1
|
Deshmukh M, Pathan A. Advancements and challenges in the use of surfactants and nanoparticles for enhanced oil recovery: mechanisms, synergies, and field applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:8766-8800. [PMID: 40100503 DOI: 10.1007/s11356-025-36237-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
This review highlights the recent advancements and challenges in the use of surfactants and nanoparticles for enhanced oil recovery (EOR). Novel surfactant formulations, including biosurfactants and hybrid systems, have shown improved recovery efficiency and environmental sustainability. Surfactant-polymer mixtures offer synergistic effects that enhance performance across various reservoir conditions. Concurrently, advancements in nanoparticle technology, such as green nanotechnology and improved formulations, have enhanced the stability, dispersion, and functionality of nanoparticles in EOR processes. Critical factors such as nanoparticle size, concentration, and surface modifications play pivotal roles in optimizing oil recovery efficiency. However, significant challenges persist, particularly surfactant adsorption onto rock surfaces and nanoparticle agglomeration, which reduce the overall effectiveness of these techniques. Addressing these limitations requires strategies such as surface modification and advanced delivery mechanisms. Additionally, economic and environmental concerns remain key barriers to large-scale implementation, underscoring the importance of sustainable and cost-effective solutions. A critical gap in the research is the lack of large-scale field studies and long-term monitoring, which are essential for validating laboratory findings and optimizing these technologies for real-world applications. With increasing focus on sustainability, future research is expected to prioritize eco-friendly materials and methods. Integrating surfactant and nanoparticle-based EOR with other recovery techniques, such as thermal and gas injection, holds potential for maximizing oil recovery. Continued research and development are crucial to overcoming current challenges and advancing the sustainability and efficiency of EOR technologies, contributing to a cleaner and more efficient future for oil recovery.
Collapse
Affiliation(s)
- Minal Deshmukh
- Department of Petroleum Engineering, Dr Vishwanath Karad MIT World Peace University, Pune, 411038, India.
| | - Aadil Pathan
- Department of Petroleum Engineering, Dr Vishwanath Karad MIT World Peace University, Pune, 411038, India
| |
Collapse
|
2
|
Munir R, Khan IU, Kamal Y, Asghar S, Irfan M, Alshammari A, Asif M, Albekairi NA, Shah PA, Khalid I, Munir MR, Khalid SH. Dexibuprofen loaded into nanoemulsion based gel for topical application - In vitro characterization and in vivo anti-inflammatory evaluation. Colloids Surf B Biointerfaces 2025; 247:114407. [PMID: 39616935 DOI: 10.1016/j.colsurfb.2024.114407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/09/2024] [Accepted: 11/22/2024] [Indexed: 01/30/2025]
Abstract
Arthritic disease is one of the most common diseases in adults and a leading cause of joint degeneration. Dexibuprofen (DEX) is routinely used for the treatment of rheumatoid arthritis, acute postoperative pain, primary dysmenorrheal, and in lower back pain. However, it is poorly water soluble with compromised bioavailability, and hence has limited therapeutic activity. In order to overcome these issues, we studied the formulation and characterization of nanoemulsion based system i.e nanoemulgel of DEX. This study aimed to prepare topical nanoemulgel containing 2 % DEX and solubility-enhanced DEX via ternary inclusion complexation (DEX-SE-T) and to compare it with commercially available 5 % Ibuprofen gel as there is no topical formulation of DEX is available in the market currently. A pseudoternary phase diagram was constructed using the spontaneous water titration method. Blank and drug-loaded nanoemulgel were prepared using a high-speed homogenization method. All the formulations were evaluated in terms of particle size, pH, conductivity, viscosity, zeta potential, and ex vivo drug permeation. DEX loaded nanoemulgel yield enhanced in vitro skin permeation than the commercially available 5 % ibuprofen gel. The optimized nanoemulgel formulation (DEX-SE-T) was tested in in vivo anti-inflammatory models including cotton pellets-induced abdominal granuloma (chronic inflammation) and carrageenan-induced paw edema (acute inflammation). DEX-SE-T loaded nanoemulgel has improved in vivo anti-inflammatory activity as compared to ibuprofen gel. DEX-SE-T could be a promising option for effective topical treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Rabia Munir
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Yousaf Kamal
- Hamdard Institute of Pharmaceutical Sciences Hamdard University Karachi, Islamabad Campus, 45550, Pakistan
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; College of Pharmacy, Freie Universitaet Berlin, Germany.
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmacy, the Islamia University of Bahawalpur, Pakistan
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Pervaiz Akhtar Shah
- Department of Pharmaceutics, College of Pharmacy, Punjab University, Lahore 54590, Pakistan
| | - Ikrima Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | | | - Syed Haroon Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Teknologi Mara (UiTM), Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia.
| |
Collapse
|
3
|
Boonkerd S, Hao H, Wantha L. Preparation and characterization of acetylated starch/papain composites. RSC Adv 2024; 14:37820-37832. [PMID: 39601000 PMCID: PMC11590454 DOI: 10.1039/d4ra05814c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
This research aimed to prepare and characterize acetylated starch/papain composites by encapsulating papain within acetylated cassava starch with a low degree of substitution (DS = 0.037) through a stepwise antisolvent precipitation method. The effects of starch concentrations, starch solution volumes, and surfactant types and concentrations were examined. An increase in starch concentration generally enhanced EE, but an excessive concentration led to a decrease in performance due to the aggregation of starch. Furthermore, LC decreased as the starch concentration increased, while the volume of the starch solution primarily influenced LC. Surfactants were employed to disperse the particles and prevent their aggregation during encapsulation, with higher concentrations, particularly of Tween 80, improving both EE and LC but reducing the activity of papain. Optimal results were achieved with a starch concentration of 30 mg mL-1, solution volume of 7 mL, and 3% v/v Tween 80, resulting in an EE of 96.23% and LC of 12.40%. However, the residual papain activity under these conditions dropped to approximately 56%. In contrast, Tween 20 at 1% v/v preserved higher papain activity (87%), although it yielded a lower EE of 69.87% and LC of 9.32%. SEM images revealed that the resulting composite particles had rough, indistinct clusters with surfaces featuring clustered starch nanoparticles. Confirmatory analyses via fluorescence spectra and FTIR confirmed successful entrapment of papain within acetylated starch with a lower degree of substitution.
Collapse
Affiliation(s)
- Sasitorn Boonkerd
- School of Chemical Engineering, Institute of Engineering, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Lek Wantha
- School of Chemical Engineering, Institute of Engineering, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| |
Collapse
|
4
|
Adisuri DS, Madhavan P, Chong PP, Nathan S. Antifungal Activity of Piperine-based Nanoemulsion Against Candida spp. via In Vitro Broth Microdilution Assay. J Pharm Sci 2024; 113:2843-2850. [PMID: 39004416 DOI: 10.1016/j.xphs.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Candidemia leaves a trail of approximately 750,000 cases yearly, with a morbidity rate of up to 30%. While Candida albicans still ranks as the most predominantly isolated Candida species, C. glabrata comes in second, with a death rate of 40-50%. Although infections by Candida spp are commonly treated with azoles, the side effects and rise in resistance against it has significantly limited its clinical usage. The current study aims to address the insolubility of piperine and provide an alternative treatment to Candida infection by formulating a stable piperine-loaded O/W nanoemulsion, comprised of Cremophor RH40, Transcutol HP and Capryol 90 as surfactant, co-surfactant, and oil, respectively. Characterization with zetasizer showed the droplet size, polydispersity (PDI) and zetapotential value of the nanoemulsion to be 24.37 nm, 0.453 and -21.10 mV, respectively, with no observable physical changes such as phase separation from thermostability tests. FTIR peaks confirms presence of piperine within the nanoemulsion and TEM imaging visualized the droplet shape and further confirms the droplet size range of 20-24 nm. The MIC90 value of the piperine-loaded nanoemulsion determined with in vitro broth microdilution assay was approximately 20-50% lower than that of the pure piperine in DMSO, at a range of 0.8-2.0 mg/mL across all Candida spp. tested. Overall, the study showed that piperine can be formulated into a stable nanoemulsion, which significantly enhances its antifungal activity compared to piperine in DMSO.
Collapse
Affiliation(s)
- Diajeng Sekar Adisuri
- School of Medicine, Taylor's University Lakeside Campus, Subang Jaya 47500, Malaysia; Digital Health and Medical Advancement Impact Lab, Taylor's University, No.1, Jalan Taylor's. Subang Jaya, 47500 Selangor, Malaysia
| | - Priya Madhavan
- School of Medicine, Taylor's University Lakeside Campus, Subang Jaya 47500, Malaysia; Digital Health and Medical Advancement Impact Lab, Taylor's University, No.1, Jalan Taylor's. Subang Jaya, 47500 Selangor, Malaysia.
| | - Pei Pei Chong
- School of Biosciences, Taylor's University Lakeside Campus, 47500 Subang Jaya, Malaysia; Digital Health and Medical Advancement Impact Lab, Taylor's University, No.1, Jalan Taylor's. Subang Jaya, 47500 Selangor, Malaysia
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
5
|
Valdés DA, Minter JE. Clinical use and applications of a citrate-based antiseptic lavage for the prevention and treatment of PJI. Front Med (Lausanne) 2024; 11:1397192. [PMID: 39015785 PMCID: PMC11249742 DOI: 10.3389/fmed.2024.1397192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024] Open
Abstract
Total joint arthroplasties (TJA) are some of the most commonly performed surgeries in the United States with the number of TJA expected to rise significantly over the next decade as the population ages and arthritic burden worsens. However, the rise in TJA volume correlates with a heightened risk of complications, notably prosthetic joint infections (PJI), despite their low occurrence rate of less than 2%. PJI imposes a significant burden on surgery success, patient well-being, and healthcare costs, with an estimated annual expense of 1.85 billion dollars for hip and knee PJI by 2030. This manuscript delves into the pathophysiology of PJI, exploring our current understanding of the role of bacterial biofilm formation on implanted foreign hardware, providing protection against the host immune system and antibiotics. The article reviews current agents and their efficacy in treating PJI, as well as their cytotoxicity toward native cells involved in wound healing, prompting the exploration of a novel citrate-based solution. The paper highlights the superior properties and efficacy of a novel citrate-based irrigation solution on the treatment and prevention of PJI via increased antimicrobial properties, greater biofilm disruption, increased exposure time, and reduced cytotoxicity compared to conventional solutions, positioning it as a promising alternative. It also provides a perspective on its clinical use in the operating theater, with a step-by-step approach in TJA, whether primary or revisionary.
Collapse
|
6
|
Kerdmuanglek F, Chomtong T, Boonsith S, Chutimasakul T, Iemsam-Arng J, Thepwatee S. Non-ionic surfactant-assisted controlled release of oxyresveratrol on dendritic fibrous silica for topical applications. J Colloid Interface Sci 2023; 646:342-353. [PMID: 37201462 DOI: 10.1016/j.jcis.2023.05.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/21/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
We present a simple and eco-friendly method for controlled drug release using a surfactant-assisted method. Oxyresveratrol (ORES) was co-loaded with a non-ionic surfactant onto KCC-1, a dendritic fibrous silica, using an ethanol evaporation technique. The carriers were characterized using FE-SEM, TEM, XRD, N2 adsorption-desorption, FTIR, and Raman spectroscopy, and the loading and encapsulation efficiencies were assessed using TGA and DSC techniques. Contact angle and zeta potential were used to determine the surfactant arrangement and the particle charges. To investigate the effects of different surfactants (Tween 20, Tween 40, Tween 80, Tween 85, and Span 80) on ORES release, we conducted experiments under different pH and temperature conditions. Results showed that the types of surfactants, drug loading content, pH, and temperature significantly affected the drug release profile. The percentage of drug loading efficiency of the carriers was in the range of 80 %-100 %, and the release of ORES was in the order of M/KCC-1 > M/K/S80 > M/K/T40 > M/K/T20 > MK/T80 > M/K/T85 at 24 h. Furthermore, the carriers provided excellent protection for ORES against UVA and maintained its antioxidant activity. KCC-1 and Span 80 enhanced the cytotoxicity to HaCaT cells, while Tween 80 suppressed the cytotoxicity.
Collapse
Affiliation(s)
- Fonkaeo Kerdmuanglek
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand.
| | - Thitikorn Chomtong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.
| | - Suthida Boonsith
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand.
| | - Threeraphat Chutimasakul
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology, Nakhon Nayok 26120, Thailand.
| | - Jayanant Iemsam-Arng
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.
| | - Sukanya Thepwatee
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand; Research Group of Bioactive Product Design, Cosmetics and Health Care Innovation (BioCos), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand.
| |
Collapse
|
7
|
Overview of Antimicrobial Biodegradable Polyester-Based Formulations. Int J Mol Sci 2023; 24:ijms24032945. [PMID: 36769266 PMCID: PMC9917530 DOI: 10.3390/ijms24032945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/05/2023] Open
Abstract
As the clinical complications induced by microbial infections are known to have life-threatening side effects, conventional anti-infective therapy is necessary, but not sufficient to overcome these issues. Some of their limitations are connected to drug-related inefficiency or resistance and pathogen-related adaptive modifications. Therefore, there is an urgent need for advanced antimicrobials and antimicrobial devices. A challenging, yet successful route has been the development of new biostatic or biocide agents and biomaterials by considering the indisputable advantages of biopolymers. Polymers are attractive materials due to their physical and chemical properties, such as compositional and structural versatility, tunable reactivity, solubility and degradability, and mechanical and chemical tunability, together with their intrinsic biocompatibility and bioactivity, thus enabling the fabrication of effective pharmacologically active antimicrobial formulations. Besides representing protective or potentiating carriers for conventional drugs, biopolymers possess an impressive ability for conjugation or functionalization. These aspects are key for avoiding malicious side effects or providing targeted and triggered drug delivery (specific and selective cellular targeting), and generally to define their pharmacological efficacy. Moreover, biopolymers can be processed in different forms (particles, fibers, films, membranes, or scaffolds), which prove excellent candidates for modern anti-infective applications. This review contains an overview of antimicrobial polyester-based formulations, centered around the effect of the dimensionality over the properties of the material and the effect of the production route or post-processing actions.
Collapse
|
8
|
Ghataty DS, Amer RI, Wasfi R, Shamma RN. Novel linezolid loaded bio-composite films as dressings for effective wound healing: experimental design, development, optimization, and antimicrobial activity. Drug Deliv 2022; 29:3168-3185. [PMID: 36184799 PMCID: PMC9543119 DOI: 10.1080/10717544.2022.2127974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Biphasic release bio-composite films of the low water-soluble drug, linezolid (LNZ), were formulated using the solvent casting technique. Different polymers and plasticizers (gelatin, Tween 80, polyethylene glycol 400, and glycerol) were assessed for the preparation of bio-composite films. An I-optimal design was applied for the optimization and to study the impact of polymer concentration (X1), plasticizer concentration (X2), polymer type (X3), and plasticizer type (X4) on different LNZ-loaded bio-composite films. The film thickness, moisture content, mechanical properties, swelling index, and percentage of drug release at fixed times opted as dependent variables. Results demonstrated a significant effect of all independent variables on the drug release from the prepared bio-composite films. The plasticizer concentration significantly increased the thickness, moisture content, elongation at break, swelling index, and in vitro drug release and significantly reduced the tensile strength. The optimized LNZ-loaded bio-composite film comprised of 15% Tween 80 and 30% PEG 400 was highly swellable, elastic, acceptable tensile properties, safe, maintained a moist environment, and indicated great antimicrobial activity against both Staphylococcus aureus (ATCC® 25922) and methicillin-resistant Staphylococcus aureus (MRSA), which are common wound infectious bacteria. The present study concludes that the optimized LNZ-loaded bio-composite film was successfully designed with fast drug release kinetics and it could be regarded as a promising novel antimicrobial wound dressing formulation.
Collapse
Affiliation(s)
- Dina Saeed Ghataty
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Reham Ibrahim Amer
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt,Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Reham Wasfi
- Department of Microbiology and Immunology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Rehab Nabil Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt,CONTACT Rehab Nabil Shamma
| |
Collapse
|
9
|
Magnetite Nanoparticles Functionalized with Therapeutic Agents for Enhanced ENT Antimicrobial Properties. Antibiotics (Basel) 2022; 11:antibiotics11050623. [PMID: 35625267 PMCID: PMC9137518 DOI: 10.3390/antibiotics11050623] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/25/2022] [Accepted: 05/04/2022] [Indexed: 12/11/2022] Open
Abstract
In the context of inefficient antibiotics, antibacterial alternatives are urgently needed to stop the increasing resistance rates in pathogens. This study reports the fabrication and characterization of four promising magnetite-based antibiotic delivery systems for ENT (ear, nose and throat) applications. Magnetite nanoparticles were functionalized with streptomycin and neomycin and some were entrapped in polymeric spheres. The obtained nanomaterials are stable, with spherical morphology, their size ranging from ~2.8 to ~4.7 nm for antibiotic-coated magnetite nanoparticles, and from submicron sizes up to several microns for polymer-coated magnetite–antibiotic composites. Cell viability and antimicrobial tests demonstrated their biocompatibility on human diploid cells and their antibacterial effect against Gram-negative (Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) opportunistic bacteria. The presence of the polymeric coat proved an enhancement in biocompatibility and a slight reduction in the antimicrobial efficiency of the spheres. Our results support the idea that functional NPs and polymeric microsystems containing functional NPs could be tailored to achieve more biocompatibility or more antimicrobial effect, depending on the bioactive compounds they incorporate and their intended application.
Collapse
|