1
|
Stankovic-Brandl M, Zellnitz-Neugebauer S, Wutscher T, Biserni S, Mercandelli A, D'Elpidio G, Kobler M, Buttini F, Andrade L, Ecenarro S, Paudel A. Filling process-induced tribo-charging of lubricated and non-lubricated gelatine and HPMC capsules. J Pharm Sci 2025:103781. [PMID: 40194598 DOI: 10.1016/j.xphs.2025.103781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/09/2025]
Abstract
Tribo-charging can negatively affect pharmaceutical processes and the quality of pharmaceutical products. This study investigates electrostatic charging during the filling of hard capsules intended to be used in dry powder inhalers (DPIs). Gelatin and HPMC capsules without and with external lubricants (sodium lauryl sulfate, carnauba wax, and magnesium stearate) were subjected to automatic powder filling at two filling speeds and two humidities. Tribo-charging was compared among capsules and correlated with filling parameters using a lactose and 1% budesonide formulation. Further, we evaluated the aerodynamic performance post-filling to determine the relation of the process-induced tribo-charging on in vitro performance. Our findings indicate that capsules exhibited lower levels of charge before processing. Post-filling, gelatin capsules exhibited lower charge compared to HPMC capsules. External lubricants decreased the charge for both types of capsules. At higher filling humidity (51% RH), capsules generally exhibited lower charge uptake comparing the 22% RH condition; higher filling speed tends to reduce charge uptake. However, no clear correlation between the charging of capsules during filling and aerodynamic performance was observed. Processing seems to be more affected by the capsule surface properties (roughness and presence of surfactant), while the inhalation performance appears to be affected by the interplay of capsule material and process parameters (filling speed and humidity).
Collapse
Affiliation(s)
- M Stankovic-Brandl
- Research Center Pharmaceutical Engineering (RCPE) GmbH, Inffeldgasse 13, 8010 Graz, Austria.
| | - S Zellnitz-Neugebauer
- Research Center Pharmaceutical Engineering (RCPE) GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - T Wutscher
- Research Center Pharmaceutical Engineering (RCPE) GmbH, Inffeldgasse 13, 8010 Graz, Austria; Graz University of Technology, Institute for Process and Particle Engineering, Inffeldgasse 13, 8010 Graz, Austria
| | - S Biserni
- MG2, Via del Savena 18, 40065 Pian di Macina di Pianoro, Bologna, Italy
| | - A Mercandelli
- Pharmadevices, Via Barontini, 18/2, 40138 Bologna, Italy
| | - G D'Elpidio
- MG2, Via del Savena 18, 40065 Pian di Macina di Pianoro, Bologna, Italy
| | - M Kobler
- MEGGLE Excipients and Technology, Megglestraße 6-12, 83512 Wasserburg am Inn, Germany
| | - F Buttini
- Food and Drug Department, University of Parma, Parco delle Scienze 27, 43121 Parma, Italy
| | - L Andrade
- Laboratorios Liconsa, S.A. C/ El tejido 2, 19200 Guadalajara, Spain
| | - S Ecenarro
- Roquette, Avda. Monte Valdelatas 4, 28108 Alcobendas, Madrid, Spain
| | - A Paudel
- Research Center Pharmaceutical Engineering (RCPE) GmbH, Inffeldgasse 13, 8010 Graz, Austria; Graz University of Technology, Institute for Process and Particle Engineering, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
2
|
Noriega-Fernandes B, Ibrahim M, Cruz R, Kuehl PJ, Shepard KB. Navigating the Development of Dry Powder for Inhalation: A CDMO Perspective. Pharmaceuticals (Basel) 2025; 18:434. [PMID: 40143210 PMCID: PMC11944951 DOI: 10.3390/ph18030434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Interest in pulmonary/nasal routes for local delivery has significantly increased over the last decade owing to challenges faced in the delivery of molecules with poor solubility, systemic side effects, or new modalities such as biologics. This increasing interest has attracted new stakeholders to the field who have yet to explore inhaled drug product development. Contract development and manufacturing organizations (CDMOs) play a key role in supporting the development of drug products for inhalation, from early feasibility to post marketing. However, a critical gap exists for these newcomers: a clear, integrated, and a CDMO-centric roadmap for navigating the complexities of pulmonary/nasal drug product development. The purpose of this publication is to highlight the key aspects considered in the product development of inhaled dry powder products from a CDMO perspective, providing a novel and stepwise development strategy. A roadmap for the development of inhalable drug products is proposed with authors' recommendations to facilitate the decision-making process, starting from the definition of the desired target product profile followed by dose selection in preclinical studies. The importance of understanding the nature of the API, whether a small molecule or a biologic, will be highlighted. Additionally, technical guidance on the choice of formulation (dry powder/liquid) will be provided with special focus on dry powders. Selection criteria for the particle engineering technology, mainly jet milling and spray drying, will also be discussed, including the advantages and limitations of such technologies, based on the authors' industry expertise. Lastly, the paper will highlight the challenges and considerations for encapsulating both spray dried and jet milled powders. Unlike existing literature, this paper offers a unified framework that bridges preclinical, formulation, manufacturing, and encapsulation considerations, providing a practical tool for newcomers.
Collapse
Affiliation(s)
| | - Mariam Ibrahim
- Small Molecules Product Development, Lonza Group AG, Bend, OR 97701, USA; (B.N.-F.); (M.I.); (R.C.)
| | - Rui Cruz
- Small Molecules Product Development, Lonza Group AG, Bend, OR 97701, USA; (B.N.-F.); (M.I.); (R.C.)
| | - Philip J. Kuehl
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA;
| | - Kimberly B. Shepard
- Small Molecules Product Development, Lonza Group AG, Bend, OR 97701, USA; (B.N.-F.); (M.I.); (R.C.)
| |
Collapse
|
3
|
Wang T, Cauchon NS, Kirwan JP, Joubert MK, Algorri M, Bell B, Soto RJ, Semin DJ. Advancing the implementation of innovative analytical technologies in pharmaceutical manufacturing-Some regulatory considerations. J Pharm Sci 2025; 114:816-828. [PMID: 39725231 DOI: 10.1016/j.xphs.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Analytical technologies and methods play a pivotal role in attribute understanding and control which are essential to the rapidly evolving field of pharmaceutical development and manufacturing. These technologies are advancing quickly, where innovations often involve both new scientific approaches and novel applications of established techniques. In many cases, the lack of harmonized global regulatory expectations presents challenges for the adoption of advanced technologies. This review explores some emerging technology trends and applications, while highlighting regulatory considerations for integrating innovative analytical approaches in pharmaceutical manufacturing. We provide detailed examples on the multi-attribute method (MAM), rapid microbial testing for environmental monitoring, and Raman spectroscopy for product identification, while discussing aspects of the current regulatory landscape and desired future advancements in the regulatory framework. We hope to promote the adoption and implementation of innovative analytical technologies for enhanced patient access, while ensuring product quality and safety.
Collapse
Affiliation(s)
- Ting Wang
- Process Development, Amgen Inc., Thousand Oaks, CA 91320, United States.
| | - Nina S Cauchon
- Global Regulatory Affairs and Strategy, Amgen Inc., Thousand Oaks, CA 91320, United States
| | - J Paul Kirwan
- Global Regulatory Affairs and Strategy, Amgen Inc., Thousand Oaks, CA 91320, United States
| | - Marisa K Joubert
- Process Development, Amgen Inc., Thousand Oaks, CA 91320, United States
| | - Marquerita Algorri
- Global Regulatory Affairs and Strategy, Amgen Inc., Thousand Oaks, CA 91320, United States
| | - Brian Bell
- Process Development, Amgen Inc., Thousand Oaks, CA 91320, United States
| | - Robert J Soto
- Process Development, Amgen Inc., Thousand Oaks, CA 91320, United States
| | - David J Semin
- Process Development, Amgen Inc., Thousand Oaks, CA 91320, United States
| |
Collapse
|
4
|
Uboldi M, Gelain A, Buratti G, Chiappa A, Gazzaniga A, Melocchi A, Zema L. Polyvinyl alcohol-based capsule shells manufactured by injection molding as ready-to-use moisture barriers for the development of delivery systems. Int J Pharm 2024; 661:124373. [PMID: 38909921 DOI: 10.1016/j.ijpharm.2024.124373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
In this work, feasibility of injection molding was demonstrated for manufacturing capsule shells. 600 µm-thick prototypes were successfully molded with pharmaceutical-grade low-viscosity polyvinyl alcohols (PVAs), possibly added with a range of different fillers. They showed reproducible weight and thickness (CV < 2 and 5, respectively), compliant behavior upon piercing (holes diameter analogous to the reference), tunable release performance (immediate and pulsatile), and moisture protection capability. To assess the latter, an on-line method relying on near infrared spectroscopy measurements was set-up and validated. Based on the data collected and considering the versatility IM would provide for product shape/thickness/composition, PVA-based molded shells could help widening the portfolio of ready-to-use capsules, representing an interesting alternative to those commercially available. Indeed, these capsules could be filled with various formulations, even those with stability issues, and intended either for oral administration or for pulmonary delivery via single-dose dry powder inhalers.
Collapse
Affiliation(s)
- Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, 20133 Milano, MI, Italy
| | - Andrea Gelain
- Freund-Vector Corporation European Lab, via E. Mattei 2, 20852, Villasanta, MB, Italy
| | - Giuseppe Buratti
- Freund-Vector Corporation European Lab, via E. Mattei 2, 20852, Villasanta, MB, Italy
| | - Arianna Chiappa
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, 20133 Milano, MI, Italy; Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, MI, Italy(1)
| | - Andrea Gazzaniga
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, 20133 Milano, MI, Italy
| | - Alice Melocchi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, 20133 Milano, MI, Italy.
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, 20133 Milano, MI, Italy
| |
Collapse
|
5
|
Sutar AD, Verma RK, Shukla R. Quality by Design in Pulmonary Drug Delivery: A Review on Dry Powder Inhaler Development, Nanotherapy Approaches, and Regulatory Considerations. AAPS PharmSciTech 2024; 25:178. [PMID: 39095623 DOI: 10.1208/s12249-024-02900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Dry powder inhalers (DPIs) are state-of-the-art pulmonary drug delivery systems. This article explores the transformative impact of nanotechnology on DPIs, emphasizing the Quality Target Product Profile (QTPP) with a focus on aerodynamic performance and particle characteristics. It navigates global regulatory frameworks, underscoring the need for safety and efficacy standards. Additionally, it highlights the emerging field of nanoparticulate dry powder inhalers, showcasing their potential to enhance targeted drug delivery in respiratory medicine. This concise overview is a valuable resource for researchers, physicians, and pharmaceutical developers, providing insights into the development and commercialization of advanced inhalation systems.
Collapse
Affiliation(s)
- Ashish Dilip Sutar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 160062, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India.
| |
Collapse
|
6
|
Patil SM, Diorio AM, Kommarajula P, Kunda NK. A quality-by-design strategic approach for the development of bedaquiline-pretomanid nanoparticles as inhalable dry powders for TB treatment. Int J Pharm 2024; 653:123920. [PMID: 38387819 DOI: 10.1016/j.ijpharm.2024.123920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Tuberculosis (TB) is caused by Mycobacterium tuberculosis (M.tb) and is the second leading cause of death from an infectious disease globally. The disease mainly affects the lungs and forms granulomatous lesions that encapsulate the bacteria, making treating TB challenging. The current treatment includes oral administration of bedaquiline (BDQ) and pretomanid (PTD); however, patients suffer from severe systemic toxicities, low lung drug concentration, and non-adherence. In this study, we developed BDQ-PTD loaded nanoparticles as inhalable dry powders for pulmonary TB treatment using a Quality-by-Design (QbD) approach. The BDQ-PTD combination showed an additive/synergistic effect for M.tb inhibition in vitro, and the optimized drug ratio (1:4) was successfully loaded into polymeric nanoparticles (PLGA NPs). The QbD approach was implemented by identifying the quality target product profile (QTPPs), critical quality attributes (CQAs), and critical process parameters (CPPs) to develop efficient design space for dry powder preparation using spray drying. The three-factorial and three-level Box-Behnken Design was used to assess the effect of process parameters (CPPs) on product quality (CQAs). The Design of Experiments (DoE) analysis showed different regression models for product quality responses and helped optimize process parameters to meet QTPPs. The optimized dry powder showed excellent yield (72 ± 2 % w/w), high drug (BDQ-PTD) loading, low moisture content (<1% w/w), and spherical morphology. Further, aerosolization performance revealed the suitability of powder for deposition in the respiratory airways of the lungs (MMAD 2.4 µm and FPF > 75 %). In conclusion, the QbD approach helped optimize process parameters and develop dry powder with a suitable quality profile for inhalation delivery in TB patients.
Collapse
Affiliation(s)
- Suyash M Patil
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Alec M Diorio
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Parasharamulu Kommarajula
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Nitesh K Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA.
| |
Collapse
|
7
|
Lou H, Ding L, Wu T, Li W, Khalaf R, Smyth HDC, Reid DL. Emerging Process Modeling Capabilities for Dry Powder Operations for Inhaled Formulations. Mol Pharm 2023; 20:5332-5344. [PMID: 37783568 DOI: 10.1021/acs.molpharmaceut.3c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Dry powder inhaler (DPI) products are commonly formulated as a mixture of micronized drug particles and large carrier particles, with or without additional fine particle excipients, followed by final powder filling into dose containment systems such as capsules, blisters, or reservoirs. DPI product manufacturing consists of a series of unit operations, including particle size reduction, blending, and filling. This review provides an overview of the relevant critical process parameters used for jet milling, high-shear blending, and dosator/drum capsule filling operations across commonly utilized instruments. Further, this review describes the recent achievements regarding the application of empirical and mechanistic models, especially discrete element method (DEM) simulation, in DPI process development. Although to date only limited modeling/simulation work has been accomplished, in the authors' perspective, process design and development are destined to be more modeling/simulation driven with the emphasis on evaluating the impact of material attributes/process parameters on process performance. The advancement of computational power is expected to enable modeling/simulation approaches to tackle more complex problems with better accuracy when dealing with real-world DPI process operations.
Collapse
Affiliation(s)
- Hao Lou
- Drug Product Technologies, Process Development, Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Li Ding
- Drug Product Technologies, Process Development, Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Tian Wu
- Drug Product Technologies, Process Development, Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Weikun Li
- Drug Product Technologies, Process Development, Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Ryan Khalaf
- Drug Product Technologies, Process Development, Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Hugh D C Smyth
- College of Pharmacy, The University of Texas at Austin, 2409 West University Avenue, PHR 4.214, Austin, Texas 78712, United States
| | - Darren L Reid
- Drug Product Technologies, Process Development, Amgen, 360 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
8
|
Kocks J, Bosnic-Anticevich S, van Cooten J, Correia de Sousa J, Cvetkovski B, Dekhuijzen R, Dijk L, Garcia Pardo M, Gardev A, Gawlik R, van der Ham I, Janse Y, Lavorini F, Maricoto T, Meijer J, Metz B, Price D, Roman Rodriguez M, Schuttel K, Stoker N, Tsiligianni I, Usmani O, Voorham J, Leving MT. Identifying critical inhalation technique errors in Dry Powder Inhaler use in patients with COPD based on the association with health status and exacerbations: findings from the multi-country cross-sectional observational PIFotal study. BMC Pulm Med 2023; 23:302. [PMID: 37592263 PMCID: PMC10433653 DOI: 10.1186/s12890-023-02566-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/16/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Correct inhaler use depends on a complex interplay of factors, including device preparation and generating sufficient inspiratory flow. It is currently unknown which inhalation technique errors can be considered critical in Chronic Obstructive Pulmonary Disease (COPD) patients on Dry Powder Inhaler (DPI) maintenance therapy. OBJECTIVE To investigate the association between inhalation technique errors and health status or exacerbations in patients with COPD. Additionally, the association between the number of errors and COPD outcomes was determined. METHODS The PIFotal study is a cross-sectional multi-country observational study in a primary care setting, including 1434 COPD patients aged ≥ 40 years (50.1% female; mean age 69.2 yrs) using a DPI for their maintenance therapy. Inhalation technique was video recorded and scored by two independent researchers using inhaler-specific checklists. Health status was assessed with two questionnaires; the Clinical COPD Questionnaire (CCQ) and the COPD Assessment Test (CAT). The number of moderate and severe exacerbations in the past 12 months was recorded. Critical errors were identified based on their association with health status or exacerbations through multi-level prediction models adjusted for identified confounding. RESULTS Errors in inhalation technique steps 'Breathe in', 'Hold breath', and 'Breathe out calmly after inhalation' were significantly associated with poorer CCQ and CAT outcomes and thus deemed critical. None of the errors were significantly associated with moderate exacerbations. Patients with errors 'Preparation', 'Hold inhaler in correct position during inhalation', and 'Breathe in' had significantly more severe exacerbations, and therefore these errors were also deemed critical. 81.3% of patients with COPD made at least one critical error. Specific combinations of errors were associated with worse outcomes. The more inhalation technique errors identified, the poorer the health status and the higher the exacerbation rate. CONCLUSION In this study, we identified multiple critical inhalation technique errors in COPD patients using DPIs each associated with poorer outcomes. Explorative analysis revealed that specific combinations of errors may be of clinical relevance, especially those related to the inhalation manoeuvre. COPD outcomes worsened with increasing error count. These results warrant further prospective longitudinal studies to establish the effect of correcting these errors on COPD control. TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT04532853 (31/08/2020).
Collapse
Affiliation(s)
- Janwillem Kocks
- General Practitioners Research Institute, Professor Enno Dirk Wiersmastraat 5, 9713 GH, Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands.
- Observational and Pragmatic Research Institute, Singapore, Singapore.
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Sinthia Bosnic-Anticevich
- Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia
- Sydney Local Health District, Sydney, Australia
| | - Joyce van Cooten
- General Practitioners Research Institute, Professor Enno Dirk Wiersmastraat 5, 9713 GH, Groningen, The Netherlands
| | - Jaime Correia de Sousa
- Life and Health Sciences Research Institute (ICVS), PT Government Associate Laboratory, School of Medicine, University of Minho, Braga, Portugal
| | - Biljana Cvetkovski
- Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia
| | | | - Lars Dijk
- General Practitioners Research Institute, Professor Enno Dirk Wiersmastraat 5, 9713 GH, Groningen, The Netherlands
| | - Marina Garcia Pardo
- Primary Care Respiratory Research Unit, Instituto De Investigación Sanitaria De Baleares (IdISBa), Palma, Spain
| | - Asparuh Gardev
- Boehringer Ingelheim International GmbH, Ingelheim Am Rhein, Germany
| | - Radosław Gawlik
- Department of Internal Medicine, Allergology, Clinical Immunology, Medical University of Silesia, Katowice, Poland
| | - Iris van der Ham
- General Practitioners Research Institute, Professor Enno Dirk Wiersmastraat 5, 9713 GH, Groningen, The Netherlands
| | - Ymke Janse
- General Practitioners Research Institute, Professor Enno Dirk Wiersmastraat 5, 9713 GH, Groningen, The Netherlands
| | - Federico Lavorini
- Department of Clinical and Experimental Medicine, Careggi University Hospital, Florence, Italy
| | - Tiago Maricoto
- Faculty of Health Sciences, University of Beira Interior, Covilha, Portugal
| | - Jiska Meijer
- General Practitioners Research Institute, Professor Enno Dirk Wiersmastraat 5, 9713 GH, Groningen, The Netherlands
| | - Boyd Metz
- General Practitioners Research Institute, Professor Enno Dirk Wiersmastraat 5, 9713 GH, Groningen, The Netherlands
| | - David Price
- Observational and Pragmatic Research Institute, Singapore, Singapore
- Centre of Academic Primary Care, Division of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| | - Miguel Roman Rodriguez
- Primary Care Respiratory Research Unit, Instituto De Investigación Sanitaria De Baleares (IdISBa), Palma, Spain
| | - Kirsten Schuttel
- General Practitioners Research Institute, Professor Enno Dirk Wiersmastraat 5, 9713 GH, Groningen, The Netherlands
| | - Nilouq Stoker
- General Practitioners Research Institute, Professor Enno Dirk Wiersmastraat 5, 9713 GH, Groningen, The Netherlands
| | - Ioanna Tsiligianni
- Department of Social Medicine, Health Planning Unit, Faculty of Medicine, University of Crete, Rethymno, Greece
| | - Omar Usmani
- Airway Disease, National Heart and Lung Institute (NHLI), Imperial College London and Royal Brompton Hospital, London, UK
| | - Jaco Voorham
- Data to Insights Research Solutions, Lisbon, Portugal
| | - Marika T Leving
- General Practitioners Research Institute, Professor Enno Dirk Wiersmastraat 5, 9713 GH, Groningen, The Netherlands
| |
Collapse
|
9
|
Tang P, Kakhi M, Albariqi A, Ravindra Babu Behara S, Walenga R, Yang R, Chan HK. The role of capsule aperture size on the dispersion of carrier-based formulation at different air flowrates. Int J Pharm 2023:123152. [PMID: 37339687 DOI: 10.1016/j.ijpharm.2023.123152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023]
Abstract
The effect of capsule aperture size on the aerosol performance of lactose blend formulation was studied using Foradil® (containing 12 μg of formoterol fumarate (FF1) and 24 mg of lactose) dispersed with a powder inhaler Aerolizer® at increasing air flowrates. Apertures sizes of 0.4, 1.0, 1.5, 2.5, and 4.0 mm were introduced at the opposite ends of the capsule. The formulation was dispersed into a Next Generation Impactor (NGI) at 30, 60 and 90 L/min, with the fine particle fractions (FPFrec and FPFem) measured by chemical assay of FF and lactose using high-performance liquid chromatography. Particle size distribution (PSD) of FF particles dispersed in wet media was also characterized by laser diffraction. FPFrec showed a stronger dependency on the flowrate than the capsule aperture size. The most efficient dispersion was achieved at 90 L/min. At a given flowrate, FPFem remained broadly constant across different aperture sizes. The laser diffraction studies demonstrated the presence of large agglomerates.
Collapse
Affiliation(s)
- Patricia Tang
- Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales, Australia
| | - Maziar Kakhi
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Ahmed Albariqi
- Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales, Australia
| | - Srinivas Ravindra Babu Behara
- Division of Immediate and Modified Release Products III, Office of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Ross Walenga
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Runyu Yang
- School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales, Australia
| | - Hak-Kim Chan
- Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
10
|
Fei Q, Bentley I, Ghadiali SN, Englert JA. Pulmonary drug delivery for acute respiratory distress syndrome. Pulm Pharmacol Ther 2023; 79:102196. [PMID: 36682407 PMCID: PMC9851918 DOI: 10.1016/j.pupt.2023.102196] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
The acute respiratory distress syndrome (ARDS) is a life-threatening condition that causes respiratory failure. Despite numerous clinical trials, there are no molecularly targeted pharmacologic therapies to prevent or treat ARDS. Drug delivery during ARDS is challenging due to the heterogenous nature of lung injury and occlusion of lung units by edema fluid and inflammation. Pulmonary drug delivery during ARDS offers several potential advantages including limiting the off-target and off-organ effects and directly targeting the damaged and inflamed lung regions. In this review we summarize recent ARDS clinical trials using both systemic and pulmonary drug delivery. We then discuss the advantages of pulmonary drug delivery and potential challenges to its implementation. Finally, we discuss the use of nanoparticle drug delivery and surfactant-based drug carriers as potential strategies for delivering therapeutics to the injured lung in ARDS.
Collapse
Affiliation(s)
- Qinqin Fei
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA; Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA; Department of Biomedical Engineering, The Ohio State University, 140West 19th Avenue, Columbus, OH, 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Ian Bentley
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Samir N Ghadiali
- Department of Biomedical Engineering, The Ohio State University, 140West 19th Avenue, Columbus, OH, 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Joshua A Englert
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
11
|
Ramezani Kalmer R, Karimi A, Golizadeh M, Mohammadi Haddadan M, Azizi M, Ramezanalizadeh H, Ghanbari M. Effect of different molecular weights of polyethylene glycol as a plasticizer on the formulation of dry powder inhaler capsules: Investigation of puncturing size, morphologies, and surface properties. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
12
|
El-Gendy N, Bertha CM, Abd El-Shafy M, Gaglani DK, Babiskin A, Bielski E, Boc S, Dhapare S, Fang L, Feibus K, Kaviratna A, Li BV, Luke MC, Ma T, Newman B, Spagnola M, Walenga RL, Zhao L. Scientific and regulatory activities initiated by the U.S. food and drug administration to foster approvals of generic dry powder inhalers: Quality perspective. Adv Drug Deliv Rev 2022; 189:114519. [PMID: 36038083 DOI: 10.1016/j.addr.2022.114519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 02/08/2023]
Abstract
Regulatory science for generic dry powder inhalation products worldwide has evolved over the last decade. The revised draft guidance Metered Dose Inhaler (MDI) and Dry Powder Inhaler (DPI) Products - Quality Considerations [1] (Revision 1, April 2018) that FDA issued summarizes product considerations and potential critical quality attributes (CQAs). This guidance emphasizes the need to apply the principles of quality by design (QbD) and elements of pharmaceutical development discussed in the International Conference for Harmonisation of (ICH) guidelines. Research studies related to quality were used to support guidance recommendations, which preceded the first approval of a generic DPI product in the U.S. This review outlines scientific and regulatory hurdles that need to be surmounted to successfully bring a generic DPI to the market. The goal of this review focuses on relevant issues and various challenges pertaining to CMC topics of the generic DPI quality attributes. Furthermore, this review provides recommendations to abbreviated new drug application (ANDA) applicants to expedite generic approvals.
Collapse
Affiliation(s)
- Nashwa El-Gendy
- Division of Immediate and Modified Release Drug Products III, Office of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Craig M Bertha
- Division of New Drug Products II, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Mohammed Abd El-Shafy
- Division of Immediate and Modified Release Drug Products III, Office of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Dhaval K Gaglani
- Division of Immediate and Modified Release Drug Products III, Office of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Andrew Babiskin
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Elizabeth Bielski
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Susan Boc
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Sneha Dhapare
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Lanyan Fang
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Katharine Feibus
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Anubhav Kaviratna
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Bing V Li
- Office of Bioequivalence, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Markham C Luke
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Tian Ma
- Division of Bioequivalence I, Office of Bioequivalence, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Bryan Newman
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Michael Spagnola
- Division of Clinical Safety and Surveillance, Office of Safety and Clinical Evaluation, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Ross L Walenga
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
| | - Liang Zhao
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
13
|
Hebbink GA, Jaspers M, Peters HJW, Dickhoff BHJ. Recent developments in lactose blend formulations for carrier-based dry powder inhalation. Adv Drug Deliv Rev 2022; 189:114527. [PMID: 36070848 DOI: 10.1016/j.addr.2022.114527] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 01/24/2023]
Abstract
Lactose is the most commonly used excipient in carrier-based dry powder inhalation (DPI) formulations. Numerous inhalation therapies have been developed using lactose as a carrier material. Several theories have described the role of carriers in DPI formulations. Although these theories are valuable, each DPI formulation is unique and are not described by any single theory. For each new formulation, a specific development trajectory is required, and the versatility of lactose can be exploited to optimize each formulation. In this review, recent developments in lactose-based DPI formulations are discussed. The effects of varying the material properties of lactose carrier particles, such as particle size, shape, and morphology are reviewed. Owing to the complex interactions between the particles in a formulation, processing adhesive mixtures of lactose with the active ingredient is crucial. Therefore, blending and filling processes for DPI formulations are also reviewed. While the role of ternary agents, such as magnesium stearate, has increased, lactose remains the excipient of choice in carrier-based DPI formulations. Therefore, new developments in lactose-based DPI formulations are crucial in the optimization of inhalable medicine performance.
Collapse
|
14
|
He S, Gui J, Xiong K, Chen M, Gao H, Fu Y. A roadmap to pulmonary delivery strategies for the treatment of infectious lung diseases. J Nanobiotechnology 2022; 20:101. [PMID: 35241085 PMCID: PMC8892824 DOI: 10.1186/s12951-022-01307-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/17/2022] [Indexed: 12/18/2022] Open
Abstract
Pulmonary drug delivery is a highly attractive topic for the treatment of infectious lung diseases. Drug delivery via the pulmonary route offers unique advantages of no first-pass effect and high bioavailability, which provides an important means to deliver therapeutics directly to lung lesions. Starting from the structural characteristics of the lungs and the biological barriers for achieving efficient delivery, we aim to review literatures in the past decade regarding the pulmonary delivery strategies used to treat infectious lung diseases. Hopefully, this review article offers new insights into the future development of therapeutic strategies against pulmonary infectious diseases from a delivery point of view.
Collapse
Affiliation(s)
- Siqin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jiajia Gui
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Kun Xiong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Stegemann S, Faulhammer E, Pinto JT, Paudel A. Focusing on powder processing in dry powder inhalation product development, manufacturing and performance. Int J Pharm 2022; 614:121445. [PMID: 34998921 DOI: 10.1016/j.ijpharm.2021.121445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/17/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022]
Abstract
Dry powder inhalers (DPI) are well established products for the delivery of actives via the pulmonary route. Various DPI products are marketed or developed for the treatment of local lung diseases such as chronic obstructive pulmonary disease (COPD), asthma or cystic fibrosis as well as systemic diseases targeted through inhaled delivery (i.e. Diabetes Mellitus). One of the key prerequisites of DPI formulations is that the aerodynamic size of the drug particles needs to be below 5 µm to enter deeply into the respiratory tract. These inherently cohesive inhalable size particles are either formulated as adhesive mixture with coarse carrier particles like lactose called carrier-based DPI or are formulated as free-flowing carrier-free particles (e.g. soft agglomerates, large hollow particles). In either case, it is common practice that drug and/or excipient particles of DPI formulations are obtained by processing API and API/excipients. The DPI manufacturing process heavily involves several particle and powder technologies such as micronization of the API, dry blending, powder filling and other particle engineering processes such as spray drying, crystallization etc. In this context, it is essential to thoroughly understand the impact of powder/particle properties and processing on the quality and performance of the DPI formulations. This will enable prediction of the processability of the DPI formulations and controlling the manufacturing process so that meticulously designed formulations are able to be finally developed as the finished DPI dosage form. This article is intended to provide a concise account of various aspects of DPI powder processing, including the process understanding and material properties that are important to achieve the desired DPI product quality. Various endeavors of model informed formulation/process design and development for DPI powder and PAT enabled process monitoring and control are also discussed.
Collapse
Affiliation(s)
- Sven Stegemann
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| | - Eva Faulhammer
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Joana T Pinto
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Amrit Paudel
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria; Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria.
| |
Collapse
|
16
|
Jadhav P, Patil P, Bhagwat D, Gaikwad V, Mehta PP. Recent advances in orthogonal analytical techniques for microstructural understanding of inhalable particles: Present status and future perspective. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Ding L, Brunaugh AD, Thakkar R, Lee C, Zhao QJ, Kalafat J, Maniruzzaman M, Smyth HDC. Comparison of HPMC Inhalation-Grade Capsules and Their Effect on Aerosol Performance Using Budesonide and Rifampicin DPI Formulations. AAPS PharmSciTech 2022; 23:52. [PMID: 35018574 PMCID: PMC8752038 DOI: 10.1208/s12249-021-02175-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022] Open
Abstract
Despite the fact that capsules play an important role in many dry powder inhalation (DPI) systems, few studies have been conducted to investigate the capsules’ interactions with respirable powders. The effect of four commercially available hydroxypropyl methylcellulose (HPMC)inhalation-grade capsule types on the aerosol performance of two model DPI formulations (lactose carrier and a carrier-free formulation) at two different pressure drops was investigated in this study. There were no statistically significant differences in performance between capsules by using the carrier-based formulation. However, there were some differences between the capsules used for the carrier-free rifampicin formulation. At 2-kPa pressure drop conditions, Embocaps® VG capsules had a higher mean emitted fraction (EF) (89.86%) and a lower mean mass median aerodynamic diameter (MMAD) (4.19 µm) than Vcaps® (Capsugel) (85.54%, 5.10 µm) and Quali-V® I (Qualicaps) (85.01%, 5.09 µm), but no significant performance differences between Embocaps® and ACGcaps™ HI. Moreover, Embocaps® VG capsules exhibited a higher mean respirable fraction (RF)/fine particle fraction (FPF) with a 3-µm–sized cutoff (RF/FPF< 3 µm) (33.05%/35.36%) against Quali-V® I (28.16%/31.75%) (P < 0.05), and a higher RF/FPF with a 5-µm–sized cutoff (RF/FPF< 5 µm) (49.15%/52.57%) versus ACGcaps™ HI (38.88%/41.99%) (P < 0.01) at 4-kPa pressure drop condition. Aerosol performance variability, pierced-flap detachment, as well as capsule hardness and stiffness, may all influence capsule type selection in a carrier-based formulation. The capsule type influenced EF, RF, FPF, and MMAD in the carrier-free formulation.
Collapse
|
18
|
Ye Y, Ma Y, Zhu J. The future of dry powder inhaled therapy: Promising or Discouraging for systemic disorders? Int J Pharm 2022; 614:121457. [PMID: 35026316 PMCID: PMC8744475 DOI: 10.1016/j.ijpharm.2022.121457] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 12/25/2022]
Abstract
Dry powder inhalation therapy has been shown to be an effective method for treating respiratory diseases like asthma, Chronic Obstructive Pulmonary Diseases and Cystic Fibrosis. It has also been widely accepted and used in clinical practices. Such success has led to great interest in inhaled therapy on treating systemic diseases in the past two decades. The current coronavirus (COVID-19) pandemic also has increased such interest and is triggering more potential applications of dry powder inhalation therapy in vaccines and antivirus drugs. Would the inhaled dry powder therapy on systemic disorders be as encouraging as expected? This paper reviews the marketed and in-development dry powder inhaler (DPI) products on the treatment of systemic diseases, their status in clinical trials, as well as the potential for COVID-19 treatment. The advancements and unmet problems on DPI systems are also summarized. With countless attempts behind and more challenges ahead, it is believed that the dry powder inhaled therapy for the treatment of systemic disorders still holds great potential and promise.
Collapse
Affiliation(s)
- Yuqing Ye
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada; Ningbo Inhale Pharma, 2260 Yongjiang Avenue, Ningbo National High-Tech Zone, Ningbo, 315000, China
| | - Ying Ma
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada; Ningbo Inhale Pharma, 2260 Yongjiang Avenue, Ningbo National High-Tech Zone, Ningbo, 315000, China
| | - Jesse Zhu
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada.
| |
Collapse
|
19
|
Buttini F, Quarta E, Allegrini C, Lavorini F. Understanding the Importance of Capsules in Dry Powder Inhalers. Pharmaceutics 2021; 13:pharmaceutics13111936. [PMID: 34834351 PMCID: PMC8623721 DOI: 10.3390/pharmaceutics13111936] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 11/06/2021] [Indexed: 11/16/2022] Open
Abstract
Pulmonary drug delivery is currently the focus of research and development because of its potential to produce maximum therapeutic benefit to patients by directing the drug straight to the lung disease site. Among all the available delivery options, one popular, proven and convenient inhaler device is the capsule-based dry powder inhaler (cDPI) for the treatment of an increasingly diverse range of diseases. cDPIs use a hard capsule that contains a powder formulation which consists of a mixture of a micronized drug and a carrier usually the lactose, known for its good lung tolerance. The capsule is either inserted into the device during manufacturer or by the patient prior to use. After perforating, opening or cut the capsule in the device, patients take a deep and rapid breath to inhale the powder, using air as the vector of drug displacement. The system is simple, relatively cheap and characterized by a lower carbon footprint than that of pressurized metered dose inhalers. This article reviews cDPI technology, focusing particularly on the importance of capsule characteristics and their function as a drug reservoir in cDPIs.
Collapse
Affiliation(s)
- Francesca Buttini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy;
- Correspondence: ; Tel.: +39-0521-906008
| | - Eride Quarta
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy;
| | - Chiara Allegrini
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (C.A.); (F.L.)
| | - Federico Lavorini
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (C.A.); (F.L.)
| |
Collapse
|