1
|
Teriosina A, Barsukov IL, Cartmell A, Powell AK, Stachulski AV, Yates EA. Detection of β-D-glucuronidase activity in environmental samples using 4-fluorophenyl β-D-glucuronide and 19F NMR. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2015-2020. [PMID: 39945190 DOI: 10.1039/d4ay01723d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Common methods for establishing the presence of enteric bacteria polluting water supplies, or in other samples, rely on detecting the hydrolysis of model glucuronide substrates by glucuronidases to release a phenolic product quantifiable by absorbance or fluorescence. Substrates include the β-D-glucuronides of p-nitrophenol, and umbelliferyl or quercetin derivatives. One limitation is that it may be difficult or impossible to quantify the released phenolic moiety in samples that are strongly coloured or, that contain fluorescent compounds. Exploiting the sensitivity available from the 19F nucleus to changes in chemical environment which can be detected by 19F NMR spectroscopy, and the almost complete absence of 19F from naturally-occurring samples containing organic matter, which provides background-free signals, we propose a model substrate; 4-fluorophenyl β-D-glucuronide (4FP-glucuronide). The 19F NMR chemical shift position of 4FP-glucuronide changes from -121.0 ppm upon hydrolysis to release 4-fluorophenol, at -124.9 ppm (at pH 6.8), enabling detection of β-glucuronidase activity. We illustrate the use of this substrate with environmental samples from forest soil, standing water, and mud from cattle pasture. Each of these would challenge conventional methods, owing to their opacity or the presence of coloured organic material. The technique enables detection of glucuronidases, a widely-used proxy for enteric bacteria, extending the scope of testing beyond water to include environmental and other challenging samples.
Collapse
Affiliation(s)
- Aleksandra Teriosina
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Igor L Barsukov
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Crown St., Liverpool L69 7ZB, UK.
| | - Alan Cartmell
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Andrew K Powell
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | | | - Edwin A Yates
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Crown St., Liverpool L69 7ZB, UK.
| |
Collapse
|
2
|
Chaves Júnior JV, Ayala AP, Pontes DDL, de Souza FS, Aragão CFS. A Metformin-Ferulic Acid Salt with Improved Biopharmaceutical Parameters. J Pharm Sci 2023; 112:3120-3130. [PMID: 37451318 DOI: 10.1016/j.xphs.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Though ferulic acid presents great hypoglycemic potential, it possesses limited aqueous solubility, and low oral bioavailability. When associated with metformin, the first-choice drug in Type 2 diabetes treatment, FA demonstrates synergistic hypoglycemic effects, however, it also causes certain undesirable dose-related effects. This study aimed to develop a new ferulic acid - metformin multicomponent system, and incorporate it into a solid dosage form with improved biopharmaceutical parameters. A novel metformin: ferulate (1:1) salt (MFS) was produced, which was properly characterized using differing analytical techniques, including single crystal analysis. Also during the course of the study, a new polymorph of the metformin free base was observed. The MFS was obtained using solvent evaporation methods, which achieved high yields in reproducible process, as well as a 740-fold increase in ferulic acid aqueous solubility. The MFS tablets developed met quality control requirements for this dosage form, as well as revealing excellent performance in vitro dissolution tests, presenting dissolution efficiency values of 95.4 ± 0.5%. Additionally, physicochemical instability was not observed in a study at 40 °C for 3 months for both MFS powder and its tablet form. The MFS product developed is a promising candidate for further Type 2 diabetes clinical study.
Collapse
Affiliation(s)
- José Venâncio Chaves Júnior
- Pharmacy Department, Federal University of Rio Grande do Norte, 59010-115, Natal, Brazil; Pharmaceutical Sciences Department, Federal University of Paraíba, 58051-970, João Pessoa, Brazil.
| | | | - Daniel de Lima Pontes
- Institute of Chemistry, Federal University of Rio Grande do Norte, 59010-115, Natal, Brazil
| | - Fábio Santos de Souza
- Pharmaceutical Sciences Department, Federal University of Paraíba, 58051-970, João Pessoa, Brazil
| | | |
Collapse
|
3
|
Gao S, Sun R, Singh R, Yu So S, Chan CTY, Savidge T, Hu M. The role of gut microbial β-glucuronidase in drug disposition and development. Drug Discov Today 2022; 27:103316. [PMID: 35820618 PMCID: PMC9717552 DOI: 10.1016/j.drudis.2022.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/27/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022]
Abstract
Gut microbial β-glucuronidase (gmGUS) is involved in the disposition of many endogenous and exogenous compounds. Preclinical studies have shown that inhibiting gmGUS activity affects drug disposition, resulting in reduced toxicity in the gastrointestinal tract (GIT) and enhanced systemic efficacy. Additionally, manipulating gmGUS activity is expected to be effective in preventing/treating local or systemic diseases. Although results from animal studies are promising, challenges remain in developing drugs by targeting gmGUS. Here, we review the role of gmGUS in host health under physiological and pathological conditions, the impact of gmGUS on the disposition of phenolic compounds, models used to study gmGUS activity, and the perspectives and challenges in developing drugs by targeting gmGUS.
Collapse
Affiliation(s)
- Song Gao
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA.
| | - Rongjin Sun
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Boulevard, Houston, TX 77204, USA
| | - Rashim Singh
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Boulevard, Houston, TX 77204, USA; Sanarentero LLC, 514 N. Elder Grove Drive, Pearland, TX 77584, USA
| | - Sik Yu So
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX; Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX
| | - Clement T Y Chan
- Department of Biomedical Engineering, College of Engineering, University of North Texas, 3940 N Elm Street, Denton, TX 76207, USA; BioDiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
| | - Tor Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX; Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Boulevard, Houston, TX 77204, USA.
| |
Collapse
|
4
|
Kim JH, Vinh LB, Hur M, Koo SC, Park WT, Moon YH, Lee YJ, Kim YH, Huh YC, Yang SY. Inhibitory Activity of 4- O-Benzoyl-3'- O-(OMethylsinapoyl) Sucrose from Polygala tenuifolia on Escherichia coliβ-Glucuronidase. J Microbiol Biotechnol 2021; 31:1576-1582. [PMID: 34528918 PMCID: PMC9705844 DOI: 10.4014/jmb.2108.08004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022]
Abstract
Bacterial β-glucuronidase in the intestine is involved in the conversion of 7-ethyl-10- hydroxycamptochecin glucuronide (derived from irinotecan) to 7-ethyl-10-hydroxycamptothecin, which causes intestinal bleeding and diarrhea (side effects of anti-cancer drugs). Twelve compounds (1-12) from Polygala tenuifolia were evaluated in terms of β-glucuronidase inhibition in vitro. 4-O-Benzoyl-3'-O-(O-methylsinapoyl) sucrose (C3) was highly inhibitory at low concentrations. C3 (an uncompetitive inhibitor) exhibited a ki value of 13.4 μM; inhibitory activity increased as the substrate concentration rose. Molecular simulation revealed that C3 bound principally to the Gln158-Tyr160 enzyme loop. Thus, C3 will serve as a lead compound for development of new β- glucuronidase inhibitors.
Collapse
Affiliation(s)
- Jang Hoon Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Le Ba Vinh
- Institute of Marine Biochemistry(IMBC), Vietnam Academy of Science and Technology(VAST), Hanoi 100000, Vietnam
| | - Mok Hur
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Sung-Cheol Koo
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Woo Tae Park
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Youn-Ho Moon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Yoon Jeong Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yun-Chan Huh
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea,
Y.C. Huh Phone: +82-43-871-5662 Fax: +82-43-871-5659 E-mail:
| | - Seo Young Yang
- Department of Pharmaceutical Engineering, Sangji University, Wonju 26339, Republic of Korea,Corresponding authors S.Y. Yang Phone: +82-33-738-7921 Fax: +82-33-738-7652 E-mail:
| |
Collapse
|