1
|
Kim J. Smart Nanocarriers in Cosmeceuticals Through Advanced Delivery Systems. Biomimetics (Basel) 2025; 10:217. [PMID: 40277615 PMCID: PMC12025235 DOI: 10.3390/biomimetics10040217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Nanomaterials have revolutionized various biological applications, including cosmeceuticals, enabling the development of smart nanocarriers for enhanced skin delivery. This review focuses on the role of nanotechnologies in skincare and treatments, providing a concise overview of smart nanocarriers, including thermo-, pH-, and multi-stimuli-sensitive systems, focusing on their design, fabrication, and applications in cosmeceuticals. These nanocarriers offer controlled release of active ingredients, addressing challenges like poor skin penetration and ingredient instability. This work discusses the unique properties and advantages of various nanocarrier types, highlighting their potential in addressing diverse skin concerns. Furthermore, we address the critical aspect of biocompatibility, examining potential health risks associated with nanomaterials. Finally, this review highlights current challenges, including the precise control of drug release, scalability, and the transition from in vitro to in vivo applications. We also discuss future perspectives such as the integration of digital technologies and artificial intelligence for personalized skincare to further advance the technology of smart nanocarriers in cosmeceuticals.
Collapse
Affiliation(s)
- Jinku Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| |
Collapse
|
2
|
Rathore P, Gupta R, Singh PP, Awasthi A, Kishore A, Bansal KK, Mahor AK. QbD-Based Development of Fluocinolone Nanocomposite Transdermal Gel: Optimization, Characterization, and Enhanced Anti-hyperpigmentation Efficacy Assessment. AAPS PharmSciTech 2025; 26:100. [PMID: 40175791 DOI: 10.1208/s12249-025-03094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/19/2025] [Indexed: 04/04/2025] Open
Abstract
The current study presents a comprehensive pharmaceutical engineering approach to developing an advanced transdermal drug delivery system for addressing skin hyperpigmentation through innovative nanocomposite gel formulation. Utilizing a systematic Quality-by-Design (QbD) methodology with Box-Behnken design, we developed a novel fluocinolone-loaded chitosan-graphene oxide nanocomposite (FCGN1) aimed at optimizing pharmaceutical performance and therapeutic efficacy. The nanocomposite formulation demonstrated critical pharmaceutical quality attributes: a precisely controlled nanoscale particle size of 144.78 ± 0.15 nm, stable zeta potential of -17.93 ± 3.75 mV, and high drug entrapment efficiency of 81.3 ± 3.64%. The optimized gel formulation (FNTG3) exhibited superior transdermal delivery characteristics, achieving approximately 70% permeation within 15 h and a significant flux rate of 190 µg/cm2, which substantially outperforms current market alternatives. The comprehensive pharmaceutical evaluation included rigorous stability studies over 45 days, confirming consistent physical stability and sustained drug permeation. In vivo assessments using a UVB-induced hyperpigmentation rat model validated the formulation's dermal tolerability and depigmentation potential, demonstrating comparable or superior performance to commercial hydroquinone treatments. Histopathological analyses revealed pronounced depigmentation effects, attributable to the synergistic design of the nanocomposite system. The strategic integration of fluocinolone, chitosan, and graphene oxide facilitated enhanced drug release kinetics and improved skin penetration, highlighting the potential of rational pharmaceutical design in developing advanced topical delivery systems. This research provides a robust framework for developing sophisticated pharmaceutical dosage forms with enhanced therapeutic performance, offering significant insights into nanoscale drug delivery technologies for dermatological applications. The findings underscore the importance of systematic optimization and multifunctional component design in creating innovative pharmaceutical formulations.
Collapse
Affiliation(s)
- Priyanka Rathore
- Institute of Pharmacy, Bundelkhand University, Jhansi, Uttar Pradesh, 284128, India
| | - Rishikesh Gupta
- Institute of Pharmacy, Bundelkhand University, Jhansi, Uttar Pradesh, 284128, India
| | - Prem Prakash Singh
- Institute of Pharmacy, Bundelkhand University, Jhansi, Uttar Pradesh, 284128, India
| | - Anshu Awasthi
- Institute of Pharmacy, Bundelkhand University, Jhansi, Uttar Pradesh, 284128, India
| | - Ankita Kishore
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, 474005, India
| | - Kuldeep K Bansal
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland
| | - Alok Kumar Mahor
- Institute of Pharmacy, Bundelkhand University, Jhansi, Uttar Pradesh, 284128, India.
| |
Collapse
|
3
|
Alotaibi H, Hatahet T, Al-Jamal WT. Understanding the formulation parameters for engineering indocyanine green J-aggregate lipid nanocapsules and solid lipid nanoparticles as promising photothermal agents. Eur J Pharm Sci 2025; 207:107034. [PMID: 39922238 DOI: 10.1016/j.ejps.2025.107034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Indocyanine green J-aggregate (IJA) is a promising photothermal (PTT) agent that has recently been utilised in preclinical studies for cancer diagnostics and treatment. The unique properties, such as the red-shift absorption band and longer wavelengths, are behind IJA's superior thermal stability compared to its monomeric ICG. Loading IJA into nanoparticles (NPs) has proven advantageous in enhancing its in vivo targeting of various cancer models. However, the loading of IJA into more complex lipids, such as lipid nanocapsules (LNCs) and solid lipid nanoparticles (SLNs), has not been reported. The present work focuses on investigations of the effect of formulation parameters on pre-formed IJA (p-IJA) stability and the formation of p-IJA-loaded LNCs and SLNs, thus enhancing their theranostic applications. We investigated the effect of the lipid shell of LNCs and the lipid core of SLN on p-IJA stability. Our findings demonstrated the significant role of lipophilic surfactants (Span 85) and a high-melting-point lipid core (sodium stearate) in enhancing the p-IJA ratio and heating capacity following loading into SLNs. More importantly, p-IJA-SLN enhanced the optical stability of p-IJA in a range of biological media, such as serum proteins, blood, and collagen. Furthermore, lyophilised p-IJA-SLNs were successfully obtained after long-term storage. Overall, p-IJA-loaded lipid NPs could provide a promising platform for various applications, including photoacoustic imaging, PTT, photodynamic therapy (PDT), and combination therapy with chemotherapeutics.
Collapse
Affiliation(s)
- Hamoud Alotaibi
- School of Pharmacy - Queen's University Belfast, Belfast BT9 7BL, United Kingdom; Department of Pharmaceutics, College of Pharmacy, Northern Border University, Arar 91431, Saudi Arabia
| | - Taher Hatahet
- School of Pharmacy - Queen's University Belfast, Belfast BT9 7BL, United Kingdom; China Medical University and Queen's University Joint College, Shenyang, China
| | - Wafa' T Al-Jamal
- School of Pharmacy - Queen's University Belfast, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
4
|
Jangid H, Joshi HC, Dutta J, Ahmad A, Alshammari MB, Hossain K, Pant G, Kumar G. Advancing food safety with biogenic silver nanoparticles: Addressing antimicrobial resistance, sustainability, and commercial viability. Food Chem X 2025; 26:102298. [PMID: 40109906 PMCID: PMC11919607 DOI: 10.1016/j.fochx.2025.102298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
The escalating threat of antimicrobial resistance (AMR), particularly among foodborne pathogens such as Escherichia coli, Salmonella enterica, and Listeria monocytogenes, necessitates innovative solutions beyond conventional antimicrobials. Silver nanoparticles (AgNPs) have garnered significant attention for their broad-spectrum antimicrobial efficacy, ability to target multidrug-resistant strains, and versatile applications across the food sector. This review critically examines AgNPs' integration into food safety strategies, including their roles in antimicrobial food packaging, agricultural productivity enhancement, and livestock disease mitigation. Key advancements in eco-friendly synthesis methods, leveraging algae, agricultural byproducts, and microbial systems, are highlighted as pathways to address scalability, sustainability, and cost constraints. However, the potential risks of silver bioaccumulation, environmental toxicity, and regulatory challenges present significant barriers to their widespread implementation. By reviewing cutting-edge research, this review provides a comprehensive analysis of AgNP efficacy, safety, and commercial viability, proposing a roadmap for overcoming current limitations. It calls for collaborative, interdisciplinary efforts to bridge technological, ecological, and regulatory gaps, positioning AgNPs as a transformative solution for combating AMR and ensuring global food security.
Collapse
Affiliation(s)
- Himanshu Jangid
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Harish Chandra Joshi
- Department of Chemistry, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Joydeep Dutta
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Akil Ahmad
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed B Alshammari
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Kaizar Hossain
- Department of Environmental Science, Asutosh College, University of Calcutta, 92, Shyama Prasad Mukherjee Rd, Bhowanipore, Kolkata 700026, West Bengal, India
| | - Gaurav Pant
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Gaurav Kumar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, India
- Amity Institute of Microbial Technology (AIMT), Jaipur, Rajasthan, India
| |
Collapse
|
5
|
Wang L, Wu Z, Wang X, Wang X, Mao J, Yan Y, Zhang L, Zhang Z. Overview of Peptides and Their Potential Roles in Skin Health and Beauty. J Pept Sci 2025; 31:e3668. [PMID: 39777813 DOI: 10.1002/psc.3668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/29/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Peptides are molecules that consist of at least two amino acids linked by peptide bonds. The difference between peptides and proteins is primarily based on size and structure. Typically, oligopeptides consist of fewer than about 10-20 amino acids, and polypeptides consist of more than 20 amino acids, whereas proteins usually are made up more than 50 amino acids and often contain multiple peptide subunits as stated in the International Union of Pure and Applied Chemistry rules. Beyond the nutritional properties, peptides are also structural components of hormones, enzymes, toxins, and antibiotics and play several fundamental physiological roles in the body. Since the introduction of the first commercial peptide drug, insulin, peptide-based drugs have gained increased interest. So far, more than 80 peptide-based drugs have reached the market for a wide range of conditions, such as diabetes, cardiovascular diseases, and urological disorders. Meanwhile, peptides have also gained significant attention in the cosmetic industry because of their potential in boosting skin health. In this review, peptides were comprehensively summarized in the aspects of sources, function, the use of peptides in cosmetics and skin care, and indications for the delivery of cosmetic peptides.
Collapse
Affiliation(s)
- Leyang Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Zhijing Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xinyu Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xiaoli Wang
- Beijing Innovation Center, The Procter & Gamble Company, Beijing, China
| | - Jingzhuo Mao
- Beijing Innovation Center, The Procter & Gamble Company, Beijing, China
| | - Yan Yan
- Singapore Innovation Center, The Procter & Gamble Company, Singapore
| | - Lu Zhang
- Singapore Innovation Center, The Procter & Gamble Company, Singapore
| | - Zhuzhen Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Favas R, Almeida H, Peixoto AF, Ferreira D, Silva AC. Advances in Encapsulating Marine Bioactive Compounds Using Nanostructured Lipid Carriers (NLCs) and Solid Lipid Nanoparticles (SLNs) for Health Applications. Pharmaceutics 2024; 16:1517. [PMID: 39771497 PMCID: PMC11728729 DOI: 10.3390/pharmaceutics16121517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
As life expectancy rises and modern lifestyles improve, there is an increasing focus on health, disease prevention, and enhancing physical appearance. Consumers are more aware of the benefits of natural ingredients in healthcare products while also being mindful of sustainability challenges. Consequently, marine bioactive compounds have gained popularity as ingredients in cosmetics and food supplements due to their diverse beneficial properties. Nonetheless, the use of some of these compounds is restricted by their low stability and poor aqueous solubility, necessitating solutions to overcome these limitations. In this context, lipid nanoparticles, such as solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), have been investigated for their potential to protect and improve the absorption of molecules through various routes, including oral and cutaneous. Numerous studies have shown that nanoencapsulating these compounds and incorporating them into cosmetics and food supplements can be effective. However, this application remains unregulated at the global level and is not currently addressed by existing legislation. Additional in vivo studies in both animals and humans are necessary to fully assess safety concerns.
Collapse
Affiliation(s)
- Rita Favas
- UCIBIO (Applied Molecular Biosciences Unit), Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Hugo Almeida
- UCIBIO (Applied Molecular Biosciences Unit), Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Mesosystem Investigação & Investimentos by Spinpark, 4805-017 Guimarães, Portugal
| | - Andreia F. Peixoto
- LAQV-REQUIMTE (Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Domingos Ferreira
- UCIBIO (Applied Molecular Biosciences Unit), Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana C. Silva
- UCIBIO (Applied Molecular Biosciences Unit), Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- FP-BHS (Biomedical and Health Sciences Research Unit), FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), Faculty of Health Sciences, University Fernando Pessoa, 4249-004 Porto, Portugal
| |
Collapse
|
7
|
Singh G, Thakur N, Kumar R. Nanoparticles in drinking water: Assessing health risks and regulatory challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174940. [PMID: 39047836 DOI: 10.1016/j.scitotenv.2024.174940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Nanoparticles (NPs) pose a significant concern in drinking water due to their potential health risks and environmental impact. This review provides a comprehensive analysis of the current understanding of NP sources and contamination in drinking water, focusing on health concerns, mitigation strategies, regulatory frameworks, and future perspectives. This review highlights the importance of nano-specific pathways, fate processes, health risks & toxicity, and the need for realistic toxicity assessments. Different NPs like titanium dioxide, silver, nanoplastics, nanoscale liquid crystal monomers, copper oxide, and others pose potential health risks through ingestion, inhalation, or dermal exposure, impacting organs and potentially leading to oxidative stress, inflammatory responses, DNA damage, cytotoxicity, disrupt intracellular energetic mechanisms, reactive oxygen species generation, respiratory and immune toxicity, and genotoxicity in humans. Utilizing case studies and literature reviews, we investigate the health risks associated with NPs in freshwater environments, emphasizing their relevance to drinking water quality. Various mitigation and treatment strategies, including filtration systems (e.g., reverse osmosis, and ultra/nano-filtration), adsorption processes, coagulation/flocculation, electrocoagulation, advanced oxidation processes, membrane distillation, and ultraviolet treatment, all of which demonstrate high removal efficiencies for NPs from drinking water. Regulatory frameworks and challenges for the production, applications, and disposal of NPs at both national and international levels are discussed, emphasizing the need for tailored regulations to address NP contamination and standardize safety testing and risk assessment practices. Looking ahead, this review underscores the necessity of advancing detection methods and nanomaterial-based treatment technologies while stressing the pivotal role of public awareness and tailored regulatory guidelines in upholding drinking water quality standards. This review emphasizes the urgency of addressing NP contamination in drinking water and provides insights into potential solutions and future research directions. Lastly, this review worth concluded with future recommendations on advanced analytical techniques and sensitive sensors for NP detection for safeguarding public health and policy implementations.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Biosciences (UIBT), Chandigarh University, Ludhiana, Punjab 140413, India
| | - Neelam Thakur
- Department of Zoology, Sardar Patel University, Vallabh Government College, Campus, Mandi, Himachal Pradesh 175001, India.
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
8
|
Alves PLM, Nieri V, Moreli FDC, Constantino E, de Souza J, Oshima-Franco Y, Grotto D. Unveiling New Horizons: Advancing Technologies in Cosmeceuticals for Anti-Aging Solutions. Molecules 2024; 29:4890. [PMID: 39459258 PMCID: PMC11510423 DOI: 10.3390/molecules29204890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
In the last years, the landscape of anti-aging cosmetics has been marked by significant advances in cosmeceutical delivery systems. This study aimed to conduct a systematic review of these technological innovations, with a focus on anti-aging effects, from 2018 to 2023. The methodology included a thorough search on PubMed and through gray literature, applying rigorous exclusion criteria. The descriptors were selected based on the Medical Subject Headings (MeSH). A total of 265 articles were found. Exclusion criteria were applied, and 90 of them were selected for full reading. After reading the full 90 articles, 52 were excluded, leaving 38 articles for final evaluation composing this review. The key findings highlighted a clear prevalence of studies exploring nanotechnology, including nanoparticles, niosomes, and liposomes. Most of the formulations analyzed in this review emphasize antioxidant activities, which play a crucial role in preventing premature aging caused by free radicals. The reviewed studies revealed specific activities, such as the reduction in melanin synthesis, the inhibition of enzymes involved in the skin aging process, and the prevention of morphological changes typical of aging.
Collapse
Affiliation(s)
| | | | | | | | | | - Yoko Oshima-Franco
- Department of Pharmacy, University of Sorocaba (UNISO), Sorocaba 18023-000, Brazil; (P.L.M.A.); (V.N.); (F.d.C.M.); (E.C.); (J.d.S.)
| | - Denise Grotto
- Department of Pharmacy, University of Sorocaba (UNISO), Sorocaba 18023-000, Brazil; (P.L.M.A.); (V.N.); (F.d.C.M.); (E.C.); (J.d.S.)
| |
Collapse
|
9
|
Gholap AD, Pardeshi SR, Hatvate NT, Dhorkule N, Sayyad SF, Faiyazuddin M, Khalid M. Environmental implications and nanotechnological advances in octocrylene-enriched sunscreen formulations: A comprehensive review. CHEMOSPHERE 2024; 358:142235. [PMID: 38705416 DOI: 10.1016/j.chemosphere.2024.142235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Ultraviolet (UV) radiation is a major contributor to skin aging, cancer, and other detrimental health effects. Sunscreens containing FDA-approved UV filters, like avobenzone, offer protection but suffer from photodegradation and potential phototoxicity. Encapsulation, antioxidants, and photostabilizers are strategies employed to combat these drawbacks. Octocrylene, an organic UV filter, utilizes nanotechnology to enhance sun protection factor (SPF). This review examines recent literature on octocrylene-enriched sunscreens, exploring the interplay between environmental impact, nanotechnological advancements, and clinical trial insights. A critical focus is placed on the environmental consequences of sunscreen use, particularly the potential hazards UV filters pose to marine ecosystems. Research in the Mediterranean Sea suggests bacterial sensitivity to these filters, raising concerns about their integration into the food chain. This review aims to guide researchers in developing effective strategies for photostabilization of UV filters. By combining encapsulation, photostabilizers, and antioxidants, researchers can potentially reduce phototoxic effects and contribute to developing more environmentally friendly sunscreens.
Collapse
Affiliation(s)
- Amol D Gholap
- St. John Institute of Pharmacy and Research, Palghar, 401404, Maharashtra, India; Department of Pharmaceutics, Amrutvahini College of Pharmacy, Sangamner, 422608, Maharashtra, India
| | - Sagar R Pardeshi
- St. John Institute of Pharmacy and Research, Palghar, 401404, Maharashtra, India
| | - Navnath T Hatvate
- Institute of Chemical Technology, Marathwada Campus, Jalna, Maharashtra, 431203, India
| | - Nilesh Dhorkule
- St. John Institute of Pharmacy and Research, Palghar, 401404, Maharashtra, India
| | - Sadikali F Sayyad
- Department of Pharmaceutics, Amrutvahini College of Pharmacy, Sangamner, 422608, Maharashtra, India.
| | - Md Faiyazuddin
- School of Pharmacy, Al-Karim University, Katihar, Bihar, 854106, India; Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Tamil Nadu, India.
| | - Mohammad Khalid
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5, Jalan University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia; Centre of Research Impact and Outcome, Chitkara University, Punjab, 140401 India; Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India.
| |
Collapse
|
10
|
Hegde AR, Kunder MU, Narayanaswamy M, Murugesan S, Furtado SC, Veerabhadraiah BB, Srinivasan B. Advancements in sunscreen formulations: integrating polyphenolic nanocarriers and nanotechnology for enhanced UV protection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38061-38082. [PMID: 38806984 DOI: 10.1007/s11356-024-33712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Sunscreens are essential in protecting the skin from harmful effects of ultraviolet radiation (UVR). These formulations, designed to absorb, block, or scatter UVR, offer vital protection against skin aging, sunburns, and the development of skin cancers like melanomas. However, some sunscreens, especially those containing organic/chemical compounds, can cause allergic reactions. To address this, researchers are extensively investigating formulations that incorporate plant extracts rich in polyphenols, such as flavonoids and carotenoids, which can be considered safer alternatives. Products derived from plants are commonly used in cosmetics to counteract skin aging due to their antioxidant activity that combat harmful free radicals. This review focuses on evaluating the advancements in chemical and natural sunscreens, exploring the integration of polyphenolic nanocarriers within sunscreen formulas, their interaction with UVR, and utilizing nanotechnology to enhance their effectiveness. An attempt has been made to highlight the concerns related to toxicity associated with their use and notable advancements in the regulatory aspects governing their utilization.
Collapse
Affiliation(s)
- Aswathi Raju Hegde
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India.
| | - Manisha Uday Kunder
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Megha Narayanaswamy
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Shruthi Murugesan
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Sharon Caroline Furtado
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Basavaraj Basappa Veerabhadraiah
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Bharath Srinivasan
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| |
Collapse
|
11
|
Binaymotlagh R, Hajareh Haghighi F, Chronopoulou L, Palocci C. Liposome-Hydrogel Composites for Controlled Drug Delivery Applications. Gels 2024; 10:284. [PMID: 38667703 PMCID: PMC11048854 DOI: 10.3390/gels10040284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Various controlled delivery systems (CDSs) have been developed to overcome the shortcomings of traditional drug formulations (tablets, capsules, syrups, ointments, etc.). Among innovative CDSs, hydrogels and liposomes have shown great promise for clinical applications thanks to their cost-effectiveness, well-known chemistry and synthetic feasibility, biodegradability, biocompatibility and responsiveness to external stimuli. To date, several liposomal- and hydrogel-based products have been approved to treat cancer, as well as fungal and viral infections, hence the integration of liposomes into hydrogels has attracted increasing attention because of the benefit from both of them into a single platform, resulting in a multifunctional drug formulation, which is essential to develop efficient CDSs. This short review aims to present an updated report on the advancements of liposome-hydrogel systems for drug delivery purposes.
Collapse
Affiliation(s)
- Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
12
|
Chávez-Hernández JA, Velarde-Salcedo AJ, Navarro-Tovar G, Gonzalez C. Safe nanomaterials: from their use, application, and disposal to regulations. NANOSCALE ADVANCES 2024; 6:1583-1610. [PMID: 38482025 PMCID: PMC10929592 DOI: 10.1039/d3na01097j] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 09/15/2024]
Abstract
Nanomaterials are structures with a wide range of applications in the medical, pharmaceutical, food, textile, and electronic industries, reaching more customers worldwide. As a relatively new technological field, the information about the associated risk of nanomaterials in environmental and human health must be addressed and consolidated to develop accurate legislations, frameworks, and guidelines to standardise their use in any field. This review aims to display and context the global applications of nanomaterials, their final disposal, as well as the perspective of the current efforts formulated by various countries (including Mexico and Latin American countries), international official departments and organisations directed to implement regulations on nanomaterials, nanotechnology, and nanoscience matters. In addition, the compiled information includes the tools, initiatives, and strategies to develop regulatory frameworks, such as life cycle assessments, risk assessments, technical tools, and biological models to evaluate their effects on living organisms. Finally, the authors point out the importance of implementing global regulations to promote nanotechnological research according to a precautionary principle focused on an environmental and health protection approach to ensure the use and application of nanotechnologies safely, and responsibly.
Collapse
Affiliation(s)
- Jorge Antonio Chávez-Hernández
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi Manuel Nava 6, Zona Universitaria 78210 San Luis Potosí SLP Mexico +5211-52-444-8262300, ext. 6459
| | - Aída Jimena Velarde-Salcedo
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi Manuel Nava 6, Zona Universitaria 78210 San Luis Potosí SLP Mexico +5211-52-444-8262300, ext. 6459
| | - Gabriela Navarro-Tovar
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi Manuel Nava 6, Zona Universitaria 78210 San Luis Potosí SLP Mexico +5211-52-444-8262300, ext. 6459
- Consejo Nacional de Humanidades, Ciencias y Tecnologias Insurgentes Sur 1582, Credito Constructor, Benito Juarez 03940 Mexico City Mexico
| | - Carmen Gonzalez
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi Manuel Nava 6, Zona Universitaria 78210 San Luis Potosí SLP Mexico +5211-52-444-8262300, ext. 6459
| |
Collapse
|
13
|
Ahuja A, Bajpai M. Novel Arena of Nanocosmetics: Applications and their Remarkable Contribution in the Management of Dermal Disorders, Topical Delivery, Future Trends and Challenges. Curr Pharm Des 2024; 30:115-139. [PMID: 38204262 DOI: 10.2174/0113816128288516231228101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Nanocosmetics have attracted a considerable audience towards natural care due to their low cost, target-specific delivery, and reduced toxicity compared to chemical-based cosmetics. Nanofomulations, including nanoemulsions, nanotubes, and polymeric carriers, have become next-generation products explored for the multifaced applications of nanotechnology in skin care. The rise in the cosmetic industry demands innovative and personalized products designed using nanocarriers for better targeting and improving patient compliance. Furthermore, nanocosmetics increase the efficiency of skin permeation active ingredient entrapment, providing better UV protection. Moreover, it offers controlled drug release, targeting active sites and enhancing physical stability. Further, overcoming the drawback of penetration problems makes them sustainable formulations for precision medicine. Skincare nourishment with nanocosmetics using Indian spices helps to maintain, beautify, and rejuvenate human skin. Nanophytopharmaceuticals extracted from plants, including alkaloids, flavonoids, antioxidants, and volatile oils, are essential phyto-products for skin care. Nano herbals and nanocosmetics are a growing market and gift of nature that nourishes and cures skin ailments like acne, pemphigus, anti-aging, albinism, psoriasis, and fungal infections. The emerging concern is highlighted in the investigation of nanoformulation toxicity and safety concerns in skin care. Further, it helps to manifest research, development, and innovation in expanding the scope of herbal industries.
Collapse
Affiliation(s)
- Ashima Ahuja
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Meenakshi Bajpai
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| |
Collapse
|
14
|
Thawabteh AM, Jibreen A, Karaman D, Thawabteh A, Karaman R. Skin Pigmentation Types, Causes and Treatment-A Review. Molecules 2023; 28:4839. [PMID: 37375394 DOI: 10.3390/molecules28124839] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Human skin pigmentation and melanin synthesis are incredibly variable, and are impacted by genetics, UV exposure, and some drugs. Patients' physical appearance, psychological health, and social functioning are all impacted by a sizable number of skin conditions that cause pigmentary abnormalities. Hyperpigmentation, where pigment appears to overflow, and hypopigmentation, where pigment is reduced, are the two major classifications of skin pigmentation. Albinism, melasma, vitiligo, Addison's disease, and post-inflammatory hyperpigmentation, which can be brought on by eczema, acne vulgaris, and drug interactions, are the most common skin pigmentation disorders in clinical practice. Anti-inflammatory medications, antioxidants, and medications that inhibit tyrosinase, which prevents the production of melanin, are all possible treatments for pigmentation problems. Skin pigmentation can be treated orally and topically with medications, herbal remedies, and cosmetic products, but a doctor should always be consulted before beginning any new medicine or treatment plan. This review article explores the numerous types of pigmentation problems, their causes, and treatments, as well as the 25 plants, 4 marine species, and 17 topical and oral medications now on the market that have been clinically tested to treat skin diseases.
Collapse
Affiliation(s)
- Amin Mahmood Thawabteh
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah 00972, Palestine
- General Safety Section, General Services Department, Birzeit University, Bir Zeit 71939, Palestine
| | - Alaa Jibreen
- Research and Development Department, Beit Jala Pharmaceutical Co., Ltd., Beit Jala 97300, Palestine
| | - Donia Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine
| | - Alà Thawabteh
- Medical Imaging Department, Faculty of Health Profession, Al-Quds University, Jerusalem 20002, Palestine
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
15
|
Rohilla S, Rohilla A, Narwal S, Dureja H, Bhagwat DP. Global Trends of Cosmeceutical in Nanotechnology: A Review. Pharm Nanotechnol 2023; 11:410-424. [PMID: 37157203 DOI: 10.2174/2211738511666230508161611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/25/2023] [Accepted: 02/22/2023] [Indexed: 05/10/2023]
Abstract
Nanotechnology suggests different innovative solutions to augment the worth of cosmetic products through the targeted delivery of content that manifests scientific innovation in research and development. Different nanosystems, like liposomes, niosomes, microemulsions, solid lipid nanoparticles, nanoform lipid carriers, nanoemulsions, and nanospheres, are employed in cosmetics. These nanosystems exhibit various innovative cosmetic functions, including site-specific targeting, controlled content release, more stability, improved skin penetration and enhanced entrapment efficiency of loaded compounds. Thus, cosmeceuticals are assumed as the highest-progressing fragment of the personal care industries that have progressed drastically over the years. In recent decades, cosmetic science has widened the origin of its application in different fields. Nanosystems in cosmetics are beneficial in treating different conditions like hyperpigmentation, wrinkles, dandruff, photoaging and hair damage. This review highlights the different nanosystems used in cosmetics for the targeted delivery of loaded content and commercially available formulations. Moreover, this review article has delineated different patented nanocosmetic formulation nanosystems and future aspects of nanocarriers in cosmetics.
Collapse
Affiliation(s)
- Seema Rohilla
- Department of Pharmacy, Panipat Institute of Engineering and Technology (PIET), Smalkha, Panipat, Haryana, 132102, India
| | - Ankur Rohilla
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, 140413, Mohali, India
| | - Sonia Narwal
- Department of Pharmacy, Panipat Institute of Engineering and Technology (PIET), Smalkha, Panipat, Haryana, 132102, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Deepak Prabhakar Bhagwat
- Department of Pharmacy, Panipat Institute of Engineering and Technology (PIET), Smalkha, Panipat, Haryana, 132102, India
| |
Collapse
|
16
|
Nanoparticles for Topical Application in the Treatment of Skin Dysfunctions-An Overview of Dermo-Cosmetic and Dermatological Products. Int J Mol Sci 2022; 23:ijms232415980. [PMID: 36555619 PMCID: PMC9780930 DOI: 10.3390/ijms232415980] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Nanomaterials (NM) arouse interest in various fields of science and industry due to their composition-tunable properties and the ease of modification. They appear currently as components of many consumer products such as sunscreen, dressings, sports clothes, surface-cleaning agents, computer devices, paints, as well as pharmaceutical and cosmetics formulations. The use of NPs in products for topical applications improves the permeation/penetration of the bioactive compounds into deeper layers of the skin, providing a depot effect with sustained drug release and specific cellular and subcellular targeting. Nanocarriers provide advances in dermatology and systemic treatments. Examples are a non-invasive method of vaccination, advanced diagnostic techniques, and transdermal drug delivery. The mechanism of action of NPs, efficiency of skin penetration, and potential threat to human health are still open and not fully explained. This review gives a brief outline of the latest nanotechnology achievements in products used in topical applications to prevent and treat skin diseases. We highlighted aspects such as the penetration of NPs through the skin (influence of physical-chemical properties of NPs, the experimental models for skin penetration, methods applied to improve the penetration of NPs through the skin, and methods applied to investigate the skin penetration by NPs). The review summarizes various therapies using NPs to diagnose and treat skin diseases (melanoma, acne, alopecia, vitiligo, psoriasis) and anti-aging and UV-protectant nano-cosmetics.
Collapse
|
17
|
Kouassi MC, Grisel M, Gore E. Multifunctional active ingredient-based delivery systems for skincare formulations: A review. Colloids Surf B Biointerfaces 2022; 217:112676. [DOI: 10.1016/j.colsurfb.2022.112676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/27/2022]
|
18
|
Safety Assessment of Nanomaterials in Cosmetics: Focus on Dermal and Hair Dyes Products. COSMETICS 2022. [DOI: 10.3390/cosmetics9040083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nanomaterials use in cosmetics is markedly enhancing, so their exposure and toxicity are important parameters to consider for their risk assessment. This review article provides an overview of the active cosmetic ingredients used for cosmetic application, including dermal cosmetics and also hair dye cosmetics, as well as their safety assessment, enriched with a compilation of the safety assessment tests available to evaluate the different types of toxicity. In fact, despite the increase in research and the number of papers published in the field of nanotechnology, the related safety assessment is still insufficient. To elucidate the possible effects that nanosized particles can have on living systems, more studies reproducing similar conditions to what happens in vivo should be conducted, particularly considering the complex interactions of the biological systems and active cosmetic ingredients to achieve newer, safer, and more efficient nanomaterials. Toward this end, ecological issues and the toxicological pattern should also be a study target.
Collapse
|
19
|
Dubey SK, Dey A, Singhvi G, Pandey MM, Singh V, Kesharwani P. Emerging trends of nanotechnology in advanced cosmetics. Colloids Surf B Biointerfaces 2022; 214:112440. [PMID: 35344873 DOI: 10.1016/j.colsurfb.2022.112440] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
Abstract
The cosmetic industry is dynamic and ever-evolving. Especially with the introduction and incorporation of nanotechnology-based approaches into cosmetics for evincing novel formulations that confers aesthetic as well as therapeutic benefits. Nanocosmetics acts via numerous delivery mechanisms which involves lipid nanocarrier systems, polymeric or metallic nanoparticles, nanocapsules, dendrimers, nanosponges,etc. Each of these, have particular characteristic properties, which facilitates increased drug loading, enhanced absorption, better cosmetic efficacy, and many more. This article discusses the different classes of nanotechnology-based cosmetics and the nanomaterials used for their formulation, followed by outlining the categories of nanocosmetics and the scope of their utility pertaining to skin, hair, nail, lip, and/or dental care and protection thereof. This review also highlights and discusses about the key drivers of the cosmetic industry and the impending need of corroborating a healthy regulatory framework, refocusing attention towards consumer needs and trends, inculcating sustainable techniques and tenets of green ecological principles, and lastly making strides in nano-technological advancements which will further propel the growth of the cosmetic industry.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India.
| | - Anuradha Dey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Murali Manohar Pandey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Vanshikha Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
20
|
Safta DA, Bogdan C, Moldovan ML. Vesicular Nanocarriers for Phytocompounds in Wound Care: Preparation and Characterization. Pharmaceutics 2022; 14:pharmaceutics14050991. [PMID: 35631577 PMCID: PMC9147886 DOI: 10.3390/pharmaceutics14050991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 01/27/2023] Open
Abstract
The need to develop wound healing preparations is a pressing challenge given the limitations of the current treatment and the rising prevalence of impaired healing wounds. Although herbal extracts have been used for many years to treat skin disorders, due to their wound healing, anti-inflammatory, antimicrobial, and antioxidant effects, their efficacy can be questionable because of their poor bioavailability and stability issues. Nanotechnology offers an opportunity to revolutionize wound healing therapies by including herbal compounds in nanosystems. Particularly, vesicular nanosystems exhibit beneficial properties, such as biocompatibility, targeted and sustained delivery capacity, and increased phytocompounds’ bioavailability and protection, conferring them a great potential for future applications in wound care. This review summarizes the beneficial effects of phytocompounds in wound healing and emphasizes the advantages of their entrapment in vesicular nanosystems. Different types of lipid nanocarriers are presented (liposomes, niosomes, transferosomes, ethosomes, cubosomes, and their derivates’ systems), highlighting their applications as carriers for phytocompounds in wound care, with the presentation of the state-of-art in this field. The methods of preparation, characterization, and evaluation are also described, underlining the properties that ensure good in vitro and in vivo performance. Finally, future directions of topical systems in which vesicle-bearing herbal extracts or phytocompounds can be incorporated are pointed out, as their development is emerging as a promising strategy.
Collapse
|
21
|
Montanarella F, Kovalenko MV. Three Millennia of Nanocrystals. ACS NANO 2022; 16:5085-5102. [PMID: 35325541 PMCID: PMC9046976 DOI: 10.1021/acsnano.1c11159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/17/2022] [Indexed: 05/31/2023]
Abstract
The broad deployment of nanotechnology and nanomaterials in modern society is increasing day by day to the point that some have seen in this process the transition from the Silicon Age to a new Nano Age. Nanocrystals─a distinct class of nanomaterials─are forecast to play a pivotal role in the next generation of devices such as liquid crystal displays, light-emitting diodes, lasers, and luminescent solar concentrators. However, it is not to be forgotten that this cutting-edge technology is rooted in empirical knowledge and craftsmanship developed over the millennia. This review aims to span the major applications in which nanocrystals were consistently employed by our forebears. Through an analysis of these examples, we show that the modern-age discoveries stem from multimillennial experience passed on from our proto-chemist ancestors to us.
Collapse
Affiliation(s)
- Federico Montanarella
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
22
|
Lotfipour F, Shahi S, Khezri K, Salatin S, Dizaj SM. Safety issues of nanomaterials for dermal pharmaceutical products. Pharm Nanotechnol 2022; 10:PNT-EPUB-122273. [PMID: 35382729 DOI: 10.2174/1871520622666220405093811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 11/22/2022]
Abstract
Nanomaterials (NMs) have favorable application in the medicine area, specifically in regard to the carry of pharmaceutical ingredients to provide targeted drug delivery systems. The skin is an excellent route for the delivery of pharmaceutical nano-transporters for skin-related applications. The physicochemical properties of nanomaterials such as size, hydrophobicity, loading capacity, charge and weight are vital for a skin penetrating system. Many nanocarriers such as polymeric nanoparticles, inorganic nanomaterials and, lipid nanostructures have been utilized for dermal delivery of active ingredients and others such as carbon nanotubes and fullerenes require more examination for future application in the skin-related area. Some negative side effects and nano-cytotoxicity of nanomaterials require special attention while investigating different nanomaterials for medicinal applications. Then, in the current review, we had a view on the safety issues of nanomaterials for dermal pharmaceutical products.
Collapse
Affiliation(s)
- Farzaneh Lotfipour
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa,ON K1H 8M5, Canada
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Dentistry, Department of Endodontics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Khezri
- Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran
| | - Sara Salatin
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Mortazavi SM, Moghimi HR. Skin permeability, a dismissed necessity for anti-wrinkle peptide performance. Int J Cosmet Sci 2022; 44:232-248. [PMID: 35302659 DOI: 10.1111/ics.12770] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/05/2022] [Indexed: 11/27/2022]
Abstract
The skin offers various benefits and potential for peptide delivery if its barrier performance can be reduced temporarily and reversibly. Since peptides possess high molecular weight, hydrophilic nature (in most cases), and ionizable groups in the structure, their skin delivery is highly challenging. Apart from this, they are susceptible to the proteolytic enzymes in the skin. Anti-wrinkle peptides, like other peptides, suffer from insufficient skin permeability, while most of them must penetrate deep in the skin to present their efficacy. Although the cellular studies indicate the effectiveness of such peptides, without the ability to permeate the skin sufficiently, this efficacy is useless. Poor skin permeability of anti-wrinkle peptides has led to ongoing research for finding feasible and noninvasive enhancement methods that would be desirable for consumers of cosmetic products. In this paper, the possibility of skin permeation of anti-wrinkle peptides as well as the chemical, physical, and encapsulation approaches that have been employed to date to increase permeability of these difficult molecules are thoroughly reviewed.
Collapse
Affiliation(s)
- Seyedeh Maryam Mortazavi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Moghimi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Nanocarriers as Active Ingredients Enhancers in the Cosmetic Industry-The European and North America Regulation Challenges. Molecules 2022; 27:molecules27051669. [PMID: 35268769 PMCID: PMC8911847 DOI: 10.3390/molecules27051669] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 02/07/2023] Open
Abstract
“Flawless skin is the most universally desired human feature” is an iconic statement by Desmond Morris. Skin indicates one´s health and is so important that it affects a person’s emotional and psychological behavior, these facts having propelled the development of the cosmetics industry. It is estimated that in 2023, this industry will achieve more than 800 billion dollars. This boost is due to the development of new cosmetic formulations based on nanotechnology. Nanocarriers have been able to solve problems related to active ingredients regarding their solubility, poor stability, and release. Even though nanocarriers have evident benefits, they also present some problems related to the high cost, low shelf life, and toxicity. Regulation and legislation are two controversial topics regarding the use of nanotechnology in the field of cosmetics. In this area, the U.S. FDA has taken the lead and recommended several biosafety studies and post-market safety evaluations. The lack of a global definition that identifies nanomaterials as a cosmetic ingredient is a hindrance to the development of global legislation. In the EU, the legislation regarding the biosafety of nanomaterials in cosmetics is stricter. “The cost is not the only important issue, safety and the application of alternative testing methods for toxicity are of crucial importance as well”.
Collapse
|
25
|
Morais RP, Hochheim S, de Oliveira CC, Riegel-Vidotti IC, Marino CEB. Skin interaction, permeation, and toxicity of silica nanoparticles: Challenges and recent therapeutic and cosmetic advances. Int J Pharm 2022; 614:121439. [PMID: 34990742 DOI: 10.1016/j.ijpharm.2021.121439] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022]
Abstract
Silica nanoparticles (SNPs) received more attention with the emergence of nanotechnology with the aim and promise of becoming innovative drug delivery systems. They have been fulfilling this objective with excellence and nowadays they play a central role in biomedical applications. New SNPs application routes are being explored such as the epidermal, dermal, and transdermal routes. With that, novel models of synthesis, functionalization, and applications constantly appear. However, it is essential that such innovations are accompanied by in-depth studies on permeation, biodistribution, metabolization, and elimination of the generated by-products. Such studies are still incipient, if not rare. This article reviews significant findings on SNPs and their skin interactions. An extensive literature review on SNPs synthesis and functionalization methodologies was performed, as well as on the skin characteristics, skin permeation mechanisms, and in vivo toxicity assessments. Furthermore, studies of the past 5 years on the main therapeutic and cosmetic products employing SNPs, with greater emphasis on in vivo and ex vivo studies were included.
Collapse
Affiliation(s)
- Renata Pinho Morais
- Department of Mechanical Engineering, Universidade Federal do Paraná, Curitiba, Brazil.
| | - Sabrina Hochheim
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, Brazil.
| | | | | | - Cláudia E B Marino
- Department of Mechanical Engineering, Universidade Federal do Paraná, Curitiba, Brazil.
| |
Collapse
|
26
|
Wiśniewski M, Roszek K. Underestimated Properties of Nanosized Amorphous Titanium Dioxide. Int J Mol Sci 2022; 23:ijms23052460. [PMID: 35269599 PMCID: PMC8910173 DOI: 10.3390/ijms23052460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Titanium dioxide is one of the best described photosensitive materials used in photocatalysis, solar cells, self-cleaning coatings, and sunscreens. The scientific and industrial attention has been focused on the highly photoactive crystalline phase of titanium dioxide (TiO2). It is commonly accepted that the smaller TiO2 particles, the higher photoactivity they present. Therefore, titanium dioxide nanoparticles are massively produced and widely used in everyday products. The amorphous phase of titanium dioxide has been treated with neglect, as the lack of its photocatalytic properties is assumed in advance. In this work, the complex experimental proof of the UV-protective properties of the nano-sized amorphous TiO2 phase is reported. Amorphous n-TiO2 is characterized by photocatalytic inactivity and, as a consequence, low cytotoxicity to fibroblast cells. When exposed to UV radiation, cells with amorphous TiO2 better survive under stress conditions. Thus, we postulate that amorphous n-TiO2 will be more beneficial and completely safe for cosmetic applications. Moreover, the results from in situ FTIR studies let us correlate the low toxicity of amorphous samples with low ability to form hydroperoxo surface species.
Collapse
Affiliation(s)
- Marek Wiśniewski
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
- Correspondence: (M.W.); (K.R.)
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
- Correspondence: (M.W.); (K.R.)
| |
Collapse
|