1
|
Kaur N, Sharma P, Li X, Jasti B. Sublingual permeability of model drugs in New Zealand White Rabbits: In Vitro-In vivo correlation. Int J Pharm 2025; 668:124998. [PMID: 39581513 DOI: 10.1016/j.ijpharm.2024.124998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
This study investigated sublingual drug permeation and administration using five model drugs with diverse physicochemical properties, employing New Zealand White Rabbit sublingual mucosa for in vitro experiments and New Zealand White Rabbits for in vivo studies. The research aimed to determine key permeation parameters, specifically permeability and lag time. A strong linear correlation (r = 0.93, n = 5) was established between in vitro permeability and the distribution coefficient of the model drugs at pH 6.8. The study revealed no significant difference between in vitro and in vivo permeability, suggesting that in vitro studies can reliably predict in vivo permeability for these drugs. However, the in vivo lag time was significantly shorter than the in vitro lag time due to the presence of capillaries in the sublingual mucosa, which provided direct access to the systemic circulation and the absence of an aqueous boundary layer.
Collapse
Affiliation(s)
- Navdeep Kaur
- Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, 751 Brookside Road, Stockton, CA 95211, USA
| | - Pramila Sharma
- Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, 751 Brookside Road, Stockton, CA 95211, USA
| | - Xiaoling Li
- Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, 751 Brookside Road, Stockton, CA 95211, USA
| | - Bhaskara Jasti
- Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, 751 Brookside Road, Stockton, CA 95211, USA.
| |
Collapse
|
2
|
Osman EY, Abdelghafar HI, Elsisi AE. TLR4 inhibitors through inhibiting (MYD88-TRIF) pathway, protect against experimentally-induced intestinal (I/R) injury. Int Immunopharmacol 2024; 136:112421. [PMID: 38850786 DOI: 10.1016/j.intimp.2024.112421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Intestinal ischemia/reperfusion (I/R) injury is a serious condition that causes intestinal dysfunction and can be fatal. Previous research has shown that toll-like receptor 4 (TLR4) inhibitors have a protective effect against this injury. This study aimed to investigate the protective effects of TLR4 inhibitors, specifically cyclobenzaprine, ketotifen, amitriptyline, and naltrexone, in rats with intestinal (I/R) injury. Albino rats were divided into seven groups: vehicle control, sham-operated, I/R injury, I/R-cyclobenzaprine (10 mg/kg body weight), I/R-ketotifen (1 mg/kg body weight), I/R-amitriptyline (10 mg/kg body weight), and I/R-naltrexone (4 mg/kg body weight) groups. Anesthetized rats (urethane 1.8 g/kg) underwent 30 min of intestinal ischemia by occluding the superior mesenteric artery (SMA), followed by 2 h of reperfusion. Intestinal tissue samples were collected to measure various parameters, including malondialdehyde (MDA), nitric oxide synthase (NO), myeloperoxidase (MPO), superoxide dismutase (SOD), TLR4, intercellular adhesion molecule-1 (ICAM-1), nuclear factor kappa bp65 (NF-ĸBP65), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), macrophages CD68, myeloid differentiation factor 88 (MYD88), and toll interleukin receptor-domain-containing adaptor-inducing interferon β (TRIF). The use of TLR4 inhibitors significantly reduced MDA, MPO, and NO levels, while increasing SOD activity. Furthermore, it significantly decreased TLR4, ICAM-1, TNF-α, MCP-1, MYD88, and TRIF levels. These drugs also showed partial restoration of normal cellular structure with reduced inflammation. Additionally, there was a decrease in NF-ĸBP65 and macrophages CD68 staining compared to rats in the I/R groups. This study focuses on how TLR4 inhibitors enhance intestinal function and protect against intestinal (I/R) injury by influencing macrophages CD86 through (MYD88-TRIF) pathway, as well as their effects on oxidation and inflammation.
Collapse
Affiliation(s)
- Enass Y Osman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hader I Abdelghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Alaa E Elsisi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Mazzinelli E, Favuzzi I, Arcovito A, Castagnola R, Fratocchi G, Mordente A, Nocca G. Oral Mucosa Models to Evaluate Drug Permeability. Pharmaceutics 2023; 15:pharmaceutics15051559. [PMID: 37242801 DOI: 10.3390/pharmaceutics15051559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Due to its numerous advantages, such as excellent drug accessibility, rapid absorption, and bypass of first-pass metabolism, the route of drug administration that involves crossing the oral mucosa is highly favored. As a result, there is significant interest in investigating the permeability of drugs through this region. The purpose of this review is to describe the various ex vivo and in vitro models used to study the permeability of conveyed and non-conveyed drugs through the oral mucosa, with a focus on the most effective models. Currently, there is a growing need for standardized models of this mucosa that can be used for developing new drug delivery systems. Oral Mucosa Equivalents (OMEs) may provide a promising future perspective as they are capable of overcoming limitations present in many existing models.
Collapse
Affiliation(s)
- Elena Mazzinelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Ilaria Favuzzi
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo Agostino Gemelli 8, 00168 Roma, Italy
| | - Raffaella Castagnola
- UOC Odontoiatria Generale e Ortodonzia, Dipartimento Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa Collo, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
- Dipartimento di Testa-Collo e Organi di Senso, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Giorgia Fratocchi
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Alvaro Mordente
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo Agostino Gemelli 8, 00168 Roma, Italy
| | - Giuseppina Nocca
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo Agostino Gemelli 8, 00168 Roma, Italy
| |
Collapse
|
4
|
Tabboon P, Pongjanyakul T, Limpongsa E, Jaipakdee N. In Vitro Release, Mucosal Permeation and Deposition of Cannabidiol from Liquisolid Systems: The Influence of Liquid Vehicles. Pharmaceutics 2022; 14:pharmaceutics14091787. [PMID: 36145536 PMCID: PMC9503133 DOI: 10.3390/pharmaceutics14091787] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 01/15/2023] Open
Abstract
This work investigated the influence of liquid vehicles on the release, mucosal permeation and deposition of cannabidiol (CBD) from liquisolid systems. Various vehicles, including EtOH, nonvolatile low- and semi-polar solvents, and liquid surfactants, were investigated. The CBD solution was converted into free-flowing powder using carrier (microcrystalline cellulose) and coating materials (colloidal silica). A physical mixture of the CBD and carrier–coating materials was prepared as a control. The non-crystalline state of CBD in the liquisolid systems was confirmed using XRD, FTIR and SEM studies. The CBD liquisolid powder prepared with volatile and nonvolatile solvents had a better CBD release performance than the CBD formed as the surfactant-based and control powders. The liquisolid systems provided the CBD permeation flux through porcine esophageal mucosa ranging from 0.68 ± 0.11 to 13.68 ± 0.74 µg·cm−2·h−1, with the CBD deposition levels of 0.74 ± 0.04 to 2.62 ± 0.30 μg/mg for the dry mucosa. Diethylene glycol monoethyl ether showed significant CBD permeation enhancement (2.1 folds) without an increase in mucosal deposition, while the surfactants retarded the permeation (6.7–9.0 folds) and deposition (1.5–3.2 folds) significantly. In conclusion, besides the drug release, liquid vehicles significantly influence mucosal permeation and deposition, either enhanced or suppressed, in liquisolid systems. Special attention must be paid to the selection and screening of suitable liquid vehicles for liquisolid systems designed for transmucosal applications.
Collapse
Affiliation(s)
- Peera Tabboon
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Center for Research and Development of Herbal Health Products, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thaned Pongjanyakul
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ekapol Limpongsa
- College of Pharmacy, Rangsit University, Pathumthani 12000, Thailand
- Correspondence: (E.L.); (N.J.); Tel.: +66-80-5194956 (E.L.); +66-81-9749228 (N.J.)
| | - Napaphak Jaipakdee
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Center for Research and Development of Herbal Health Products, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: (E.L.); (N.J.); Tel.: +66-80-5194956 (E.L.); +66-81-9749228 (N.J.)
| |
Collapse
|
5
|
Tabboon P, Pongjanyakul T, Limpongsa E, Jaipakdee N. Mucosal Delivery of Cannabidiol: Influence of Vehicles and Enhancers. Pharmaceutics 2022; 14:pharmaceutics14081687. [PMID: 36015313 PMCID: PMC9412444 DOI: 10.3390/pharmaceutics14081687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, the mucosal permeation and deposition of cannabidiol (CBD) with neat and binary vehicles were investigated. Permeation experiments were performed using static diffusion cells coupled with fresh porcine esophageal mucosa. The CBD-vehicle solutions were applied at a fixed dose (~5 mg/cm2), and the corresponding permeation parameters were calculated. In neat vehicles, the permeation flux (Jss) ranged from 0.89 ± 0.15 to 179.81 ± 23.46 µg·cm-2·h-1, while the CBD deposition ranged from 11.5 ± 1.8 to 538.3 ± 105.3 μg·cm-2. Propylene glycol (PG) and diethylene glycol monoethyl ether (DEGEE) yielded the highest permeability (Ps) and CBD deposition, while medium-chain triglycerides (MCT) yielded the lowest Ps and deposition. This was due to the difference in apparent partition coefficient (K), which is related to the solubility of CBD in the vehicle. The PG:DEGEE binary vehicle boosted Jss (1.5-1.6 fold) and deposition (2.0-2.7 folds) significantly, compared to neat DEGEE. The combination of DEGEE with MCT dramatically enhanced Jss (11-44 fold) and deposition (1.6-4.7 fold). The addition of lipophilic enhancers, laurocapram, and oleic acid, to PG:DEGEE and DEGEE:MCT vehicles significantly reduced Jss (0.3-0.7 fold) and deposition (0.4-0.8 fold) while nerolidol had no effect. These permeation reductions were found to be related to modification of the K and/or diffusivity values. This study provides useful basic information for the development of CBD formulations intended for transmucosal delivery.
Collapse
Affiliation(s)
- Peera Tabboon
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Center for Research and Development of Herbal Health Products, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thaned Pongjanyakul
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ekapol Limpongsa
- College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
- Correspondence: (E.L.); (N.J.); Tel.: +66-80-5194956 (E.L.); +66-81-9749228 (N.J.)
| | - Napaphak Jaipakdee
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Center for Research and Development of Herbal Health Products, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: (E.L.); (N.J.); Tel.: +66-80-5194956 (E.L.); +66-81-9749228 (N.J.)
| |
Collapse
|