1
|
Sousa AB, Martins C, Sarmento B, Barbosa MA, Barbosa JN. Zein nanocarriers for controlled maresin-1 delivery: A novel approach in biomaterial-based immunomodulation. BIOMATERIALS ADVANCES 2025; 172:214238. [PMID: 40015102 DOI: 10.1016/j.bioadv.2025.214238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/29/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
In this research work, we report the development of a new immunoengineering approach of sustained drug delivery for regenerative medicine applications. We have produced an innovative nanobiomaterial that integrates the unique advantages of zein, as a protein-based delivery system, with maresin-1, a specialised pro-resolving mediator that plays a critical role in controlling inflammation and promoting its resolution. A microfluidic chip was used as a manufacturing platform to load maresin-1 into zein nanoparticles, by flow-focusing the organic central stream with the aqueous outer fluid. We were able to develop homogeneous nanoparticles presenting a mean diameter between 100 and 117 nm. Different drug loadings were tested: 10, 50, and 100 nM of maresin-1. The nanoparticles loaded with the highest concentration of maresin-1 presented a more controlled release profile throughout 72 h. The biocompatibility and immunomodulatory potential were assessed in primary human macrophages. Maresin-1-loaded zein nanoparticles were non-cytotoxic and, the nanoparticles loaded with 100 nM maresin-1 significantly enhanced macrophage polarisation towards an anti-inflammatory M2-like phenotype, as evidenced by a pronounced increase in the M2/M1 ratio. This polarisation effect was higher than that obtained with free maresin-1 or empty zein nanoparticles, highlighting the synergistic potential of this nanocarrier system. This work emphasizes maresin-1-loaded zein nanoparticles as a safe and effective immunomodulatory platform, paving the way for novel therapeutic approaches in inflammation management and tissue repair and regeneration.
Collapse
Affiliation(s)
- Ana Beatriz Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Cláudia Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, 4585-116 Gandra, Portugal
| | - Mário Adolfo Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Judite Novais Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Zhang J, Wang Z, Wu X, Piao S, Zhang Q, Zhou D. Covalent modulation of zein surface potential by gallic acid to enhance the formation of electrostatic-driven ternary antioxidant complex coacervates with chitosan. Food Chem 2025; 475:143233. [PMID: 39938273 DOI: 10.1016/j.foodchem.2025.143233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Despite existing research on the interaction between zein (Z) and chitosan (CS), the formation and mechanisms of ternary electrostatic coacervates incorporating polyphenols remain unclear. Herein, we covalently and non-covalently modified zein with gallic acid (GA). Comparisons revealed that the covalent coupling of Z with GA (forming Z(GA)) reduced zein's surface potential, enabling them to form tightly bound coacervates with cationic polysaccharide chitosan through electrostatic attraction. Turbidity, ζ-potential, and appearance experiments indicated that the maximum yield of insoluble coacervates was achieved at a Z(GA)/CS mass ratio of 7:1 and pH 6.5. Furthermore, the coacervate properties were evaluated using Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, and microscopic structure analysis. Electrostatic attraction between the -COO- groups of Z(GA) and the -NH3+ groups of CS triggered complex coacervation, which induced structural modifications and enhanced thermal stability. This study fosters the efficient encapsulation and controlled release of nutraceuticals, enhancing human absorption.
Collapse
Affiliation(s)
- Jinsong Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| | - Zhiheng Wang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| | - Xinling Wu
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| | - Shengyi Piao
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| | - Qiang Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| | - Deyi Zhou
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| |
Collapse
|
3
|
Babinski T, Padilha Lorenzett AK, Ziebarth J, Lima VAD, Mainardes RM. Optimization of Zein-Casein-Hyaluronic Acid Nanoparticles Obtained by Nanoprecipitation Using Design of Experiments (DoE). ACS OMEGA 2025; 10:13440-13452. [PMID: 40224433 PMCID: PMC11983202 DOI: 10.1021/acsomega.4c11636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025]
Abstract
Zein-based nanoparticles offer significant potential as carriers for drug delivery due to their biocompatibility. However, optimizing their formulation is essential to achieving efficient encapsulation and stability. This study aimed to optimize the formulation of zein-casein-hyaluronic acid-based nanoparticles for the encapsulation of a hydrophilic drug, focusing on achieving favorable physicochemical properties for oral drug delivery applications. A factorial experimental design was employed to evaluate the influence of key formulation parameters, including zein concentration, hyaluronic acid concentration, sodium caseinate concentration, and the organic-to-aqueous phase (O/W) ratio. Particle size (PS), polydispersity index (PDI), zeta potential, and encapsulation efficiency (EE) were analyzed as response variables. Multivariate analyses, such as hierarchical cluster analysis and principal component analysis, were performed to explore the relationships between formulation parameters and nanoparticle properties. Model validity was confirmed by using ANOVA and residual analysis. Optimized nanoparticles exhibited a PS of 217 ± 5 nm, PDI of 0.077 ± 0.022, zeta potential of -24.7 ± 1.9 mV, and EE of 31% ± 4. The nanoparticles displayed a monomodal size distribution and a spherical morphology. Multivariate analyses revealed that the O/W ratio and zein concentration were the most influential factors, while sodium caseinate played a crucial stabilizing role. The desirability function yielded a high score (D = 0.9338), confirming the robustness of the optimization process. Stability studies demonstrated that refrigeration at 8 °C preserved the nanoparticles' physicochemical properties over 180 days. This study underscores the power of experimental design as a tool to refine nanoparticle formulations, paving the way for more efficient drug delivery systems and unlocking new possibilities for the oral administration of hydrophilic compounds.
Collapse
Affiliation(s)
- Tatiane
Patrícia Babinski
- Laboratory
of Nanostructured Formulations, Universidade
Estadual do Centro-Oeste, Élio Antonio Dalla Vecchia St, 838, 85040-167 Guarapuava, PR, Brazil
| | - Ariane Krause Padilha Lorenzett
- Laboratory
of Nanostructured Formulations, Universidade
Estadual do Centro-Oeste, Élio Antonio Dalla Vecchia St, 838, 85040-167 Guarapuava, PR, Brazil
| | - Jeferson Ziebarth
- Laboratory
of Nanostructured Formulations, Universidade
Estadual do Centro-Oeste, Élio Antonio Dalla Vecchia St, 838, 85040-167 Guarapuava, PR, Brazil
| | | | - Rubiana Mara Mainardes
- Laboratory
of Nanostructured Formulations, Universidade
Estadual do Centro-Oeste, Élio Antonio Dalla Vecchia St, 838, 85040-167 Guarapuava, PR, Brazil
- Department
of Pharmacy, Universidade Estadual do Centro-Oeste, Élio Antonio Dalla Vecchia
St, 838, 85040-167 Guarapuava, PR, Brazil
| |
Collapse
|
4
|
Xia XH, Guan YX, Wang S, Shen LQ, Wei SG, Luo P, Liu LJ, Tan ZE, Gong XM, Zhang ZF, Sooranna S, He LL. Encapsulation of astilbin in zein nanoparticles with fructo-oligosaccharides and caseinate as costabilizers: Formation, stability, bioavailability, and antioxidant capacity. Int J Biol Macromol 2025; 298:139865. [PMID: 39814290 DOI: 10.1016/j.ijbiomac.2025.139865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Zein-based nanoparticles (NPs) have attracted considerable attention as potential delivery systems for bioactive compounds. However, their application has been limited by poor stability and redispersibility. In this study, we addressed these challenges by fabricating zein nanocarriers using branching structural fructo-oligosaccharides (P-FOS) and sodium caseinate (NaCas) as costabilizers. P-FOS and NaCas were incorporated through an antisolvent coassembled precipitation technique. Astilbin (Ast) served as a model lipophilic bioactive compound to evaluate this innovative nanocarrier system. The results showed that Ast-loaded zein/P-FOS/NaCas nanoparticles (AZPS NPs) were successfully prepared, featuring a distinct spherical core-shell structure with a mean particle size of 156.4 ± 2.1 nm, zeta potential of -27.5 ± 3.5 eV and a uniform size distribution. Microstructural analysis using Fourier transform infrared spectroscopy, X-ray diffraction, and high-resolution transmission electron microscopy with energy-dispersive X-ray spectroscopy revealed that electrostatic interactions, hydrophobic interactions, and intermolecular hydrogen bonding contributed to the formation of the composite NPs. Compared to Ast-loaded zein NPs stabilized solely with NaCas (AZS), AZPS NPs exhibited superior stability under various environmental conditions (temperature, pH, and ionic strength) and demonstrated exceptional redispersibility after freeze drying. They also achieved an efficient Ast encapsulation rate of 92.3 % and a loading capacity of 12.4 %, compared to 73.56 % and 13.3 % in AZS, along with significantly enhanced bioavailability (2.4-fold) and antioxidation activity of Ast. Our findings suggest that P-FOS and NaCas are effective costabilizers for zein NPs, providing new insights into the application of fructans in zein-based composite NPs for the efficient delivery of hydrophobic bioactive compounds in cosmetics, pharmaceuticals, and food industries.
Collapse
Affiliation(s)
- Xiang-Hua Xia
- National Engineering Institute for the Research and Development of Endangered Medicinal Resources in Southwest China, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Yan-Xun Guan
- College of Chemistry and Chemical Engineering, Guangxi Minzu University; Key Laboratory of Development and Application of Forest Chemicals of Guangxi, Nanning 530006, China
| | - Shuo Wang
- National Engineering Institute for the Research and Development of Endangered Medicinal Resources in Southwest China, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Li-Qun Shen
- College of Chemistry and Chemical Engineering, Guangxi Minzu University; Key Laboratory of Development and Application of Forest Chemicals of Guangxi, Nanning 530006, China
| | - Shu-Gen Wei
- National Engineering Institute for the Research and Development of Endangered Medicinal Resources in Southwest China, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-Di Herbs, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Pei Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ling-Jie Liu
- National Engineering Institute for the Research and Development of Endangered Medicinal Resources in Southwest China, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Zhi-En Tan
- National Engineering Institute for the Research and Development of Endangered Medicinal Resources in Southwest China, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Xiao-Mei Gong
- National Engineering Institute for the Research and Development of Endangered Medicinal Resources in Southwest China, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Zhi-Feng Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Suren Sooranna
- Department of Metabolism, Digestion and Reproduction, Imperial College, London, United Kingdom of Great Britain and Northern Ireland
| | - Li-Li He
- National Engineering Institute for the Research and Development of Endangered Medicinal Resources in Southwest China, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-Di Herbs, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China.
| |
Collapse
|
5
|
Abdelsalam AM, Balash A, Khedr SM, Amin MU, Engelhardt KH, Preis E, Bakowsky U. Improved Photodynamic Therapy of Hepatocellular Carcinoma via Surface-Modified Protein Nanoparticles. Pharmaceutics 2025; 17:370. [PMID: 40143033 PMCID: PMC11944767 DOI: 10.3390/pharmaceutics17030370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Photodynamic therapy (PDT) has evolved as a reliable therapeutic modality for cancer. However, the broad application of the technique is still limited because of poor bioavailability and the non-selective distribution of photosensitizers within host tissues. Herein, zein, a natural corn protein, was functionalized with glycyrrhetinic acid (GA) and polyethylene glycol (Z-PEG-GA) as a targeting platform for liver cancer cells. Parietin, as novel photosensitizer, was successfully encapsulated into zein via nanoprecipitation and used for the therapy of hepatocellular carcinoma. Methods: The in vitro phototoxicity of Z-PEG-GA nanoparticles and their non-functionalized control (Z-PEG) were assessed against hepatocellular carcinoma (HepG2 cells) and the In vivo biodistribution was determined in an adult male CD-1 Swiss albino mice model. Results: The formulated Z-PEG and Z-PEG-GA showed spherical shapes with average sizes of 82.8 and 94.7 nm for unloaded nanoparticles, respectively, and 109.7 and 111.5 nm for loaded nanoparticles carrying more than 70% of parietin, and Quantum yield measurements show that parietin's photodynamic potential is conserved. Moreover, parietin-loaded Z-PEG-GA exhibited three-fold higher toxicity against liver cancer cells than its non-functionalized control and attained more than an eleven-fold enhancement in the generated intracellular reactive oxygen species (ROS) at a 9 J/cm2 radiant exposure. The generated intracellular ROS led to mitochondrial disruption and the release of cytochrome c. In vivo biodistribution studies revealed that fluorescence signals of Z-PEG-GA can persist in the excised animal liver for up to 24 h post-administration. Conclusions: Consequently, tailored zein can hold great potential for delivering several hydrophobic photosensitizers in anticancer PDT.
Collapse
Affiliation(s)
- Ahmed M. Abdelsalam
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany; (A.M.A.); (M.U.A.); (K.H.E.); (E.P.)
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Amir Balash
- Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 10, 35032 Marburg, Germany;
| | - Shaimaa M. Khedr
- Pharmaceutical and Fermentation Industries Development Center (PFIDC), City of Scientific Research and Technology Applications (SRTA-City), New Borg El Arab 21111, Egypt;
| | - Muhammad Umair Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany; (A.M.A.); (M.U.A.); (K.H.E.); (E.P.)
| | - Konrad H. Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany; (A.M.A.); (M.U.A.); (K.H.E.); (E.P.)
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany; (A.M.A.); (M.U.A.); (K.H.E.); (E.P.)
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany; (A.M.A.); (M.U.A.); (K.H.E.); (E.P.)
| |
Collapse
|
6
|
Gao Z, Tan J, Sun Y, Jiang X. Size effect of ZIF-8 based nanocarrier pesticide delivery system on targeted release and insecticidal activity. PEST MANAGEMENT SCIENCE 2025; 81:966-977. [PMID: 39467019 DOI: 10.1002/ps.8501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/13/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Traditional chemical pesticides are easily lost by surface runoff and only small quantities reach the target, thus causing serious environmental pollution. In this work, dinotefuran@zeolitic imidazolate framework-8@polydopamine@zein (DNF@ZIF-8@PDA@zein), was constructed to deliver DNF with pH and enzyme double response of release, thereby achieving targeted release and efficient long-term pest control. RESULTS DNF@ZIF-8@PDA@zein was synthesized with three hydrated diameters (249.73 ± 9.99 nm, 142.94 ± 5.63 nm and 75.16 ± 4.66 nm, respectively). The release of DNF from DNF@ZIF-8@PDA@zein after 28 h was significantly higher at pH 5.0 (89.22 ± 7.18%) compared to that at pH 8 (81.8 ± 6.11%). Protease-assisted release of DNF was notably higher than that without protease (pH 5: 89.22 ± 5.55% versus 27.19 ± 3.22%; pH 8: 81.8 ± 6.11% versus 25.39 ± 3.87%). The stimuli-responsive release of DNF from DNF@ZIF-8@PDA@zein increased with decreased particle size due to increased pore size, reduced binding forces (i.e., weaker π-π stacking, hydrogen bonding, and Zn-N covalent bonding), and the shortening of diffusion path, leading to faster disintegration and drug release. Additionally, the anti-photolysis ability of DNF@ZIF-8@PDA@zein was 3.2 times that of pure DNF. The insecticidal activity improved with smaller nanoparticles due to higher drug release rate and greater inhibition of detoxification enzyme activity by more zinc ion (Zn2+) dissolution. CONCLUSION The pH and enzyme dual-responsive release as well as insecticidal activity of DNF@ZIF-8@PDA@zein increase with decreased nanoparticle size, showing effective pest management in long-term and potential application prospects in sustainable agriculture. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhou Gao
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, P. R. China
| | - Jinfang Tan
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, P. R. China
| | - Yuqing Sun
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, P. R. China
| | - Xiaoqian Jiang
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, P. R. China
| |
Collapse
|
7
|
He C, Zhou J, Wu X, Zhou Y, Wang S, Liu B, Luo T, Chen Y, Yuan J, Wang D, Zhang C, Shi J. Hyaluronic acid-zein shell-core biopolymer nanoparticles enhance hepatocellular carcinoma therapy of celastrol via CD44-mediated cellular uptake. Int J Biol Macromol 2024; 281:136096. [PMID: 39353524 DOI: 10.1016/j.ijbiomac.2024.136096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Low concentrations or limited residence times in tumor tissues, making celastrol (Cel) difficult to exert significant therapeutic effects. Thus, we developed Zein/hyaluronic acid core-shell nanoparticles (Cel/Zein@HA NPs) for active targeted delivery of Cel via CD44 receptor over-expression on cancer cells, which may strengthen the therapeutic efficacy of Cel and improve delivery targeting. Cel-loaded Zein nanoparticles (core), are elegantly enveloped by a hydrophilic HA coating that forms the shell, resulting in significantly improved encapsulation efficiency and ensured good stability. The cellular uptake of Cel/Zein@HA NPs in HepG2 cells was 1.57-fold higher than nontargeting Cel/Zein NPs. Near-infrared fluorescence imaging confirmed the accumulation of Cel/Zein@HA NPs in H22 liver cancer tumors in mice, resulting in effective antitumor effects and good biosafety. Besides, in vitro and in vivo experiments showed that compared with Cel/Zein NPs, Cel/Zein@HA NPs had more efficient inhibitory effect on tumor proliferation and lower systemic toxicity. Further studies revealed that Cel/Zein@HA NPs induced apoptosis in hepatocellular carcinoma cells by modulating Bax and Bcl-2 expression, while also inhibiting tumor angiogenesis by decreasing CD31 and VEGF levels. Overall, this study presents a promising strategy for enhancing targeted liver cancer therapy through the utilization of biopolymer nanoparticle-based nano-pharmaceuticals that facilitate CD44-mediated cellular uptake.
Collapse
Affiliation(s)
- Congjian He
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Jiahui Zhou
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Xixi Wu
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Yujin Zhou
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Siya Wang
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Bo Liu
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Ting Luo
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Ying Chen
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Jia Yuan
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Di Wang
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Chen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jinfeng Shi
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China.
| |
Collapse
|
8
|
Corteggio A, Heinzl T, Boraschi D, Voci S, Gagliardi A, Cosco D, Italiani P. Safety of Zein Nanoparticles on Human Innate Immunity and Inflammation. Int J Mol Sci 2024; 25:11630. [PMID: 39519184 PMCID: PMC11546227 DOI: 10.3390/ijms252111630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
In recent years, natural polymers have attracted great interest for the development of release systems for vaccine formulations and drug delivery. Zein, a hydrophobic proline-rich protein mixture obtained from maize, is one of the most widely used polymers, very promising for applications in tissue engineering and the parenteral delivery of bioactive agents. Still, we have a limited understanding of the interaction between zein particles and the human immune system, in particular innate immunity/inflammation, which is the first line of defense of our body. Assessing the immune safety of nanoparticles is of central importance for ensuring that nano-formulations for medical use do not cause adverse effects on human health. Here, we evaluated the capacity of zein nanoparticles to induce/modulate the innate/inflammatory response, the development of innate memory, and the macrophage polarization by using reliable in vitro systems based on human primary monocytes and monocyte-derived macrophages. We observed that zein nanoparticles do not influence any of these aspects of the innate immune/inflammatory response, suggesting its safety and its potential efficiency as a nanocarrier for drug or antigen delivery.
Collapse
Affiliation(s)
- Annunziata Corteggio
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Napoli, Italy; (A.C.); (T.H.); (D.B.)
| | - Tommaso Heinzl
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Napoli, Italy; (A.C.); (T.H.); (D.B.)
| | - Diana Boraschi
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Napoli, Italy; (A.C.); (T.H.); (D.B.)
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen University of Advanced Technology, Shenzhen 518055, China
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation (SIAT, CNR), Shenzhen 518055, China
- Stazione Zoologica Anton Dohrn (SZN), 80121 Napoli, Italy
| | - Silvia Voci
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “Salvatore Venuta”, 88100 Catanzaro, Italy; (S.V.); (A.G.)
| | - Agnese Gagliardi
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “Salvatore Venuta”, 88100 Catanzaro, Italy; (S.V.); (A.G.)
| | - Donato Cosco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “Salvatore Venuta”, 88100 Catanzaro, Italy; (S.V.); (A.G.)
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Napoli, Italy; (A.C.); (T.H.); (D.B.)
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation (SIAT, CNR), Shenzhen 518055, China
- Stazione Zoologica Anton Dohrn (SZN), 80121 Napoli, Italy
| |
Collapse
|
9
|
Preetam S, Duhita Mondal D, Mukerjee N, Naser SS, Tabish TA, Thorat N. Revolutionizing Cancer Treatment: The Promising Horizon of Zein Nanosystems. ACS Biomater Sci Eng 2024; 10:1946-1965. [PMID: 38427627 PMCID: PMC11005017 DOI: 10.1021/acsbiomaterials.3c01540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/03/2024]
Abstract
Various nanomaterials have recently become fascinating tools in cancer diagnostic applications because of their multifunctional and inherent molecular characteristics that support efficient diagnosis and image-guided therapy. Zein nanoparticles are a protein derived from maize. It belongs to the class of prolamins possessing a spherical structure with conformational properties similar to those of conventional globular proteins like ribonuclease and insulin. Zein nanoparticles have gained massive interest over the past couple of years owing to their natural hydrophilicity, ease of functionalization, biodegradability, and biocompatibility, thereby improving oral bioavailability, nanoparticle targeting, and prolonged drug administration. Thus, zein nanoparticles are becoming a promising candidate for precision cancer drug delivery. This review highlights the clinical significance of applying zein nanosystems for cancer theragnostic─moreover, the role of zein nanosystems for cancer drug delivery, anticancer agents, and gene therapy. Finally, the difficulties and potential uses of these NPs in cancer treatment and detection are discussed. This review will pave the way for researchers to develop theranostic strategies for precision medicine utilizing zein nanosystems.
Collapse
Affiliation(s)
- Subham Preetam
- Department
of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
| | - Deb Duhita Mondal
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata, West Bengal 700107, India
| | - Nobendu Mukerjee
- Centre
for Global Health Research, Saveetha Medical
College and Hospital, Chennai 602105, India
- Department
of Science and Engineering, Novel Global
Community and Educational Foundation, Hebasham 2770, NSW, Australia
| | | | - Tanveer A. Tabish
- Division
of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Nanasaheb Thorat
- Nuffield
Department of Women’s & Reproductive Health, Medical Science
Division, John Radcliffe Hospital University
of Oxford, Oxford, OX3 9DU, United Kingdom
- Department
of Physics, Bernal Institute and Limerick
Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick V94T9PX, Ireland
| |
Collapse
|
10
|
Condello A, Piacentini E, Giorno L. Insights into the preparation of zein nanoparticles by continuous membrane nanoprecipitation. Int J Biol Macromol 2024; 265:130935. [PMID: 38493815 DOI: 10.1016/j.ijbiomac.2024.130935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Nanoparticles (NPs) preparation is limited to an exclusive use in batch processes and small-scale formulations. The use of membranes as high-performance micromixers is expected to open new scenarios to overcome limitations of conventional nanoprecipitation system such as stirred tank (ST) nanoprecipitation. The ability of the porous membrane to add uniformly one phase to another and govern their mixing at the membrane interface seems to be an important parameter for obtaining uniform NPs. Inorganic membranes (pore size of 1 μm) were used to carry out membrane nanoprecipitation (MN) to form Zein nanoparticles (ZNPs) at pores level by non-solvent induced phase separation. A systematic study of the preparation of ZNPs in the ST and MN systems was carried out to establish the Ouzo diagram. The influence of zein concentration and solvent to non-solvent ratio on the size and size distribution of ZNPs was also investigated. A wider stable Ouzo zone was obtained with MN than with the ST process. ZNPs size increased from 100 nm up to 700 nm, while maintaining low polydispersity index (PDI < 0.2). The results demonstrate the suitability of MN for the continuous production of ZNPs and open the possibility of scaling up the nanoprecipitation process.
Collapse
Affiliation(s)
- A Condello
- National Research Council of Italy, Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, CS, Italy; Physics Department, University of Calabria, Ponte P. Bucci 33B, 87036 Rende, CS, Italy.
| | - E Piacentini
- National Research Council of Italy, Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, CS, Italy.
| | - L Giorno
- National Research Council of Italy, Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, CS, Italy.
| |
Collapse
|
11
|
Xiang Z, Guan H, Zhao X, Xie Q, Xie Z, Cai F, Dang R, Li M, Wang C. Dietary gallic acid as an antioxidant: A review of its food industry applications, health benefits, bioavailability, nano-delivery systems, and drug interactions. Food Res Int 2024; 180:114068. [PMID: 38395544 DOI: 10.1016/j.foodres.2024.114068] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Gallic acid (GA), a dietary phenolic acid with potent antioxidant activity, is widely distributed in edible plants. GA has been applied in the food industry as an antimicrobial agent, food fresh-keeping agent, oil stabilizer, active food wrap material, and food processing stabilizer. GA is a potential dietary supplement due to its health benefits on various functional disorders associated with oxidative stress, including renal, neurological, hepatic, pulmonary, reproductive, and cardiovascular diseases. GA is rapidly absorbed and metabolized after oral administration, resulting in low bioavailability, which is susceptible to various factors, such as intestinal microbiota, transporters, and metabolism of galloyl derivatives. GA exhibits a tendency to distribute primarily to the kidney, liver, heart, and brain. A total of 37 metabolites of GA has been identified, and decarboxylation and dihydroxylation in phase I metabolism and sulfation, glucuronidation, and methylation in phase Ⅱ metabolism are considered the main in vivo biotransformation pathways of GA. Different types of nanocarriers, such as polymeric nanoparticles, dendrimers, and nanodots, have been successfully developed to enhance the health-promoting function of GA by increasing bioavailability. GA may induce drug interactions with conventional drugs, such as hydroxyurea, linagliptin, and diltiazem, due to its inhibitory effects on metabolic enzymes, including cytochrome P450 3A4 and 2D6, and transporters, including P-glycoprotein, breast cancer resistance protein, and organic anion-transporting polypeptide 1B3. In conclusion, in-depth studies of GA on food industry applications, health benefits, bioavailability, nano-delivery systems, and drug interactions have laid the foundation for its comprehensive application as a food additive and dietary supplement.
Collapse
Affiliation(s)
- Zedong Xiang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Huida Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Xiang Zhao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Qi Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Zhejun Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Fujie Cai
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Rui Dang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Manlin Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China.
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China.
| |
Collapse
|
12
|
Takács D, Adžić M, Omerović N, Vraneš M, Katona J, Pavlović M. Electrolyte-induced aggregation of zein protein nanoparticles in aqueous dispersions. J Colloid Interface Sci 2024; 656:457-465. [PMID: 38006868 DOI: 10.1016/j.jcis.2023.11.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Ion specific effects on the charging and aggregation features of zein nanoparticles (ZNP) were studied in aqueous suspensions by electrophoretic and time-resolved dynamic light scattering techniques. The influence of mono- and multivalent counterions on the colloidal stability was investigated for positively and negatively charged particles at pH values below and above the isoelectric point, respectively. The sequence of the destabilization power of monovalent salts followed the prediction of the indirect Hofmeister series for positively charged particles, while the direct Hofmeister series for negatively charged ones assumed a hydrophobic character for their surface. The multivalent ions destabilized the oppositely charged ZNPs more effectively and the aggregation process followed the Schulze-Hardy rule. For some multivalent ions, strong adsorption led to charge reversal resulting in restabilization of the suspensions. The experimental critical coagulation concentrations (CCCs) could be well-predicted with the theory developed by Derjaguin, Landau, Verwey and Overbeek indicating that the aggregation processes were mainly driven by electrical double layer repulsion and van der Waals attraction. The ion specific dependence of the CCCs is owing to the modification of the surface charge through ion adsorption at different extents. These results are crucial for drug delivery applications, where inorganic electrolytes are present in ZNP samples.
Collapse
Affiliation(s)
- Dóra Takács
- MTA-SZTE Lendület Biocolloids Research Group, Department of Physical Chemistry and Materials Science, University of Szeged, 6720 Szeged, Hungary
| | - Maja Adžić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Nejra Omerović
- BioSense Institute, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Milan Vraneš
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Jaroslav Katona
- Department of Applied and Engineering Chemistry, Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Marko Pavlović
- BioSense Institute, University of Novi Sad, 21000 Novi Sad, Serbia; Department of Physics and John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA-02138 Cambridge, USA.
| |
Collapse
|
13
|
Patel P, Pathak A, Jain K. Novel ligand decorated theranostic zein nanoparticles coloaded with paclitaxel and carbon quantum dots: formulation and optimization. Nanomedicine (Lond) 2024; 19:367-382. [PMID: 38305304 DOI: 10.2217/nnm-2023-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Aim: The present research focused on development and optimization of ligand decorated theranostic nanocarrier encapsulating paclitaxel and carbon quantum dots (CQDs). Methods: CQDs were prepared by microwave-assisted pyrolysis and were characterized for particle size and fluorescence behavior. Ligand decorated zein nanoparticles, coloaded with paclitaxel and CQDs, were formulated using a one-step nanoprecipitation method and optimized for various process parameters. Results: Particle size for coated and uncoated nanoparticles was 90.16 ± 1.65 and 179.26 ± 3.61 nm, respectively, and entrapment efficiency was >80%. The circular dichroism spectroscopy showed zein retained its secondary structure and release study showed biphasic release behavior. Conclusion: The prepared theranostic nanocarrier showed optimal fluorescence and desired release behavior without altering the secondary structure of zein.
Collapse
Affiliation(s)
- Parth Patel
- Drug Delivery & Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER) - Raebareli, Lucknow, 226002, India
| | - Anchal Pathak
- Drug Delivery & Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER) - Raebareli, Lucknow, 226002, India
| | - Keerti Jain
- Drug Delivery & Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER) - Raebareli, Lucknow, 226002, India
| |
Collapse
|
14
|
Hameedat F, Pinto S, Marques J, Dias S, Sarmento B. Functionalized zein nanoparticles targeting neonatal Fc receptor to enhance lung absorption of peptides. Drug Deliv Transl Res 2023; 13:1699-1715. [PMID: 36587110 PMCID: PMC10126044 DOI: 10.1007/s13346-022-01286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2022] [Indexed: 01/02/2023]
Abstract
Peptides have a distinguished therapeutic potential for several chronic conditions, and more than 80 peptides exist in the global market. However, most of these marketed peptide drugs are currently delivered intravenously or subcutaneously due to their fast degradation and limited absorption through non-invasive routes. The pulmonary route is favored as a non-invasive route. Neonatal Fc receptor (FcRn) is expressed in adult human lungs and has a role in enhancing the pulmonary absorption of monoclonal antibodies. In this work, we developed and characterized candidate protein delivery systems for the pulmonary administration of peptides. The prepared bare and loaded zein nanoparticles (ZNPs), targeted, physically, and covalently PEGylated ZNPs showed hydrodynamic diameters between 137 and 155 nm and a narrow distribution index. Insulin, which was used as a protein model, showed an association efficiency of 72%, while the FcRn-targeted peptide conjugation efficiency was approximately 68%. The physically adsorbed poloxamer 407 on insulin-loaded ZNPs showed slower and controlled insulin release. The in vitro cell culture model consists of the NCI-H441 epithelial cell line, which confirmed its expression of the targeted receptor, FcRn. The safety of ZNPs was verified after incubation with both cell lines of the in vitro pulmonary model, namely NCI-H441 and HPMEC-ST1.6R, for 24 h. It was observed that targeted ZNPs enhanced insulin permeability by showing a higher apparent permeation coefficient than non-targeted ZNPs. Overall, both targeted PEGylated ZNPs showed to be suitable peptide carriers and adequately fit the demands of delivery systems designed for pulmonary administration.
Collapse
Affiliation(s)
- Fatima Hameedat
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- NANOMED EMJMD, Pharmacy School, Faculty of Health, University of Angers, Angers, France
- INEB - Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Soraia Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Joana Marques
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- FFUP - Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Sofia Dias
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- INEB - Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- IUCS - CESPU, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal.
| |
Collapse
|
15
|
Wang Z, Chu Y, Tao X, Li J, Wang L, Sang Y, Lu X, Chen L. Bacterial outer membrane vesicles-cloaked modified zein nanoparticles for oral delivery of paclitaxel. Pharm Dev Technol 2023; 28:414-424. [PMID: 37067950 DOI: 10.1080/10837450.2023.2204163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
To improve the aqueous solubility and oral bioavailability of paclitaxel (PTX), a biomimetic system for oral administration of PTX was efficiently developed as an outer membrane vesicle (OMVs) of sodium caseinate (CAS) modified zein nanoparticles (OMVs-Zein-CAS-PTX-NPs) by Escherichia coli. To verify their structure and properties, the designed nanostructures were thoroughly characterized using various characterization techniques. The results indicated that hydrogen bonds and van der Waals forces mainly drove the interaction between PTX and Zein, but the complex is unstable. The physicochemical stability of PTX-loaded zein nanoparticles was improved by the addition of CAS. The biological characteristics of biofilms are reproduced by nanoparticles cloaked with outer membrane vesicles. OMVs-Zein-CAS-PTX-NPs delayed the release of PTX under simulated gastric and intestinal fluids due to OMVs protection. OMVs-Zein-CAS-PTX-NPs exhibited remarkable antitumor ability in vitro and improved the bioavailability of oral administration of PTX in vivo. Therefore, OMVs cloaked in nanoparticles may be a suitable delivery vehicle to provide an efficient application prospect for the oral administration of PTX.
Collapse
Affiliation(s)
- Zeyu Wang
- School of Pharmaceutical Science, Liaoning University, Shenyan, China
| | - Yuqi Chu
- School of Pharmaceutical Science, Liaoning University, Shenyan, China
| | - Xu Tao
- School of Pharmaceutical Science, Liaoning University, Shenyan, China
| | - Jianchao Li
- School of Pharmaceutical Science, Liaoning University, Shenyan, China
| | - Lihong Wang
- School of Pharmaceutical Science, Liaoning University, Shenyan, China
| | - Yuli Sang
- School of Pharmaceutical Science, Liaoning University, Shenyan, China
| | - Xiuli Lu
- School of Life Science, Liaoning University, Shenyang, China
| | - Lijiang Chen
- School of Pharmaceutical Science, Liaoning University, Shenyan, China
| |
Collapse
|
16
|
Shi W, Li S, Wang X, Li S, Zhang X. Characterization and properties of hexaconazole-loaded nanoparticles prepared by anti-solvent method. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
17
|
Kučuk N, Primožič M, Knez Ž, Leitgeb M. Sustainable Biodegradable Biopolymer-Based Nanoparticles for Healthcare Applications. Int J Mol Sci 2023; 24:3188. [PMID: 36834596 PMCID: PMC9964453 DOI: 10.3390/ijms24043188] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Biopolymeric nanoparticles are gaining importance as nanocarriers for various biomedical applications, enabling long-term and controlled release at the target site. Since they are promising delivery systems for various therapeutic agents and offer advantageous properties such as biodegradability, biocompatibility, non-toxicity, and stability compared to various toxic metal nanoparticles, we decided to provide an overview on this topic. Therefore, the review focuses on the use of biopolymeric nanoparticles of animal, plant, algal, fungal, and bacterial origin as a sustainable material for potential use as drug delivery systems. A particular focus is on the encapsulation of many different therapeutic agents categorized as bioactive compounds, drugs, antibiotics, and other antimicrobial agents, extracts, and essential oils into protein- and polysaccharide-based nanocarriers. These show promising benefits for human health, especially for successful antimicrobial and anticancer activity. The review article, divided into protein-based and polysaccharide-based biopolymeric nanoparticles and further according to the origin of the biopolymer, enables the reader to select the appropriate biopolymeric nanoparticles more easily for the incorporation of the desired component. The latest research results from the last five years in the field of the successful production of biopolymeric nanoparticles loaded with various therapeutic agents for healthcare applications are included in this review.
Collapse
Affiliation(s)
- Nika Kučuk
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
18
|
Garavand F, Khodaei D, Mahmud N, Islam J, Khan I, Jafarzadeh S, Tahergorabi R, Cacciotti I. Recent progress in using zein nanoparticles-loaded nanocomposites for food packaging applications. Crit Rev Food Sci Nutr 2022; 64:3639-3659. [PMID: 36222362 DOI: 10.1080/10408398.2022.2133080] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Biopolymers are important due to their exceptional functional and barrier properties and also their non-toxicity and eco-friendly nature for various food, biomedical, and pharmaceutical applications. However, biopolymers usually need reinforcement strategies to address their poor mechanical, thermal, and physical properties as well as processability aspects. Several natural nanoparticles have been proposed as reinforcing agents for biopolymeric food packaging materials. Among them, zein nanoparticles (ZNPs) have attracted a lot of interest, being an environmentally friendly material. The purpose of the present review paper is to provide a comprehensive overview of the ZNPs-loaded nanocomposites for food packaging applications, starting from the synthesis, characteristics and properties of ZNPs, to the physicochemical properties of the ZNPs-loaded nanocomposites, in terms of morphology, permeability, solubility, optical features, hydrophobic/hydrophilic behavior, structural characteristics, thermal features, and mechanical attributes. Finally, at the end of this review, some considerations about the safety issues and gastrointestinal fate of ZNPs, as well as the use of ZNPs-based nanocomposites as food packaging, are reported, taking into account that, despite the enormous benefits, nanotechnology also presents some risks associated to the use of nanometric materials.
Collapse
Affiliation(s)
- Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Moorepark Food Research Centre, Co. Cork, Ireland
| | - Diako Khodaei
- Department of Sport, Exercise, and Nutrition, Atlantic Technological University, Galway, Ireland
| | - Niaz Mahmud
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Joinul Islam
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Injeela Khan
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Shima Jafarzadeh
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Reza Tahergorabi
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome 'Niccolò Cusano', Rome, Italy
| |
Collapse
|
19
|
Single/co-encapsulation capacity and physicochemical stability of zein and foxtail millet prolamin nanoparticles. Colloids Surf B Biointerfaces 2022; 217:112685. [DOI: 10.1016/j.colsurfb.2022.112685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 12/22/2022]
|
20
|
Wen C, Zhang J, Zhang H, Duan Y. New Perspective on Natural Plant Protein-Based Nanocarriers for Bioactive Ingredients Delivery. Foods 2022; 11:foods11121701. [PMID: 35741899 PMCID: PMC9223235 DOI: 10.3390/foods11121701] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
The health effects of bioactive substances in the human body are affected by several factors, including food processing conditions, storage conditions, light and heat, among others. These factors greatly limit the stability and bioavailability of bioactive substances. These problems can be solved by a novel protein-based nanocarrier technology, which has the excellent potential to enhance solubility, bioavailability, and the controlled release of bioactive substances. In addition, plant protein has the advantages of economy, environmental protection, and high nutrition compared to animal protein. In this review, the preparation, characterization, and application of plant protein-based nanocarriers are summarized. The research deficiency and future prospects of plant protein nanocarriers are emphasized.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
- Correspondence: (J.Z.); (Y.D.)
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- Correspondence: (J.Z.); (Y.D.)
| |
Collapse
|
21
|
Wu Z, Li J, Zhang X, Li Y, Wei D, Tang L, Deng S, Liu G. Rational Fabrication of Folate-Conjugated Zein/Soy Lecithin/Carboxymethyl Chitosan Core-Shell Nanoparticles for Delivery of Docetaxel. ACS OMEGA 2022; 7:13371-13381. [PMID: 35474787 PMCID: PMC9025993 DOI: 10.1021/acsomega.2c01270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/28/2022] [Indexed: 05/24/2023]
Abstract
The objective of this work is to design and fabricate a natural zein-based nanocomposite with core-shell structure for the delivery of anticancer drugs. As for the design, folate-conjugated zein (Fa-zein) was synthesized as the inner hydrophobic core; soy lecithin (SL) and carboxymethyl chitosan (CMC) were selected as coating components to form an outer shell. As for fabrication, a novel and appropriate atomizing/antisolvent precipitation process was established. The results indicated that Fa-zein/SL/CMC core-shell nanoparticles (FZLC NPs) were successfully produced at a suitable mass ratio of Fa-zein/SL/CMC (100:30:10) and the freeze-dried FZLC powder showed a perfect redispersibility and stability in water. After that, docetaxel (DTX) as a model drug was encapsulated into FZLC NPs at different mass ratios of DTX to FZLC (MR). When MR = 1:15, DTX/FZLC NPs were obtained with high encapsulation efficiency (79.22 ± 0.37%), small particle size (206.9 ± 48.73 nm), and high zeta potential (-41.8 ± 3.97 mV). DTX was dispersed in the inner core of the FZLC matrix in an amorphous state. The results proved that DTX/FZLC NPs could increase the DTX dissolution, sustain the DTX release, and enhance the DTX cytotoxicity significantly. The present study provides insight into the formation of zein-based complex nanocarriers for the delivery of anticancer drugs.
Collapse
Affiliation(s)
- Zhenyao Wu
- School
of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Jie Li
- School
of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Xin Zhang
- School
of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Yangjia Li
- School
of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Dongwei Wei
- School
of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Lichang Tang
- Beihai
Food & Drug Inspection and Testing Institute, Beihai 536000, China
| | - Shiming Deng
- School
of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Guijin Liu
- School
of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| |
Collapse
|
22
|
Zhang Q, Li D, Guan S, Liu D, Wang J, Xing G, Yue L, Cai D. Tumor-targeted delivery of honokiol via polysialic acid modified zein nanoparticles prevents breast cancer progression and metastasis. Int J Biol Macromol 2022; 203:280-291. [PMID: 35093442 DOI: 10.1016/j.ijbiomac.2022.01.148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/13/2022] [Accepted: 01/23/2022] [Indexed: 01/11/2023]
Abstract
In this work, we developed polysialic acid (PSA) modified zein nanoparticles for targeted delivery of honokiol (HNK) to enhance drug delivery efficiency and specific biodistribution at tumor sites. The antisolvent precipitation and electrostatic interaction methods were employed to fabricate the PSA-Zein-HNK nanoparticles, which exhibited mean size of 107.2 ± 10.1 nm and HNK encapsulation efficiency of 79.2 ± 2.3%. The PSA-Zein-HNK maintained a uniform dispersion in serum for 48 h, implying the improved colloid stability of zein nanoparticles via PSA coating. The cellular uptake of PSA-Zein-Cou6 nanoparticles in 4 T1 cells was 2.58-fold higher than non-targeting Zein-Cou6. In addition, the IC50 value at 48 h for PSA-Zein-HNK (4.37 μg/mL) was significantly higher than the Zein-HNK (7.74 μg/mL). Enhanced tumor accumulation of the PSA-Zein-HNK was confirmed in 4 T1 breast cancer-bearing mice by near-infrared fluorescence imaging, resulting in desirable antitumor efficacy and favorable biosafety. Besides, compared with non-targeting zein nanoparticles, the PSA-Zein-HNK achieved a higher tumor growth inhibition rate of 52.3%. In particular, the metastasis of breast cancer to the lung or liver was remarkably suppressed by PSA-Zein-HNK. Together, our results demonstrated that the PSA-Zein-HNK could be a potential tumor-targeted drug delivery strategy for efficient treatment of breast cancer.
Collapse
Affiliation(s)
- Qi Zhang
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| | - Dong Li
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China
| | - Shuang Guan
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China
| | - Dan Liu
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| | - Jing Wang
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| | - Guihua Xing
- College of Pathology, Qiqihar Medical University, Qiqihar, PR China.
| | - Liling Yue
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| | - Defu Cai
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| |
Collapse
|
23
|
Er S, Laraib U, Arshad R, Sargazi S, Rahdar A, Pandey S, Thakur VK, Díez-Pascual AM. Amino Acids, Peptides, and Proteins: Implications for Nanotechnological Applications in Biosensing and Drug/Gene Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3002. [PMID: 34835766 PMCID: PMC8622868 DOI: 10.3390/nano11113002] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Over various scientific fields in biochemistry, amino acids have been highlighted in research works. Protein, peptide- and amino acid-based drug delivery systems have proficiently transformed nanotechnology via immense flexibility in their features for attaching various drug molecules and biodegradable polymers. In this regard, novel nanostructures including carbon nanotubes, electrospun carbon nanofibers, gold nanoislands, and metal-based nanoparticles have been introduced as nanosensors for accurate detection of these organic compounds. These nanostructures can bind the biological receptor to the sensor surface and increase the surface area of the working electrode, significantly enhancing the biosensor performance. Interestingly, protein-based nanocarriers have also emerged as useful drug and gene delivery platforms. This is important since, despite recent advancements, there are still biological barriers and other obstacles limiting gene and drug delivery efficacy. Currently available strategies for gene therapy are not cost-effective, and they do not deliver the genetic cargo effectively to target sites. With rapid advancements in nanotechnology, novel gene delivery systems are introduced as nonviral vectors such as protein, peptide, and amino acid-based nanostructures. These nano-based delivery platforms can be tailored into functional transformation using proteins and peptides ligands based nanocarriers, usually overexpressed in the specified diseases. The purpose of this review is to shed light on traditional and nanotechnology-based methods to detect amino acids, peptides, and proteins. Furthermore, new insights into the potential of amino protein-based nanoassemblies for targeted drug delivery or gene transfer are presented.
Collapse
Affiliation(s)
- Simge Er
- Biochemistry Department, Faculty of Science, Ege University, Bornova-Izmir 35100, Turkey;
| | - Ushna Laraib
- Department of Pharmacy, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK;
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|