285 DOI: 10.3390/ijms222413566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/30/2021] [Accepted: 12/14/2021] [Indexed: 12/27/2022] Open
Abstract
Curcumin (Cur) is an anti-inflammatory polyphenol that can be complexed with polymeric cyclodextrin (CD) to improve solubility and bioavailability. The aim of the present work was to prepare a CurCD hydrogel to treat inflammatory skin conditions. Epichlorohydrin-β-CD (EpiβCD) was used as polymeric CD. To characterize the binary system, solid-state and in-solution studies were performed. Afterwards, an experimental design was performed to optimize the hydrogel system. Finally, the CurEpiβCD hydrogel system was tested for anti-inflammatory activity using a HaCat psoriasis cell model. Co-grinded Cur/EpiβCD binary system showed a strong interaction and Curcumin solubility was much improved. Its combination with Pluronic® F-127/hyaluronate hydrogel demonstrated an improvement in release rate and Curcumin permeation. After testing its anti-inflammatory activity, the system showed a significant reduction in IL-6 levels. Hydrogel-containing CurEpiβCD complex is a great alternative to treat topical inflammatory diseases.
Collapse
Affiliation(s)
- Ana-María Fernández-Romero
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain; (A.-M.F.-R.); (A.M.R.)
| | - Francesca Maestrelli
- Department of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (F.M.); (P.M.)
| | - Sara García-Gil
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain; (S.G.-G.); (E.T.)
| | - Elena Talero
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain; (S.G.-G.); (E.T.)
| | - Paola Mura
- Department of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (F.M.); (P.M.)
| | - Antonio M. Rabasco
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain; (A.-M.F.-R.); (A.M.R.)
| | - María Luisa González-Rodríguez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain; (A.-M.F.-R.); (A.M.R.)
| |
Collapse
|
18
|
Rassu G, Sorrenti M, Catenacci L, Pavan B, Ferraro L, Gavini E, Bonferoni MC, Giunchedi P, Dalpiaz A. Versatile Nasal Application of Cyclodextrins: Excipients and/or Actives? Pharmaceutics 2021; 13:pharmaceutics13081180. [PMID: 34452141 PMCID: PMC8401481 DOI: 10.3390/pharmaceutics13081180] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022] Open
Abstract
Cyclodextrins (CDs) are oligosaccharides widely used in the pharmaceutical field. In this review, a detailed examination of the literature of the last two decades has been made to understand the role of CDs in nasal drug delivery systems. In nasal formulations, CDs are used as pharmaceutical excipients, as solubilizers and absorption promoters, and as active ingredients due to their several biological activities (antiviral, antiparasitic, anti-atherosclerotic, and neuroprotective). The use of CDs in nasal formulations allowed obtaining versatile drug delivery systems intended for local and systemic effects, as well as for nose-to-brain transport of drugs. In vitro and in vivo models currently employed are suitable to analyze the effects of CDs in nasal formulations. Therefore, CDs are versatile pharmaceutical materials, and due to the continual synthesis of new CDs derivatives, the research on the new nasal applications is an interesting field evolving in the coming years, to which Italian research will still contribute.
Collapse
Affiliation(s)
- Giovanna Rassu
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy; (G.R.); (E.G.)
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy; (M.S.); (L.C.); (M.C.B.)
| | - Laura Catenacci
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy; (M.S.); (L.C.); (M.C.B.)
| | - Barbara Pavan
- Department of Neuroscience and Rehabilitation—Section of Physiology, University of Ferrara, Via Borsari 46, I-44121 Ferrara, Italy;
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, I-44121 Ferrara, Italy;
| | - Elisabetta Gavini
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy; (G.R.); (E.G.)
| | - Maria Cristina Bonferoni
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy; (M.S.); (L.C.); (M.C.B.)
| | - Paolo Giunchedi
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy; (G.R.); (E.G.)
- Correspondence: ; Tel.: +39-079228754
| | - Alessandro Dalpiaz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, I-44121 Ferrara, Italy;
| |
Collapse
|