1
|
Javanmard Z, Pourhajibagher M, Bahador A. Advancing Anti-Biofilm Strategies: Innovations to Combat Biofilm-Related Challenges and Enhance Efficacy. J Basic Microbiol 2024; 64:e2400271. [PMID: 39392011 DOI: 10.1002/jobm.202400271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/20/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Biofilms are complex communities of microorganisms that can cause significant challenges in various settings, including industrial processes, environmental systems, and human health. The protective nature of biofilms makes them resistant to traditional anti-biofilm strategies, such as chemical agents, mechanical interventions, and surface modifications. To address the limitations of conventional anti-biofilm methods, researchers have explored emerging strategies that encompass the use of natural compounds, nanotechnology-based methods, quorum-sensing inhibition, enzymatic degradation, and antimicrobial photodynamic/sonodynamic therapy. There is an increasing focus on combining multiple anti-biofilm strategies to combat resistance and enhance effectiveness. Researchers are continuously investigating the mechanisms of biofilm formation and developing innovative approaches to overcome the limitations of conventional anti-biofilm methods. These efforts aim to improve the management of biofilms and prevent infections while preserving the environment. This study provides a comprehensive overview of the latest advancements in anti-biofilm strategies. Given the dynamic nature of this field, exploring new approaches is essential to stimulate further research and development initiatives. The effective management of biofilms is crucial for maintaining the health of industrial processes, environmental systems, and human populations.
Collapse
Affiliation(s)
- Zahra Javanmard
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Shen C, Li J, Meng Q, Xu L, Zhang G. Rhamnolipids stabilized essential oils microemulsion for antimicrobial and fruit preservation. Food Chem 2024; 457:140167. [PMID: 38909451 DOI: 10.1016/j.foodchem.2024.140167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Essential oils, well-known for their antifungal properties, are widely utilized to combat fruit decay. However, their application faces big challenges due to their high volatility and hydrophobic traits, which leads to strong odor, short effective time and poor dispersivity. This study aimed to address these challenges by formulating microemulsions consisting of essential oils and rhamnolipids. The optimized microemulsion, featuring a small particle size of 6.8 nm, exhibited higher stability and lower volatility than conventional emulsion. Notably, the prepared microemulsions demonstrated remarkable antimicrobial efficacy against E. coli, S. aureus, C. albicans, S. cerevisiae, and A. niger. The application of these microemulsions proved to be highly effective in preventing blueberry decay while preserving fruit's quality, particularly by minimizing the loss of essential nutrients such as anthocyanins. Consequently, essential oil microemulsions emerge as a highly effective postharvest preservative for fruits, offering a promising solution to extend their shelf life and enhance overall quality.
Collapse
Affiliation(s)
- Chong Shen
- Center for Membrane and Water Science & Technology, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiangxiong Li
- Center for Membrane and Water Science & Technology, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qin Meng
- College of Chemical and Biological Engineering, and State Key Laboratory of Chemical Engineering, Zhejiang University, Zheda Road 38#, 310027 Hangzhou, China
| | - Lusheng Xu
- Center for Membrane and Water Science & Technology, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guoliang Zhang
- Center for Membrane and Water Science & Technology, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
3
|
Murphy MM, Culligan EP, Murphy CP. Investigating the antimicrobial and antibiofilm properties of marine halophilic Bacillus species against ESKAPE pathogens. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70027. [PMID: 39446085 PMCID: PMC11500616 DOI: 10.1111/1758-2229.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Antimicrobial resistance (AMR), known as the "silent pandemic," is exacerbated by pathogenic bacteria's ability to form biofilms. Marine compounds hold promise for novel antibacterial drug discovery. Two isolates from preliminary saltwater environment screening demonstrated antimicrobial activity and were subsequently identified as Bacillus subtilis MTUA2 and Bacillus velezensis MTUC2. Minimum inhibitory concentrations (MICs), minimum biofilm inhibition concentrations (MBICs) and minimum biofilm eradication concentrations (MBECs) required to prevent and/or disrupt bacterial growth and biofilm formation were established for MRSA, Staphylococcus aureus, Acinetobacter baumannii and Escherichia coli. The metabolic activity within biofilms was determined by the 2,3,5-triphenyltetrazolium chloride assay. Both Bacillus species exhibited unique antimicrobial effects, reducing MRSA and S. aureus planktonic cell growth by 50% and sessile cell growth for S. aureus and E. coli by 50% and 90%, respectively. No effect was observed against A. baumannii. Significant MBIC and MBEC values were achieved, with 99% inhibition and 90% reduction in MRSA and S. aureus biofilms. Additionally, 90% and 50% inhibition was observed in E. coli and A. baumannii biofilms, respectively, with a 50% reduction in E. coli biofilm. These findings suggest that the mode of action employed by B. subtilis MTUA2 and B. velezensis MTUC2 metabolites should be further characterized and could be beneficial if used independently or in combination with other treatments.
Collapse
Affiliation(s)
- Monica M. Murphy
- Department of Biological SciencesMunster Technological UniversityCorkIreland
| | - Eamonn P. Culligan
- Department of Biological SciencesMunster Technological UniversityCorkIreland
| | - Craig P. Murphy
- Department of Biological SciencesMunster Technological UniversityCorkIreland
| |
Collapse
|
4
|
Korenaga A, Miyaoka T, Asami H, Yamagami Y, Yoshii M, Tanaka S, Nagao T. Synergetic inhibitory effect of isopropyl methylphenol-based agents on biofilm formation by Streptococcus mutans. PLoS One 2024; 19:e0310926. [PMID: 39312550 PMCID: PMC11419349 DOI: 10.1371/journal.pone.0310926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Dental caries and periodontitis are the most common oral diseases in humans and the main causes of tooth loss. Streptococcus mutans is primarily responsible for dental caries and dental plaque, which are triggered by biofilm formation on the tooth surface. In this study, biofilm inhibition by 4-isopropyl-3-methylphenol (IPMP)-based agents, consisting of IPMP and polyoxyethylene-hydrogenated castor oil (POEHCO), was investigated in vitro. Notably, the use of POEHCO in addition to IPMP inhibited S. mutans biofilms more drastically than IPMP alone. Moreover, the effects of IPMP on the expression of biofilm-related genes (gtfB, gtfC, and gtfD) were examined using quantitative real-time PCR. IPMP at sub-minimum inhibitory concentrations significantly downregulated the expression of these genes. These results suggested that the inhibitory effects on biofilm formation were synergistically enhanced by the surfactant and antibiofilm activities of IPMP. Therefore, IPMP-based agents as dentifrices may be useful to prevent oral diseases originating from biofilms.
Collapse
Affiliation(s)
- Arisu Korenaga
- Research & Development division, Osaka kasei Co., Ltd., Osaka, Japan
| | - Toshiki Miyaoka
- Research & Development division, Osaka kasei Co., Ltd., Osaka, Japan
| | - Harumi Asami
- Research & Development division, Osaka kasei Co., Ltd., Osaka, Japan
| | - Yasushi Yamagami
- Research & Development division, Osaka kasei Co., Ltd., Osaka, Japan
| | - Miki Yoshii
- Research Division of Biomaterials and Commodity Chemicals, Osaka Research Institute of Industrial Science and Technology, Osaka, Japan
| | - Shigemitsu Tanaka
- Research Division of Biomaterials and Commodity Chemicals, Osaka Research Institute of Industrial Science and Technology, Osaka, Japan
| | - Toshihiro Nagao
- Research Division of Biomaterials and Commodity Chemicals, Osaka Research Institute of Industrial Science and Technology, Osaka, Japan
| |
Collapse
|
5
|
Biswas R, Jangra B, Ashok G, Ravichandiran V, Mohan U. Current Strategies for Combating Biofilm-Forming Pathogens in Clinical Healthcare-Associated Infections. Indian J Microbiol 2024; 64:781-796. [PMID: 39282194 PMCID: PMC11399387 DOI: 10.1007/s12088-024-01221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/07/2024] [Indexed: 09/18/2024] Open
Abstract
The biofilm formation by various pathogens causes chronic infections and poses severe threats to industry, healthcare, and society. They can form biofilm on surfaces of medical implants, heart valves, pacemakers, contact lenses, vascular grafts, urinary catheters, dialysis catheters, etc. These biofilms play a central role in bacterial persistence and antibiotic tolerance. Biofilm formation occurs in a series of steps, and any interference in these steps can prevent its formation. Therefore, the hunt to explore and develop effective anti-biofilm strategies became necessary to decrease the rate of biofilm-related infections. In this review, we highlighted and discussed the current therapeutic approaches to eradicate biofilm formation and combat drug resistance by anti-biofilm drugs, phytocompounds, antimicrobial peptides (AMPs), antimicrobial lipids (AMLs), matrix-degrading enzymes, nanoparticles, phagebiotics, surface coatings, photodynamic therapy (PDT), riboswitches, vaccines, and antibodies. The clinical validation of these findings will provide novel preventive and therapeutic strategies for biofilm-associated infections to the medical world.
Collapse
Affiliation(s)
- Rashmita Biswas
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Bhawana Jangra
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab India
| | - Ganapathy Ashok
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Velayutham Ravichandiran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| |
Collapse
|
6
|
Dias Barroso FD, da Silva LJ, Queiroz HA, do Amaral Valente Sá LG, da Silva AR, da Silva CR, de Andrade Neto JB, Cavalcanti BC, de Moraes MO, Pinazo A, Pérez L, Nobre Júnior HV. Biosurfactant complexed with arginine has antibiofilm activity against methicillin-resistant Staphylococcus aureus. Future Microbiol 2024; 19:667-679. [PMID: 38864708 PMCID: PMC11259079 DOI: 10.2217/fmb-2023-0271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 06/13/2024] Open
Abstract
Aim: The present study investigated the antimicrobial effectiveness of a rhamnolipid complexed with arginine (RLMIX_Arg) against planktonic cells and biofilms of methicillin-resistant Staphylococcus aureus (MRSA). Methodology: Susceptibility testing was performed using the Clinical & Laboratory Standards Institute protocol: M07-A10, checkerboard test, biofilm in plates and catheters and flow cytometry were used. Result: RLMIX_Arg has bactericidal and synergistic activity with oxacillin. RLMIX_Arg inhibits the formation of MRSA biofilms on plates at sub-inhibitory concentrations and has antibiofilm action against MRSA in peripheral venous catheters. Catheters impregnated with RLMIX_Arg reduce the formation of MRSA biofilms. Conclusion: RLMIX_Arg exhibits potential for application in preventing infections related to methicillin-resistant S. aureus biofilms.
Collapse
Affiliation(s)
- Fatima Daiana Dias Barroso
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lisandra Juvêncio da Silva
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Helaine Almeida Queiroz
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | | | - Cecília Rocha da Silva
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - João Batista de Andrade Neto
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Bruno Coêlho Cavalcanti
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Manoel Odorico de Moraes
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Aurora Pinazo
- Department of Surfactants & Nanobiotechnology, IQAC-CSIC, Barcelona, Spain
| | - Lourdes Pérez
- Department of Surfactants & Nanobiotechnology, IQAC-CSIC, Barcelona, Spain
| | - Hélio Vitoriano Nobre Júnior
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
7
|
Hamion G, Aucher W, Mercier A, Tewes F, Menard M, Bertaux J, Girardot M, Imbert C. Insights into betulinic acid as a promising molecule to fight the interkingdom biofilm Staphylococcus aureus-Candida albicans. Int J Antimicrob Agents 2024; 63:107166. [PMID: 38570017 DOI: 10.1016/j.ijantimicag.2024.107166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
The demand for antibiofilm molecules has increased over several years due to their potential to fight biofilm-associated infections, such as those including the interkingdom Staphylococcus aureus-Candida albicans occurring in clinical settings worldwide. Recently, we identified a pentacyclic triterpenoid compound, betulinic acid, from invasive macrophytes, with interesting antibiofilm properties. The aim of the present study was to provide insights into the mechanism of action of betulinic acid against the clinically relevant bi-species S. aureus-C. albicans biofilms. Microscopy examinations, flow cytometry and crystal violet assays confirmed that betulinic acid was effective at damaging mature S. aureus-C. albicans biofilms or inhibiting their formation, reducing biofilm biomass by 70% on average and without microbicidal activity. The results suggested an action of betulinic acid on cell membranes, inducing changes in properties such as composition, hydrophobicity and fluidity as observed in C. albicans, which may hinder the early adhesion step, biofilm growth and the physical interactions of both microbial species. Further results of real-time polymerase chain reaction argued in favour of a reduction in S. aureus-C. albicans physical interaction due to betulinic acid by the modulation of biofilm-related gene expression, as observed in early stages of biofilm formation. This study revealed the potential of betulinic acid as a candidate agent for the prevention and treatment of S. aureus-C. albicans biofilm-related infections.
Collapse
Affiliation(s)
- Guillaume Hamion
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France.
| | - Willy Aucher
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Anne Mercier
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Frederic Tewes
- Pharmacology of Antimicrobial Agents and Antibioresistance, University of Poitiers, INSERM U1070, Poitiers, France
| | - Maëlenn Menard
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Joanne Bertaux
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Marion Girardot
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Christine Imbert
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| |
Collapse
|
8
|
Tambone E, Ceresa C, Marchetti A, Chiera S, Anesi A, Nollo G, Caola I, Bosetti M, Fracchia L, Ghensi P, Tessarolo F. Rhamnolipid 89 Biosurfactant Is Effective against Streptococcus oralis Biofilm and Preserves Osteoblast Behavior: Perspectives in Dental Implantology. Int J Mol Sci 2023; 24:14014. [PMID: 37762317 PMCID: PMC10530769 DOI: 10.3390/ijms241814014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Biofilm-related peri-implant diseases represent the major complication for osteointegrated dental implants, requiring complex treatments or implant removal. Microbial biosurfactants emerged as new antibiofilm coating agents for implantable devices thanks to their high biocompatibility. This study aimed to assess the efficacy of the rhamnolipid 89 biosurfactant (R89BS) in limiting Streptococcus oralis biofilm formation and dislodging sessile cells from medical grade titanium, but preserving adhesion and proliferation of human osteoblasts. The inhibitory activity of a R89BS coating on S. oralis biofilm formation was assayed by quantifying biofilm biomass and microbial cells on titanium discs incubated up to 72 h. R89BS dispersal activity was addressed by measuring residual biomass of pre-formed biofilms after rhamnolipid treatment up to 24 h. Adhesion and proliferation of human primary osteoblasts on R89BS-coated titanium were evaluated by cell count and adenosine-triphosphate quantification, while cell differentiation was studied by measuring alkaline phosphatase activity and observing mineral deposition. Results showed that R89BS coating inhibited S. oralis biofilm formation by 80% at 72 h and dislodged 63-86% of pre-formed biofilms in 24 h according to concentration. No change in the adhesion of human osteoblasts was observed, whereas proliferation was reduced accompanied by an increase in cell differentiation. R89BS effectively counteracts S. oralis biofilm formation on titanium and preserves overall osteoblasts behavior representing a promising preventive strategy against biofilm-related peri-implant diseases.
Collapse
Affiliation(s)
- Erica Tambone
- Department of Industrial Engineering & BIOtech, University of Trento, 38123 Trento, Italy; (E.T.); (S.C.); (G.N.); (F.T.)
| | - Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (A.M.); (M.B.); (L.F.)
| | - Alice Marchetti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (A.M.); (M.B.); (L.F.)
| | - Silvia Chiera
- Department of Industrial Engineering & BIOtech, University of Trento, 38123 Trento, Italy; (E.T.); (S.C.); (G.N.); (F.T.)
| | - Adriano Anesi
- Department of Laboratory Medicine, Azienda Provinciale per i Servizi Sanitari, 38122 Trento, Italy; (A.A.); (I.C.)
| | - Giandomenico Nollo
- Department of Industrial Engineering & BIOtech, University of Trento, 38123 Trento, Italy; (E.T.); (S.C.); (G.N.); (F.T.)
| | - Iole Caola
- Department of Laboratory Medicine, Azienda Provinciale per i Servizi Sanitari, 38122 Trento, Italy; (A.A.); (I.C.)
| | - Michela Bosetti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (A.M.); (M.B.); (L.F.)
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (A.M.); (M.B.); (L.F.)
| | - Paolo Ghensi
- Department CIBIO, University of Trento, 38123 Trento, Italy;
| | - Francesco Tessarolo
- Department of Industrial Engineering & BIOtech, University of Trento, 38123 Trento, Italy; (E.T.); (S.C.); (G.N.); (F.T.)
| |
Collapse
|
9
|
Makhlouf Z, Ali AA, Al-Sayah MH. Liposomes-Based Drug Delivery Systems of Anti-Biofilm Agents to Combat Bacterial Biofilm Formation. Antibiotics (Basel) 2023; 12:antibiotics12050875. [PMID: 37237778 DOI: 10.3390/antibiotics12050875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
All currently approved antibiotics are being met by some degree of resistance by the bacteria they target. Biofilm formation is one of the crucial enablers of bacterial resistance, making it an important bacterial process to target for overcoming antibiotic resistance. Accordingly, several drug delivery systems that target biofilm formation have been developed. One of these systems is based on lipid-based nanocarriers (liposomes), which have shown strong efficacy against biofilms of bacterial pathogens. Liposomes come in various types, namely conventional (charged or neutral), stimuli-responsive, deformable, targeted, and stealth. This paper reviews studies employing liposomal formulations against biofilms of medically salient gram-negative and gram-positive bacterial species reported recently. When it comes to gram-negative species, liposomal formulations of various types were reported to be efficacious against Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, and members of the genera Klebsiella, Salmonella, Aeromonas, Serratia, Porphyromonas, and Prevotella. A range of liposomal formulations were also effective against gram-positive biofilms, including mostly biofilms of Staphylococcal strains, namely Staphylococcus aureus, Staphylococcus epidermidis, and Staphylococcus saprophyticus subspecies bovis, followed by Streptococcal strains (pneumonia, oralis, and mutans), Cutibacterium acnes, Bacillus subtilis, Mycobacterium avium, Mycobacterium avium subsp. hominissuis, Mycobacterium abscessus, and Listeria monocytogenes biofilms. This review outlines the benefits and limitations of using liposomal formulations as means to combat different multidrug-resistant bacteria, urging the investigation of the effects of bacterial gram-stain on liposomal efficiency and the inclusion of pathogenic bacterial strains previously unstudied.
Collapse
Affiliation(s)
- Zinb Makhlouf
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Amaal Abdulraqeb Ali
- Biomedical Engineering Program, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Mohammad Hussein Al-Sayah
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
10
|
Crivello G, Fracchia L, Ciardelli G, Boffito M, Mattu C. In Vitro Models of Bacterial Biofilms: Innovative Tools to Improve Understanding and Treatment of Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050904. [PMID: 36903781 PMCID: PMC10004855 DOI: 10.3390/nano13050904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/02/2023]
Abstract
Bacterial infections are a growing concern to the health care systems. Bacteria in the human body are often found embedded in a dense 3D structure, the biofilm, which makes their eradication even more challenging. Indeed, bacteria in biofilm are protected from external hazards and are more prone to develop antibiotic resistance. Moreover, biofilms are highly heterogeneous, with properties dependent on the bacteria species, the anatomic localization, and the nutrient/flow conditions. Therefore, antibiotic screening and testing would strongly benefit from reliable in vitro models of bacterial biofilms. This review article summarizes the main features of biofilms, with particular focus on parameters affecting biofilm composition and mechanical properties. Moreover, a thorough overview of the in vitro biofilm models recently developed is presented, focusing on both traditional and advanced approaches. Static, dynamic, and microcosm models are described, and their main features, advantages, and disadvantages are compared and discussed.
Collapse
Affiliation(s)
- G. Crivello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - L. Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - G. Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - M. Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - C. Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
11
|
Evaluation of Antimicrobial Properties and Potential Applications of Pseudomonas gessardii M15 Rhamnolipids towards Multiresistant Staphylococcus aureus. Pharmaceutics 2023; 15:pharmaceutics15020700. [PMID: 36840022 PMCID: PMC9958974 DOI: 10.3390/pharmaceutics15020700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive opportunistic human pathogen responsible for severe infections and thousands of deaths annually, mostly due to its multidrug-resistant (MDR) variants. The cell membrane has emerged as a promising new therapeutic target, and lipophilic molecules, such as biosurfactants, are currently being utilized. Herein, we evaluated the antimicrobial activity of a rhamnolipids mixture produced by the Antarctic marine bacterium Pseudomonas gessardii M15. We demonstrated that our mixture has bactericidal activity in the range of 12.5-50 µg/mL against a panel of clinical MDR isolates of S. aureus, and that the mixture eradicated the bacterial population in 30 min at MIC value, and in 5 min after doubling the concentration. We also tested abilities of RLs to interfere with biofilm at different stages and determined that RLs can penetrate biofilm and kill the bacteria at sub-MICs values. The mixture was then used to functionalize a cotton swab to evaluate the prevention of S. aureus proliferation. We showed that by using 8 µg of rhamnolipids per swab, the entire bacterial load is eradicated, and just 0.5 µg is sufficient to reduce the growth by 99.99%. Our results strongly indicate the possibility of using this mixture as an additive for wound dressings for chronic wounds.
Collapse
|
12
|
Brunelli F, Ceresa C, Aprile S, Coppo L, Castiglioni B, Bosetti M, Fracchia L, Tron GC. Isocyanides in med chem: A scaffold hopping approach for the identification of novel 4-isocyanophenylamides as potent antibacterial agents against methicillin-resistant Staphylococcusaureus. Eur J Med Chem 2023; 246:114950. [PMID: 36462437 DOI: 10.1016/j.ejmech.2022.114950] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
We describe the rational use of the neglected isocyano moiety as pharmacophoric group for the design of novel 4-isocyanophenylamides as antibacterial agents. This class of novel compounds showed to be highly effective against methicillin resistant Staphylococcus aureus strains. In particular, from an extensive screening, we identified compound 42 as lead compound. It has shown a potent antimicrobial activity, an additive effect with most antibiotics currently in use, the ability not to induce the formation of resistant strains after ten passages, and the ability to block the biofilm formation. A nontoxic profile on mammalian cells and a proper metabolic stability on human liver microsome complete the picture of this new weapon against methicillin resistant Staphylococcus aureus infections.
Collapse
Affiliation(s)
- Francesca Brunelli
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100, Novara, Italy
| | - Chiara Ceresa
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100, Novara, Italy
| | - Silvio Aprile
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100, Novara, Italy
| | - Lorenza Coppo
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100, Novara, Italy
| | - Beatrice Castiglioni
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100, Novara, Italy
| | - Michela Bosetti
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100, Novara, Italy
| | - Letizia Fracchia
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100, Novara, Italy.
| | - Gian Cesare Tron
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100, Novara, Italy.
| |
Collapse
|
13
|
Rima M, Chbani A, Roques C, El Garah F. Seaweed Extracts as an Effective Gateway in the Search for Novel Antibiofilm Agents against Staphylococcus aureus. PLANTS 2022; 11:plants11172285. [PMID: 36079667 PMCID: PMC9459781 DOI: 10.3390/plants11172285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022]
Abstract
Treatment of biofilm-associated infections has become a major challenge in biomedical and clinical fields due to the failure of conventional treatments in controlling this highly complex and tolerant structure. Therefore, the search for novel antibiofilm agents with increased efficacy as those provided by natural products, presents an urgent need. The aim of this study was to explore extracts derived from three algae (green Ulva lactuca, brown Stypocaulon scoparium, red Pterocladiella capillacea) for their potential antibiofilm activity against Staphylococcus aureus, bacterium responsible for several acute and chronic infections. Seaweed extracts were prepared by successive maceration in various solvents (cyclohexane (CH), dichloromethane (DCM), ethyl acetate (EA), and methanol (MeOH)). The ability of the different extracts to inhibit S. aureus biofilm formation was assessed using colony-forming unit (CFU) counts method supported by epifluorescence microscopic analysis. Effects of active extracts on the biofilm growth cycle, as well as on S. aureus surface hydrophobicity were evaluated. Results revealed the ability of four extracts to significantly inhibit S. aureus biofilm formation. These findings were supported by microscopy analyses. The gradual increase in the number of adherent bacteria when the selected extracts were added at various times (t0, t2h, t4h, t6h, and t24h) revealed their potential effect on the initial adhesion and proliferation stages of S. aureus biofilm development. Interestingly, a significant reduction in the surface hydrophobicity of S. aureus treated with dichloromethane (DCM) extract derived from U. lactuca was demonstrated. These findings present new insights into the exploration of seaweeds as a valuable source of antibiofilm agents with preventive effect by inhibiting and/or delaying biofilm formation.
Collapse
Affiliation(s)
- Maya Rima
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
- Laboratory of Applied Biotechnology, AZM Center for Research in Biotechnology and Its Applications, Doctoral School of Science and Technology, Lebanese University, El Mittein Street, Tripoli 1300, Lebanon
| | - Asma Chbani
- Laboratory of Applied Biotechnology, AZM Center for Research in Biotechnology and Its Applications, Doctoral School of Science and Technology, Lebanese University, El Mittein Street, Tripoli 1300, Lebanon
- Faculty of Public Health III, Lebanese University, Tripoli 1300, Lebanon
| | - Christine Roques
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
- Bacteriology-Hygiene Department, Centre Hospitalier Universitaire, Hôpital Purpan, 31300 Toulouse, France
| | - Fatima El Garah
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
- Correspondence: ; Tel.: +33-562-25-68-55
| |
Collapse
|
14
|
Surface-Active Compounds Produced by Microorganisms: Promising Molecules for the Development of Antimicrobial, Anti-Inflammatory, and Healing Agents. Antibiotics (Basel) 2022; 11:antibiotics11081106. [PMID: 36009975 PMCID: PMC9404966 DOI: 10.3390/antibiotics11081106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
Surface-active compounds (SACs), biomolecules produced by bacteria, yeasts, and filamentous fungi, have interesting properties, such as the ability to interact with surfaces as well as hydrophobic or hydrophilic interfaces. Because of their advantages over other compounds, such as biodegradability, low toxicity, antimicrobial, and healing properties, SACs are attractive targets for research in various applications in medicine. As a result, a growing number of properties related to SAC production have been the subject of scientific research during the past decade, searching for potential future applications in biomedical, pharmaceutical, and therapeutic fields. This review aims to provide a comprehensive understanding of the potential of biosurfactants and emulsifiers as antimicrobials, modulators of virulence factors, anticancer agents, and wound healing agents in the field of biotechnology and biomedicine, to meet the increasing demand for safer medical and pharmacological therapies.
Collapse
|
15
|
Recent Strategies to Combat Biofilms Using Antimicrobial Agents and Therapeutic Approaches. Pathogens 2022; 11:pathogens11030292. [PMID: 35335616 PMCID: PMC8955104 DOI: 10.3390/pathogens11030292] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Biofilms are intricate bacterial assemblages that attach to diverse surfaces using an extracellular polymeric substance that protects them from the host immune system and conventional antibiotics. Biofilms cause chronic infections that result in millions of deaths around the world every year. Since the antibiotic tolerance mechanism in biofilm is different than that of the planktonic cells due to its multicellular structure, the currently available antibiotics are inadequate to treat biofilm-associated infections which have led to an immense need to find newer treatment options. Over the years, various novel antibiofilm compounds able to fight biofilms have been discovered. In this review, we have focused on the recent and intensively researched therapeutic techniques and antibiofilm agents used for biofilm treatment and grouped them according to their type and mode of action. We also discuss some therapeutic approaches that have the potential for future advancement.
Collapse
|