1
|
Dmour I. Absorption enhancement strategies in chitosan-based nanosystems and hydrogels intended for ocular delivery: Latest advances for optimization of drug permeation. Carbohydr Polym 2024; 343:122486. [PMID: 39174104 DOI: 10.1016/j.carbpol.2024.122486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Ophthalmic diseases can be presented as acute diseases like allergies, ocular infections, etc., or chronic ones that can be manifested as a result of systemic disorders, like diabetes mellitus, thyroid, rheumatic disorders, and others. Chitosan (CS) and its derivatives have been widely investigated as nanocarriers in the delivery of drugs, genes, and many biological products. The biocompatibility and biodegradability of CS made it a good candidate for ocular delivery of many ingredients, including immunomodulating agents, antibiotics, ocular hypertension medications, etc. CS-based nanosystems have been successfully reported to modulate ocular diseases by penetrating biological ocular barriers and targeting and controlling drug release. This review provides guidance to drug delivery formulators on the most recently published strategies that can enhance drug permeation to the ocular tissues in CS-based nanosystems, thus improving therapeutic effects through enhancing drug bioavailability. This review will highlight the main ocular barriers to drug delivery observed in the nano-delivery system. In addition, the CS physicochemical properties that contribute to formulation aspects are discussed. It also categorized the permeation enhancement strategies that can be optimized in CS-based nanosystems into four aspects: CS-related physicochemical properties, formulation components, fabrication conditions, and adopting a novel delivery system like implants, inserts, etc. as described in the published literature within the last ten years. Finally, challenges encountered in CS-based nanosystems and future perspectives are mentioned.
Collapse
Affiliation(s)
- Isra Dmour
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan.
| |
Collapse
|
2
|
Hughes PJ, Bhagat N, Gonzalez-Martinez OG, Zarbin MA. INTRAVITREAL METHOTREXATE INJECTION FOR THE TREATMENT AND PREVENTION OF PROLIFERATIVE VITREORETINOPATHY. Retina 2024; 44:1748-1757. [PMID: 39287537 DOI: 10.1097/iae.0000000000004181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
PURPOSE To report on our experience using intravitreal methotrexate (MTX) in patients with retinal detachment associated with proliferative vitreoretinopathy and/or open globe injury. METHODS This study performed a retrospective chart review of a consecutive series of 21 eyes of 21 patients who underwent serial intravitreal MTX injection for treatment and/or prevention of proliferative vitreoretinopathy from December 2021 to January 2024. RESULTS Twenty-one patients underwent pars plana vitrectomy, membrane peeling, laser photocoagulation, silicone oil infusion, and intravitreal MTX injection. Postoperatively, all eyes received a series of intravitreal MTX (400 μg/0.1 mL) injections. Optimally, injections were administered weekly for 8 weeks and every 2 weeks for four weeks for a total of 13 injections, beginning intraoperatively at the conclusion of retinal reattachment surgery. Mean baseline preoperative and postoperative visual acuity was logarithm of the minimum angle of resolution 3.2 (approximately hand motions vision) and 2.5 (between CF and hand motions vision), respectively, yielding an average improvement in visual acuity of 0.7 logarithm of the minimum angle of resolution units (0 ETDRS lines/letters). These 21 patients received an average of 10.5 injections. With a single operation, detachments in 19 (90%) of 21 eyes were successfully reattached. Corneal epithelial defects were noted in 7 (33%) of 21 patients. CONCLUSION Serial intravitreal MTX injection was associated with 90% single operation retinal reattachment rate in the setting of retinal detachment with proliferative vitreoretinopathy or retinal detachment at high risk of proliferative vitreoretinopathy.
Collapse
Affiliation(s)
- Patrick J Hughes
- Institute of Ophthalmology and Visual Science, Rutgers New Jersey Medical School, Newark, New Jersey
| | | | | | | |
Collapse
|
3
|
Duvnjak M, Villois A, Ramazani F. Biodegradable Long-Acting Injectables: Platform Technology and Industrial Challenges. Handb Exp Pharmacol 2024; 284:133-150. [PMID: 37059910 DOI: 10.1007/164_2023_651] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Long-acting injectables have been used to benefit patients with chronic diseases. So far, several biodegradable long-acting platform technologies including drug-loaded polymeric microparticles, implants (preformed and in situ forming), oil-based solutions, and aqueous suspension have been established. In this chapter, we summarize all the marketed technology platforms and discuss their challenges regarding development including but not limited to controlling drug release, particle size, stability, sterilization, scale-up manufacturing, etc. Finally, we discuss important criteria to consider for the successful development of long-acting injectables.
Collapse
Affiliation(s)
- Marieta Duvnjak
- Technical Research and Development, Novartis Pharma AG, Basel, Switzerland
| | - Alessia Villois
- Technical Research and Development, Novartis Pharma AG, Basel, Switzerland
| | - Farshad Ramazani
- Technical Research and Development, Novartis Pharma AG, Basel, Switzerland.
| |
Collapse
|
4
|
Mostafa M, Al Fatease A, Alany RG, Abdelkader H. Recent Advances of Ocular Drug Delivery Systems: Prominence of Ocular Implants for Chronic Eye Diseases. Pharmaceutics 2023; 15:1746. [PMID: 37376194 PMCID: PMC10302848 DOI: 10.3390/pharmaceutics15061746] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic ocular diseases can seriously impact the eyes and could potentially result in blindness or serious vision loss. According to the most recent data from the WHO, there are more than 2 billion visually impaired people in the world. Therefore, it is pivotal to develop more sophisticated, long-acting drug delivery systems/devices to treat chronic eye conditions. This review covers several drug delivery nanocarriers that can control chronic eye disorders non-invasively. However, most of the developed nanocarriers are still in preclinical or clinical stages. Long-acting drug delivery systems, such as inserts and implants, constitute the majority of the clinically used methods for the treatment of chronic eye diseases due to their steady state release, persistent therapeutic activity, and ability to bypass most ocular barriers. However, implants are considered invasive drug delivery technologies, especially those that are nonbiodegradable. Furthermore, in vitro characterization approaches, although useful, are limited in mimicking or truly representing the in vivo environment. This review focuses on long-acting drug delivery systems (LADDS), particularly implantable drug delivery systems (IDDS), their formulation, methods of characterization, and clinical application for the treatment of eye diseases.
Collapse
Affiliation(s)
- Mahmoud Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minya 61519, Egypt;
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia;
| | - Raid G. Alany
- School of Pharmacy, Kingston University London, Kingston Upon Tames KT1 2EE, UK;
- School of Pharmacy, The University of Auckland, Auckland 1010, New Zealand
| | - Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia;
| |
Collapse
|
5
|
Guerra MCA, Neto JT, Gomes MG, Dourado LFN, Oréfice RL, Heneine LGD, Silva-Cunha A, Fialho SL. Nanofiber-coated implants: Development and safety after intravitreal application in rabbits. Int J Pharm 2023; 636:122809. [PMID: 36894043 DOI: 10.1016/j.ijpharm.2023.122809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023]
Abstract
Intravitreal injections are the preferred choice for drug administration to the posterior segment of the eye. However, the required frequent injections may cause complications to the patient and low adherence to the treatment. Intravitreal implants are able to maintain therapeutic levels for a long period. Biodegradable nanofibers can modulate drug release and allow the incorporation of fragile bioactive drugs. Age-related macular degeneration is one of the world major causes of blindness and irreversible vision loss. It involves the interaction between VEGF and inflammatory cells. In this work we developed nanofiber-coated intravitreal implants containing dexamethasone and bevacizumab for simultaneously delivery of these drugs. The implant was successfully prepared and the efficiency of the coating process was confirmed by scanning electron microscopy. Around 68% of dexamethasone was released in 35 days and 88% of bevacizumab in 48hs. The formulation presented activity in the reduction of vessels and was safe to the retina. It was not observed any clinical or histopathological change, neither alteration in retina function or thickness by electroretinogram and optical coherence tomography during 28 days. The nanofiber-coated implants of dexamethasone and bevacizumab may be considered as a new delivery system that can be effective for the treatment of AMD.
Collapse
Affiliation(s)
- Maria Carolina Andrade Guerra
- Federal University of Goias, Rua 240 w/n, CEP 74605-220, Goias, Goiania, Brazil; Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, CEP 30510-010, Belo Horizonte, Minas Gerais, Brazil.
| | - Julia Teixeira Neto
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, CEP 30510-010, Belo Horizonte, Minas Gerais, Brazil; Faculty of Pharmacy, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Pampulha, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| | - Michele Gouvea Gomes
- Faculty of Pharmacy, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Pampulha, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| | - Lays Fernanda Nunes Dourado
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, CEP 30510-010, Belo Horizonte, Minas Gerais, Brazil.
| | - Rodrigo Lambert Oréfice
- School of Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Pampulha, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| | - Luiz Guilherme Dias Heneine
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, CEP 30510-010, Belo Horizonte, Minas Gerais, Brazil.
| | - Armando Silva-Cunha
- Faculty of Pharmacy, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Pampulha, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| | - Silvia Ligorio Fialho
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, CEP 30510-010, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Tersi N, Kassumeh S, Ohlmann A, Strehle L, Priglinger SG, Hartmann D, Wolf A, Wertheimer CM. Pharmacological Therapy of Proliferative Vitreoretinopathy: Systematic In Vitro Comparison of 36 Pharmacological Agents. J Ocul Pharmacol Ther 2023; 39:148-158. [PMID: 36867160 DOI: 10.1089/jop.2022.0078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Purpose: Proliferative vitreoretinopathy (PVR) is currently treated surgically. Reliable pharmaceutical options would be desirable, and numerous drugs have been proposed. This in vitro study is intended to systematically compare and determine the most promising candidates for the treatment of PVR. Methods: A structured literature review was conducted in the "PubMed" database to identify previously published agents proposed for medical treatment of PVR -36 substances that met the inclusion criteria. Toxicity and antiproliferative effects were evaluated on primary human retinal pigment epithelial (hRPE) using colorimetric viability assays. The seven substances with the widest therapeutic range between toxicity and no longer detectable antiproliferative effect were then validated with a bromodeoxyuridine assay and a scratch wound healing assay using primary cells derived from surgically excised human PVR membranes (hPVR). Results: Among 36 substances, 12 showed no effect on hRPE at all. Seventeen substances had a significant (P < 0.05) toxic effect of which nine did not have an antiproliferative effect. Fifteen substances significantly reduced hRPE proliferation (P < 0.05). The seven most promising drugs with the highest difference between toxicity and antiproliferative effects on hRPE were dasatinib, methotrexate, resveratrol, retinoic acid, simvastatin, tacrolimus, and tranilast. Whereof resveratrol, simvastatin, and tranilast additionally showed antiproliferative and dasatinib, resveratrol, and tranilast antimigratory effects on hPVR (P < 0.05). Conclusion: This study presents a systematic comparison of drugs that have been proposed for PVR treatment in a human disease model. Dasatinib, resveratrol, simvastatin, and tranilast seem to be promising and are well-characterized in human use.
Collapse
Affiliation(s)
- Natalie Tersi
- Department of Ophthalmology and University Hospital, LMU Munich, Munich, Germany
| | - Stefan Kassumeh
- Department of Ophthalmology and University Hospital, LMU Munich, Munich, Germany
| | - Andreas Ohlmann
- Department of Ophthalmology and University Hospital, LMU Munich, Munich, Germany
| | - Laura Strehle
- Department of Ophthalmology, University Hospital, Ulm University, Ulm, Germany
| | | | - Daniela Hartmann
- Department of Dermatology and Allergology, University Hospital, LMU Munich, Munich, Germany
| | - Armin Wolf
- Department of Ophthalmology and University Hospital, LMU Munich, Munich, Germany
- Department of Ophthalmology, University Hospital, Ulm University, Ulm, Germany
| | - Christian M Wertheimer
- Department of Ophthalmology and University Hospital, LMU Munich, Munich, Germany
- Department of Ophthalmology, University Hospital, Ulm University, Ulm, Germany
| |
Collapse
|
7
|
Inhibition of proliferative vitreoretinopathy by a newly developed methotrexate loaded drug carrier in vitro. Biomed Pharmacother 2023; 158:114088. [PMID: 36502758 DOI: 10.1016/j.biopha.2022.114088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Repeated intravitreal injections of methotrexate for proliferative vitreoretinopathy, a rare ocular condition that can cause vision loss, have shown beneficial effects in recent clinical studies. The purpose of this study was to develop a slow-release, long-term drug carrier composed of the polymer polylactide-co-glycolide and methotrexate that can be injected intravitreally. METHODS The required composition of the drug carrier was modeled using pharmacokinetic parameters based on current literature. Release kinetics were determined using an ocular pharmacokinetic model. Epiretinal PVR-membranes were harvested during pars plana vitrectomy and subsequently transferred to cell culture. The effect of the drug carrier on cell migration was investigated using time-lapse microscopy and a scratch-induced migration assay. The colorimetric WST-1-assay and a live-dead-assay were performed to determine viability, and the BrdU-assay was applied for proliferation. RESULTS The release profile showed an initial and a final burst of methotrexate with an intervening steady state that lasted 9-11 weeks. It showed inhibitory effects on pathobiological processes in human PVR-cells in vitro. Cell velocity in the time-lapse assay, migration in the scratch assay (p = 0.001), and proliferation in the BrdU assay (p = 0.027) were reduced after addition of the drug carrier. These effects occurred without causing a reduction in viability in the WST-1 assay (p > 0.99) and the live-dead assay. CONCLUSION The methotrexate-loaded drug carrier can maintain a stable concentration for 9-11 weeks and influence the pathobiological process of PVR cells in vitro. Therefore, it represents a potential therapeutic orphan drug for PVR.
Collapse
|
8
|
Synchronizing the release rates of topotecan and paclitaxel from a self-eroding crosslinked chitosan - PLGA platform. Int J Pharm 2022; 623:121945. [PMID: 35738334 DOI: 10.1016/j.ijpharm.2022.121945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/04/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022]
Abstract
This study is a continuation of a previous study in which two model drugs, sodium salicylate (highly water-soluble) and indomethacin (low water-soluble) were loaded into an erodible hydrogel, made of ionically crosslinked chitosan (x-Ct). The erosion rate of the x-Ct matrix was controlled by its immersion in calcium chloride solutions (de-crosslinker) of different concentrations, leading to synchronization of the release rates of the two drugs over 2 h. In the present study, a modified platform was developed in order to (a) synchronize the release rates of the two cytotoxic drugs, topotecan (TT, highly water soluble) and paclitaxel (PTX, poorly water soluble); (b) prolong the erosion duration and the derived concomitant release of the two drugs to several days. TT was loaded into a PLGA sphere, which was co-loaded with calcium chloride (CaCl2). The sphere was then placed in an aqueous solution of chitosan (Ct) in which PTX was dispersed. A PLGA core-containing hydrogel was then produced by ionically crosslinking the Ct. The formulation screening section of the study includes a statistically designed Fractional Factorial experiment. It was comprised of the following five experimental factors: (a) the type of Ct and (b) its relative amount in the formulation, (c) the type of ionic crosslinker (citric acid or oxalic acid), (d) the concentration of the ionic crosslinker and (e) the co-loaded amounts of CaCl2 (the constitutional de-crosslinking agent). The difference factor, f1, and the similarity factor, f2, of the TT and PTX release profiles into water, were used as the experimental responses. The computerized prediction models were employed to assess the collective effects of the pre-determined experimental factors on the difference factor, f1, and the similarity factor, f2 (the response factors), by employing a fractional factorial design and multifactorial analysis, without the need to account for the exact mechanisms of the release processes involved. The final composite platform was capable of releasing TT and PTX, at similar (concomitant) rates, over a period of 7 days, a finding which suggests that the novel polymeric platform may serve as a multi-drug implant. An attractive medical application for such a device would be post-operative local treatment that could benefit from localized combination chemotherapy after the removal of malignant tissues, in the surgical treatment of breast cancer, ovarian cancer, glioma and peritoneal carcinomatosis.
Collapse
|