1
|
Zhang Y, Coghi P, Ren Z, Hosmane NS, Zhu Y. Comparison of Radionuclide Drug Conjugates With Boron Neutron Capture Therapy: An Overview of Targeted Charged Particle Radiation Therapy. Med Res Rev 2025; 45:867-886. [PMID: 39690514 DOI: 10.1002/med.22093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/11/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024]
Abstract
Targeted charged alpha- and beta-particle therapies are currently being used in clinical radiation treatments as newly developed methods for either killing or controlling tumor cell growth. The alpha particles can be generated either through a nuclear decay reaction or in situ by a nuclear fission reaction such as the boron neutron capture reaction. Different strategies have been employed to improve the selectivity and delivery of radiation dose to tumor cells based on the source of the clinically used alpha particles. As a result, the side effects of the treatment can be minimized. The increasing attention and research efforts on targeted alpha-particle therapy have been fueled by exciting results of both academic research and clinical trials. It is highly anticipated that alpha-particle therapy will improve the efficacy of treating malignant tumors. In this overview, we compare radionuclide drug conjugates (RDC) with boron neutron capture therapy (BNCT) to present recent developments in targeted alpha-particle therapy.
Collapse
Affiliation(s)
| | - Paolo Coghi
- Laboratory for Drug Discovery from Natural Resources & Industrialization, School of Pharmacy, Macau University of Science and Technology, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Zimo Ren
- Laboratory for Drug Discovery from Natural Resources & Industrialization, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Narayan S Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | | |
Collapse
|
2
|
Peet C, Elmaraghi C, Abdel-Aziz T, Liang HH, Gains JE, Nguyen T, Wan S, Bomanji JB, Gaze MN. Molecular radiotherapy for adult type metastatic neuroendocrine tumours in children. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07247-6. [PMID: 40272497 DOI: 10.1007/s00259-025-07247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025]
Abstract
PURPOSE Paraganglioma, phaeochromocytoma and gastroenteropancreatic neuroendocrine tumours are rare in childhood. Molecular radiotherapy is one potential treatment for locally inoperable or metastatic disease. This study reviews the use and efficacy of molecular radiotherapy with both [131I] meta iodobenzylguanidine (mIBG) and [177Lu] DOTATATE in this patient group. METHODS This is an observational cohort study of all patients aged less than 18 years with adult type metastatic neuroendocrine cancers treated with molecular radiotherapy from 2003 to 2023 in one national referral centre. RESULTS Twelve patients, six male and six female, were treated. The median age at diagnosis was 12 years 3 months (range 7 years 11 months to 15 years 5 months), and at first molecular radiotherapy treatment was 13 years 7 months (range 8 years 8 months to 16 years 2 months). Nine had paraganglioma or phaeochromocytoma, three had other neuroendocrine tumours. Three received [177Lu] DOTATATE only, four received [131I] mIBG only, and five received both radiopharmaceuticals. Three patients had rapid disease progression and died within a year. Following initial treatment of the others, two had a complete response, four had a partial response, one had stable disease, and two had a mixed response. Nine patients remain alive, at a median of 5 years 0 months (range 2 years 4 months to 21 years 5 months) after start of treatment. CONCLUSION Molecular radiotherapy can be beneficial, and may provide good disease control for long periods in a proportion of these patients. Combining different radiopharmaceuticals may be of value.
Collapse
Affiliation(s)
- Connie Peet
- Department of Radiotherapy, University College London Hospitals NHS Foundation Trust, London, UK
| | - Caroline Elmaraghi
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Tarek Abdel-Aziz
- Department of Endocrine Surgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Huang Hian Liang
- Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - Jennifer E Gains
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Trung Nguyen
- Department of Paediatric Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Simon Wan
- Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - Jamshed B Bomanji
- Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - Mark N Gaze
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
3
|
Hu M, Zhang C, Fan D, Yang R, Bai Y, Shi H. Advances in Preclinical Research of Theranostic Radiopharmaceuticals in Nuclear Medicine. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4337-4353. [PMID: 39800975 DOI: 10.1021/acsami.4c20602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Theranostics of nuclear medicine refers to the combination of radionuclide imaging and internal irradiation therapy, which is currently a research hotspot and an important direction for the future development of nuclear medicine. Radiopharmaceutical is a vital component of nuclear medicine and serves as one of the fundamental pillars of molecular imaging and precision medicine. At present, a variety of radiopharmaceuticals have been developed for various targets such as fibroblast activation protein (FAP), prostate-specific membrane antigen (PSMA), somatostatin receptor 2 (SSTR2), C-X-C motif chemokine receptor 4 (CXCR4), human epidermal growth factor-2 (HER2), and integrin αvβ3, and some of them have been successfully applied in clinical practice. The radiopharmaceutical with theranostic function plays an important role in the diagnosis, treatment, efficacy evaluation, and prognosis prediction of cancers and is the key to realize the personalized treatment of tumors. This Review summarizes the preclinical research progress of theranostic radiopharmaceuticals toward the above targets in the field of nuclear medicine and discusses the prospects and development directions of radiopharmaceuticals in the future.
Collapse
Affiliation(s)
- Mei Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Chenshuo Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Dandan Fan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Ru Yang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P. R. China
| | - Yongxiang Bai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
4
|
Tuncer O, Steinberger D, Steiner J, Hinojos M, Rhee SY, Humphrey B, Jafari F, Cayci Z. Quantitative SPECT/CT Metrics in Early Prediction of [ 177Lu]Lu-DOTATATE Treatment Response in Gastroenteropancreatic Neuroendocrine Tumor Patients. J Nucl Med 2024; 65:1584-1590. [PMID: 39266296 DOI: 10.2967/jnumed.124.267964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/02/2024] [Indexed: 09/14/2024] Open
Abstract
Our objective is to explore quantitative imaging markers for early prediction of treatment response in patients with gastroenteropancreatic neuroendocrine tumors (GEP-NETs) undergoing [177Lu]Lu-DOTATATE therapy. By doing so, we aim to enable timely switching to more effective therapies in order to prevent time-resource waste and minimize toxicities. Methods: Patients diagnosed with unresectable or metastatic, progressive, well-differentiated, receptor-positive GEP-NETs who received 4 sessions of [177Lu]Lu-DOTATATE were retrospectively selected. Using SPECT/CT images taken at the end of treatment sessions, we counted all visible tumors and measured their largest diameters to calculate the tumor burden score (TBS). Up to 4 target lesions were selected and semiautomatically segmented. Target lesion peak counts and spleen peak counts were measured, and normalized peak counts were calculated. Changes in TBS (ΔTBS) and changes in normalized peak count (ΔnPC) throughout treatment sessions in relation to the first treatment session were calculated. Treatment responses were evaluated using third-month CT and were binarized as progressive disease (PD) or non-PD. Results: Twenty-seven patients were included (7 PD, 20 non-PD). Significant differences were observed in ΔTBSsecond-first, ΔTBSthird-first, and ΔTBSfourth-first (where second-first, third-first, and fourth-first denote scan number between the second and first, third and first, and fourth and first [177Lu]Lu-DOTATATE treatment cycles), respectively) between the PD and non-PD groups (median, 0.043 vs. -0.049, 0.08 vs. -0.116, and 0.109 vs. -0.123 [P = 0.023, P = 0.002, and P < 0.001], respectively). ΔnPCsecond-first showed significant group differences (mean, -0.107 vs. -0.282; P = 0.033); ΔnPCthird-first and ΔnPCfourth-first did not reach statistical significance (mean, -0.122 vs. -0.312 and -0.183 vs. -0.405 [P = 0.117 and 0.067], respectively). At the optimal threshold, ΔTBSfourth-first exhibited an area under the curve (AUC) of 0.957, achieving 100% sensitivity and 80% specificity. ΔTBSsecond-first and ΔTBSthird-first reached AUCs of 0.793 and 0.893, sensitivities of 71.4%, and specificities of 85% and 95%, respectively. ΔnPCsecond-first, ΔnPCthird-first, and ΔnPCfourth-first showed AUCs of 0.764, 0.693, and 0.679; sensitivities of 71.4%, 71.4%, and 100%; and specificities of 75%, 70%, and 35%, respectively. Conclusion: ΔTBS and ΔnPC can predict [177Lu]Lu-DOTATATE response by the second treatment session.
Collapse
Affiliation(s)
- Onur Tuncer
- Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Daniel Steinberger
- Nuclear Medicine Division, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Joseph Steiner
- Imaging Physics Division, Department of Radiology, University of Chicago, Chicago, Illinois
| | - Madeleine Hinojos
- Department of Radiology, Oregon Health and Science University School of Medicine, Portland, Oregon
| | | | - Brad Humphrey
- Radiotheranostics Unit, M Health Fairview University of Minnesota Medical Center, Minneapolis, Minnesota; and
| | - Farhad Jafari
- Medical Physics Division, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Zuzan Cayci
- Nuclear Medicine Division, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota;
| |
Collapse
|
5
|
Boschi A, Urso L, Uccelli L, Martini P, Filippi L. 99mTc-labeled FAPI compounds for cancer and inflammation: from radiochemistry to the first clinical applications. EJNMMI Radiopharm Chem 2024; 9:36. [PMID: 38695960 PMCID: PMC11065808 DOI: 10.1186/s41181-024-00264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND In recent years, fibroblast activating protein (FAP), a biomarker overexpressed by cancer-associated fibroblasts, has emerged as one of the most promising biomarkers in oncology. Similarly, FAP overexpression has been detected in various fibroblast-mediated inflammatory conditions such as liver cirrhosis and idiopathic pulmonary fibrosis. Along this trajectory, FAP-targeted positron emission tomography (PET), utilizing FAP inhibitors (FAPi) labeled with positron emitters, has gained traction as a powerful imaging approach in both cancer and inflammation. However, PET represents a high-cost technology, and its widespread adoption is still limited compared to the availability of gamma cameras. To address this issue, several efforts have been made to explore the potential of [99mTc]Tc-FAPi tracers as molecular probes for imaging with gamma cameras and single photon emission computed tomography (SPECT). MAIN BODY Several approaches have been investigated for labeling FAPi-based compounds with 99mTc. Specifically, the mono-oxo, tricarbonyl, isonitrile, and HYNIC strategies have been applied to produce [99mTc]Tc-FAPi tracers, which have been tested in vitro and in animal models. Overall, these labeling approaches have demonstrated high efficiency and strong binding. The resulting [99mTc]Tc-FAPi tracers have shown high specificity for FAP-positive cells and xenografts in both in vitro and animal model studies, respectively. However, the majority of [99mTc]Tc-FAPi tracers have exhibited variable levels of lipophilicity, leading to preferential excretion through the hepatobiliary route and undesirable binding to lipoproteins. Consequently, efforts have been made to synthesize more hydrophilic FAPi-based compounds to improve pharmacokinetic properties and achieve a more favorable biodistribution, particularly in the abdominal region. SPECT imaging with [99mTc]Tc-FAPi has yielded promising results in patients with gastrointestinal tumors, demonstrating comparable or superior diagnostic performance compared to other imaging modalities. Similarly, encouraging outcomes have been observed in subjects with gliomas, lung cancer, breast cancer, and cervical cancer. Beyond oncological applications, [99mTc]Tc-FAPi-based imaging has been successfully employed in myocardial and idiopathic pulmonary fibrosis. CONCLUSIONS This overview focuses on the various radiochemical strategies for obtaining [99mTc]Tc-FAPi tracers, highlighting the main challenges encountered and possible solutions when applying each distinct approach. Additionally, it covers the preclinical and initial clinical applications of [99mTc]Tc-FAPi in cancer and inflammation.
Collapse
Affiliation(s)
- Alessandra Boschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Luca Urso
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara, 70 c/o viale Eliporto, 44121, Ferrara, Italy
- Nuclear Medicine Unit, Ferrara Hospital, Via A. Moro, 8, 44124, Ferrara, Italy
| | - Licia Uccelli
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara, 70 c/o viale Eliporto, 44121, Ferrara, Italy.
- Nuclear Medicine Unit, Ferrara Hospital, Via A. Moro, 8, 44124, Ferrara, Italy.
| | - Petra Martini
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari, 46 44121, Ferrara, Italy.
| | - Luca Filippi
- Nuclear Medicine Unit, Department of Oncohaematology, Fondazione PTV Policlinico Tor Vergata University Hospital, Rome, Italy
| |
Collapse
|
6
|
Basuli F, Vasalatiy O, Shi J, Lane KC, Escorcia FE, Swenson RE. Preparation of a Zirconium-89 Labeled Clickable DOTA Complex and Its Antibody Conjugate. Pharmaceuticals (Basel) 2024; 17:480. [PMID: 38675440 PMCID: PMC11053460 DOI: 10.3390/ph17040480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Desferrioxamine B (DFO) is the clinical standard chelator for preparing zirconium-89 labeled antibodies. In the current study, the stabilities of a zirconium-89 labeled panitumumab (PAN; Vectibix®) with three different chelators (DFO, DFO*, and DOTA) were compared. PAN is an anti-HER1/EGFR monoclonal antibody approved by the FDA for the treatment of HER1-expressing colorectal cancers and was used as the model antibody for this study. DFO/DFO* conjugates of PAN were directly radiolabeled with zirconium-89 at room temperature to produce [89Zr]Zr-DFO/DFO*-PAN conjugates following a well-established procedure. A zirconium-89 labeled DOTA-PAN conjugate was prepared by an indirect radiolabeling method. A cyclooctyne-linked DOTA chelator (BCN-DOTA-GA) was first radiolabeled with zirconium-89 at 90 °C under a two-step basic pH adjustment method followed by conjugation with PAN-tetrazene at 37 °C to produce a labeled conjugate, BCN-[89Zr]Zr-DOTA-GA-PAN. High reproducibility of the radiolabeling was observed via this two-step basic pH adjustment. The overall radiochemical yield was 40-50% (n = 12, decay uncorrected) with a radiochemical purity of >95% in 2 h synthesis time. All three conjugates were stable in whole human serum for up to 7 days at 37 °C. The kinetic inertness of the conjugates was assessed against the EDTA challenge. BCN-[89Zr]Zr-DOTA-GA-PAN exhibited excellent inertness followed by [89Zr]Zr-DFO*-PAN. [89Zr]Zr-DFO-PAN displayed the lowest level of inertness.
Collapse
Affiliation(s)
- Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; (O.V.); (J.S.); (K.C.L.); (R.E.S.)
| | - Olga Vasalatiy
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; (O.V.); (J.S.); (K.C.L.); (R.E.S.)
| | - Jianfeng Shi
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; (O.V.); (J.S.); (K.C.L.); (R.E.S.)
| | - Kelly C. Lane
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; (O.V.); (J.S.); (K.C.L.); (R.E.S.)
| | - Freddy E. Escorcia
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA;
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Rolf E. Swenson
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; (O.V.); (J.S.); (K.C.L.); (R.E.S.)
| |
Collapse
|
7
|
Yazdani E, Geramifar P, Karamzade-Ziarati N, Sadeghi M, Amini P, Rahmim A. Radiomics and Artificial Intelligence in Radiotheranostics: A Review of Applications for Radioligands Targeting Somatostatin Receptors and Prostate-Specific Membrane Antigens. Diagnostics (Basel) 2024; 14:181. [PMID: 38248059 PMCID: PMC10814892 DOI: 10.3390/diagnostics14020181] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Radiotheranostics refers to the pairing of radioactive imaging biomarkers with radioactive therapeutic compounds that deliver ionizing radiation. Given the introduction of very promising radiopharmaceuticals, the radiotheranostics approach is creating a novel paradigm in personalized, targeted radionuclide therapies (TRTs), also known as radiopharmaceuticals (RPTs). Radiotherapeutic pairs targeting somatostatin receptors (SSTR) and prostate-specific membrane antigens (PSMA) are increasingly being used to diagnose and treat patients with metastatic neuroendocrine tumors (NETs) and prostate cancer. In parallel, radiomics and artificial intelligence (AI), as important areas in quantitative image analysis, are paving the way for significantly enhanced workflows in diagnostic and theranostic fields, from data and image processing to clinical decision support, improving patient selection, personalized treatment strategies, response prediction, and prognostication. Furthermore, AI has the potential for tremendous effectiveness in patient dosimetry which copes with complex and time-consuming tasks in the RPT workflow. The present work provides a comprehensive overview of radiomics and AI application in radiotheranostics, focusing on pairs of SSTR- or PSMA-targeting radioligands, describing the fundamental concepts and specific imaging/treatment features. Our review includes ligands radiolabeled by 68Ga, 18F, 177Lu, 64Cu, 90Y, and 225Ac. Specifically, contributions via radiomics and AI towards improved image acquisition, reconstruction, treatment response, segmentation, restaging, lesion classification, dose prediction, and estimation as well as ongoing developments and future directions are discussed.
Collapse
Affiliation(s)
- Elmira Yazdani
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Parham Geramifar
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran 14117-13135, Iran
| | - Najme Karamzade-Ziarati
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran 14117-13135, Iran
| | - Mahdi Sadeghi
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Payam Amini
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Departments of Radiology and Physics, University of British Columbia, Vancouver, BC V5Z 1L3, Canada
| |
Collapse
|
8
|
Jiang T, He S, Wang J, Li M, Chen J, Zhang D, Zhang R, Tao F, Yao Y, Hao J, Ji D, Liang C. The association between levels of samarium, hafnium, tungsten and rhenium in seminal plasma and the risk of idiopathic oligo-astheno-teratozoospermia in men of childbearing age. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:668-681. [PMID: 38017218 DOI: 10.1007/s11356-023-31017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/07/2023] [Indexed: 11/30/2023]
Abstract
Oligo-astheno-teratozoospermia (OAT) is a global public health problem, which affects 30% men of childbearing age. Meanwhile, with the rapid development of industry and economy, the contents of rare earth elements (REEs) in the environment are increasing. However, little is known about the associations between REEs levels and OAT risk. To evaluate the associations between the levels of four REEs (samarium (Sm), hafnium (Hf), tungsten (W), rhenium (Re)) in seminal plasma and OAT risk, from October 2021 to November 2022, semen samples from 924 men of childbearing age (460 controls and 464 cases) were collected from the reproductive center of the First Affiliated Hospital of Anhui Medical University. Inductively coupled plasma-mass spectrometry (ICP-MS) was used to measure the levels of Sm, Hf, Re and W in seminal plasma. Bayesian kernel machine regression (BKMR) was conducted to explore the joint effects of levels of four REEs in seminal plasma on the risk of OAT and select the one exerting a major role; generalized linear regression models (GLM) with log link function were employed to investigate the association of every REE level in seminal plasma and OAT risk; sankey diagram and linear regression models were utilized to describe the associations between the levels of four REEs and the indexes of sperm quality. The levels of four REEs in seminal plasma were higher in the case group than levels in the control group (pSm = 0.011, pHf = 0.040, pW = 0.062, pRe = 0.001, respectively). In BKMR analysis, the OAT risk increased when the overall levels of four REEs were higher than their 55th percentile compared to all of them at their 50th percentile, and Re level played a major role in the association. Additionally, Re level in seminal plasma was positively associated with the OAT risk in the single element model after adjustment of covariates (medium vs. low: OR (95% CI) = 1.55 (1.10, 2.18); high vs. low: OR (95% CI) = 1.69 (1.18, 2.42)). Lastly, the sankey diagram and linear regression models revealed that Sm level was negatively associated with the PR%, total sperm count and total progressively motile sperm count; Hf level was negatively associated with the PR%; W and Re levels were negatively associated with the PR% and total motility, and Re level was positively associated with abnormal morphology rate. Men of childbearing age with OAT had higher levels of Sm, Hf and Re in seminal plasma than those in the control group. An increasing trend for the OAT risk was observed with an increase in mixture levels of Sm, Hf, W and Re, and Re exposure level played a major role in the association whether in BKMR model or single element model. Additionally, the levels of these four REEs were negatively associated with the indexes of sperm quality.
Collapse
Affiliation(s)
- Tingting Jiang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shitao He
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jieyu Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Mengzhu Li
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jiayi Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Dongyang Zhang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Runtao Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yuyou Yao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jiahu Hao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dongmei Ji
- Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chunmei Liang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
9
|
Galbiati A, Dorten P, Gilardoni E, Gierse F, Bocci M, Zana A, Mock J, Claesener M, Cufe J, Büther F, Schäfers K, Hermann S, Schäfers M, Neri D, Cazzamalli S, Backhaus P. Tumor-Targeted Interleukin 2 Boosts the Anticancer Activity of FAP-Directed Radioligand Therapeutics. J Nucl Med 2023; 64:1934-1940. [PMID: 37734838 PMCID: PMC10690118 DOI: 10.2967/jnumed.123.266007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/18/2023] [Indexed: 09/23/2023] Open
Abstract
We studied the antitumor efficacy of a combination of 177Lu-labeled radioligand therapeutics targeting the fibroblast activation protein (FAP) (OncoFAP and BiOncoFAP) with the antibody-cytokine fusion protein L19-interleukin 2 (L19-IL2) providing targeted delivery of interleukin 2 to tumors. Methods: The biodistribution of 177Lu-OncoFAP and 177Lu-BiOncoFAP at different molar amounts (3 vs. 250 nmol/kg) of injected ligand was studied via SPECT/CT in mice bearing subcutaneous HT-1080.hFAP tumors, and self-absorbed tumor and organ doses were calculated. The in vivo anticancer effect of 5 MBq of the radiolabeled preparations was evaluated as monotherapy or in combination with L19-IL2 in subcutaneously implanted HT-1080.hFAP and SK-RC-52.hFAP tumors. Tumor samples from animals treated with 177Lu-BiOncoFAP, L19-IL2, or both were analyzed by mass spectrometry-based proteomics to identify therapeutic signatures on cellular and stromal markers of cancer and on immunomodulatory targets. Results: 177Lu-BiOncoFAP led to a significantly higher self-absorbed dose in FAP-positive tumors (0.293 ± 0.123 Gy/MBq) than did 177Lu-OncoFAP (0.157 ± 0.047 Gy/MBq, P = 0.01) and demonstrated favorable tumor-to-organ ratios at high molar amounts of injected ligand. Administration of L19-IL2 or 177Lu-BiOncoFAP as single agents led to cancer cures in only a limited number of treated animals. In 177Lu-BiOncoFAP-plus-L19-IL2 combination therapy, complete remissions were observed in all injected mice (7/7 complete remissions for the HT-1080.hFAP model, and 4/4 complete remissions for the SK-RC-52.hFAP model), suggesting therapeutic synergy. Proteomic studies revealed a mechanism of action based on the activation of natural killer cells, with a significant enhancement of the expression of granzymes and perforin 1 in the tumor microenvironment after combination treatment. Conclusion: The combination of OncoFAP-based radioligand therapeutics with concurrent targeting of interleukin 2 shows synergistic anticancer effects in the treatment of FAP-positive tumors. This experimental finding should be corroborated by future clinical studies.
Collapse
Affiliation(s)
- Andrea Galbiati
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Paulina Dorten
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Ettore Gilardoni
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Florian Gierse
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Matilde Bocci
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Aureliano Zana
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Jacqueline Mock
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Michael Claesener
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Juela Cufe
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Florian Büther
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Klaus Schäfers
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
- West German Cancer Centre, Münster, Germany
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland; and
- Philogen S.p.A., Siena, Italy
| | - Samuele Cazzamalli
- Research and Development Department, Philochem AG, Otelfingen, Switzerland;
| | - Philipp Backhaus
- European Institute for Molecular Imaging, University of Münster, Münster, Germany;
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
- West German Cancer Centre, Münster, Germany
| |
Collapse
|
10
|
Lepareur N, Ramée B, Mougin-Degraef M, Bourgeois M. Clinical Advances and Perspectives in Targeted Radionuclide Therapy. Pharmaceutics 2023; 15:1733. [PMID: 37376181 DOI: 10.3390/pharmaceutics15061733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Targeted radionuclide therapy has become increasingly prominent as a nuclear medicine subspecialty. For many decades, treatment with radionuclides has been mainly restricted to the use of iodine-131 in thyroid disorders. Currently, radiopharmaceuticals, consisting of a radionuclide coupled to a vector that binds to a desired biological target with high specificity, are being developed. The objective is to be as selective as possible at the tumor level, while limiting the dose received at the healthy tissue level. In recent years, a better understanding of molecular mechanisms of cancer, as well as the appearance of innovative targeting agents (antibodies, peptides, and small molecules) and the availability of new radioisotopes, have enabled considerable advances in the field of vectorized internal radiotherapy with a better therapeutic efficacy, radiation safety and personalized treatments. For instance, targeting the tumor microenvironment, instead of the cancer cells, now appears particularly attractive. Several radiopharmaceuticals for therapeutic targeting have shown clinical value in several types of tumors and have been or will soon be approved and authorized for clinical use. Following their clinical and commercial success, research in that domain is particularly growing, with the clinical pipeline appearing as a promising target. This review aims to provide an overview of current research on targeting radionuclide therapy.
Collapse
Affiliation(s)
- Nicolas Lepareur
- Comprehensive Cancer Center Eugène Marquis, 35000 Rennes, France
- Inserm, INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer)-UMR 1317, Univ Rennes, 35000 Rennes, France
| | - Barthélémy Ramée
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
| | - Marie Mougin-Degraef
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
| | - Mickaël Bourgeois
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
- Groupement d'Intérêt Public ARRONAX, 1 Rue Aronnax, 44817 Saint Herblain, France
| |
Collapse
|
11
|
Favaretto C, Grundler PV, Talip Z, Landolt S, Sepini L, Köster U, Müller C, Schibli R, Geistlich S, van der Meulen NP. 161Tb-DOTATOC Production Using a Fully Automated Disposable Cassette System: A First Step Toward the Introduction of 161Tb into the Clinic. J Nucl Med 2023:jnumed.122.265268. [PMID: 37201956 DOI: 10.2967/jnumed.122.265268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/01/2023] [Indexed: 05/20/2023] Open
Abstract
161Tb is an interesting radionuclide for application in the treatment of neuroendocrine neoplasms' small metastases and single cancer cells because of its conversion and Auger-electron emission. Tb has coordination chemistry similar to that of Lu; therefore, like 177Lu, it can stably radiolabel DOTATOC, one of the leading peptides used for the treatment of neuroendocrine neoplasms. However, 161Tb is a recently developed radionuclide that has not yet been specified for clinical use. Therefore, the aim of the current work was to characterize and specify 161Tb and to develop a protocol for the synthesis and quality control of 161Tb-DOTATOC with a fully automated process conforming to good-manufacturing-practice guidelines, in view of its clinical use. Methods: 161Tb, produced by neutron irradiation of 160Gd in high-flux reactors followed by radiochemical separation from its target material, was characterized regarding its radionuclidic purity, chemical purity, endotoxin level, and radiochemical purity (RCP) in analogy to what is described in the European Pharmacopoeia for no-carrier-added 177Lu. In addition, 161Tb was introduced into a fully automated cassette-module synthesis to produce 161Tb-DOTATOC, as used for 177Lu-DOTATOC. The quality and stability of the produced radiopharmaceutical in terms of identity, RCP, and ethanol and endotoxin content were assessed by means of high-performance liquid chromatography, gas chromatography, and an endotoxin test, respectively. Results: 161Tb produced under the described conditions showed, as the no-carrier-added 177Lu, a pH of 1-2, radionuclidic purity and RCP of more than 99.9%, and an endotoxin level below the permitted range (175 IU/mL), indicating its appropriate quality for clinical use. In addition, an efficient and robust procedure for the automated production and quality control of 161Tb-DOTATOC with clinically applicable specifications and activity levels, that is, 1.0-7.4 GBq in 20 mL, was developed. The radiopharmaceutical's quality control was also developed using chromatographic methods, which confirmed the product's stability (RCP ≥ 95%) over 24 h. Conclusion: The current study demonstrated that 161Tb has appropriate features for clinical use. The developed synthesis protocol guarantees high yields and safe preparation of injectable 161Tb-DOTATOC. The investigated approach could be translated to other DOTA-derivatized peptides; thus, 161Tb could be successfully applied in clinical practice for radionuclide therapy.
Collapse
Affiliation(s)
- Chiara Favaretto
- Center for Radiopharmaceutical Sciences, ETH-Paul Scherrer Institute, Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, ETH, Zurich, Switzerland
| | - Pascal V Grundler
- Center for Radiopharmaceutical Sciences, ETH-Paul Scherrer Institute, Villigen-PSI, Switzerland
| | - Zeynep Talip
- Center for Radiopharmaceutical Sciences, ETH-Paul Scherrer Institute, Villigen-PSI, Switzerland
| | - Stefan Landolt
- Center for Radiopharmaceutical Sciences, ETH-Paul Scherrer Institute, Villigen-PSI, Switzerland
| | - Lebogang Sepini
- Radiochemistry, South African Nuclear Energy Corp., Brits, South Africa
| | - Ulli Köster
- Institut Laue-Langevin, Grenoble, France; and
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences, ETH-Paul Scherrer Institute, Villigen-PSI, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, ETH-Paul Scherrer Institute, Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, ETH, Zurich, Switzerland
| | - Susanne Geistlich
- Center for Radiopharmaceutical Sciences, ETH-Paul Scherrer Institute, Villigen-PSI, Switzerland
| | - Nicholas P van der Meulen
- Center for Radiopharmaceutical Sciences, ETH-Paul Scherrer Institute, Villigen-PSI, Switzerland;
- Laboratory of Radiochemistry, Paul Scherrer Institute, Villigen-PSI, Switzerland
| |
Collapse
|
12
|
Di Domenico G, Di Biaso S, Longo L, Turra A, Tonini E, Longo M, Uccelli L, Bartolomei M. Validation of
99
m
Tc and
177
Lu quantification parameters for a Monte Carlo modelled gamma camera. EJNMMI Phys 2023; 10:27. [PMID: 37029829 PMCID: PMC10082889 DOI: 10.1186/s40658-023-00547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
PURPOSE Monte Carlo (MC) simulation in Nuclear Medicine is a powerful tool for modeling many physical phenomena which are difficult to track or measure directly. MC simulation in SPECT/CT imaging is particularly suitable for optimizing the quantification of activity in a patient, and, consequently, the absorbed dose to each organ. To do so, validating MC results with real data acquired with gamma camera is mandatory. The aim of this study was the validation of the calibration factor (CF) and the recovery coefficient (RC) obtained with SIMIND Monte Carlo code for modeling a Siemens Symbia Intevo Excel SPECT-CT gamma camera to ensure optimal99 m Tc and177 Lu SPECT quantification. METHODS Phantom experiments using99 m Tc and177 Lu have been performed to measure spatial resolution and sensitivity, as well as to evaluate the CF and RC from acquired data. The geometries used for 2D planar imaging were (1) Petri dish and (2) capillary source while for 3D volumetric imaging were (3) a uniform filled cylinder phantom and (4) a Jaszczack phantom with spheres of different volumes. The experimental results have been compared with the results obtained from Monte Carlo simulations performed in the same geometries. RESULTS Comparison shows good accordance between simulated and experimental data. The measured planar spatial resolution was 8.3± 0.8 mm for99 m Tc and 11.8±0.6 mm for177 Lu. The corresponding data obtained by SIMIND for99 m Tc was 7.8±0.1 mm, while for177 Lu was 12.4±0.4 mm. The CF was 110.1±5.5 cps/MBq for Technetium and 18.3±1.0 cps/MBq for Lutetium. The corresponding CF obtained by SIMIND for99 m Tc was 107.3±0.3 cps/MBq, while for177 Lu 20.4±0.7 cps/MBq. Moreover, a complete curve RCs vs Volume (ml) both for Technetium and Lutetium was determined to correct the PVE for all volumes of clinical interest. In none of the cases, a RC coefficient equal to 100 was found. CONCLUSIONS The validation of quantification parameters shows that SIMIND can be used for simulating both gamma camera planar and SPECT images of Siemens Symbia Intevo using99 m Tc and177 Lu radionuclides for different medical purposes and treatments.
Collapse
Affiliation(s)
- Giovanni Di Domenico
- Department of Physics and Earth Science, University of Ferrara, via Saragat 1, 44122 Ferrara, IT Italy
| | - Simona Di Biaso
- Department of Physics and Earth Science, University of Ferrara, via Saragat 1, 44122 Ferrara, IT Italy
| | - Lorenzo Longo
- Department of Physics and Earth Science, University of Ferrara, via Saragat 1, 44122 Ferrara, IT Italy
| | - Alessandro Turra
- Medical Physics Unit, University Hospital, 44124 Ferrara, IT Italy
| | - Eugenia Tonini
- Medical Physics Unit, University Hospital, 44124 Ferrara, IT Italy
| | | | - Licia Uccelli
- Nuclear Medicine Unit, University Hospital, 44124 Ferrara, IT Italy
- Department of Translational Medicine, University of Ferrara, via Fossato di Mortara, 70 c/o viale Eliporto, 44124 Ferrara, IT Italy
| | - Mirco Bartolomei
- Nuclear Medicine Unit, University Hospital, 44124 Ferrara, IT Italy
| |
Collapse
|
13
|
Urso L, Nieri A, Uccelli L, Castello A, Artioli P, Cittanti C, Marzola MC, Florimonte L, Castellani M, Bissoli S, Porto F, Boschi A, Evangelista L, Bartolomei M. Lutathera® Orphans: State of the Art and Future Application of Radioligand Therapy with 177Lu-DOTATATE. Pharmaceutics 2023; 15:pharmaceutics15041110. [PMID: 37111596 PMCID: PMC10142322 DOI: 10.3390/pharmaceutics15041110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Lutathera® is the first EMA- and FDA-approved radiopharmaceutical for radioligand therapy (RLT). Currently, on the legacy of the NETTER1 trial, only adult patients with progressive unresectable somatostatin receptor (SSTR) positive gastroenteropancreatic (GEP) neuroendocrine neoplasms (NET) can be treated with Lutathera®. Conversely, patients with SSTR-positive disease arising from outside the gastroenteric region do not currently have access to Lutathera® treatment despite several papers in the literature reporting the effectiveness and safety of RLT in these settings. Moreover, patients with well-differentiated G3 GEP-NET are also still “Lutathera orphans”, and retreatment with RLT in patients with disease relapse is currently not approved. The aim of this critical review is to summarize current literature evidence assessing the role of Lutathera® outside the approved indications. Moreover, ongoing clinical trials evaluating new possible applications of Lutathera® will be considered and discussed to provide an updated picture of future investigations.
Collapse
Affiliation(s)
- Luca Urso
- Department of Translational Medicine, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy; (L.U.); (C.C.); (F.P.)
- Department of Nuclear Medicine, PET/CT Centre, S. Maria della Misericordia Hospital, 45100 Rovigo, Italy;
| | - Alberto Nieri
- Nuclear Medicine Unit, Oncological Medical and Specialist Department, University Hospital of Ferrara, 44124 Cona, Italy; (A.N.); (M.B.)
| | - Licia Uccelli
- Department of Translational Medicine, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy; (L.U.); (C.C.); (F.P.)
- Nuclear Medicine Unit, Oncological Medical and Specialist Department, University Hospital of Ferrara, 44124 Cona, Italy; (A.N.); (M.B.)
- Correspondence: ; Tel.: +39-053-232-6387
| | - Angelo Castello
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.C.); (L.F.); (M.C.)
| | - Paolo Artioli
- Nuclear Medicine Unit, AULSS1 Dolomiti, San Martino Hospital, 32100 Belluno, Italy; (P.A.); (S.B.)
| | - Corrado Cittanti
- Department of Translational Medicine, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy; (L.U.); (C.C.); (F.P.)
- Nuclear Medicine Unit, Oncological Medical and Specialist Department, University Hospital of Ferrara, 44124 Cona, Italy; (A.N.); (M.B.)
| | - Maria Cristina Marzola
- Department of Nuclear Medicine, PET/CT Centre, S. Maria della Misericordia Hospital, 45100 Rovigo, Italy;
| | - Luigia Florimonte
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.C.); (L.F.); (M.C.)
| | - Massimo Castellani
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.C.); (L.F.); (M.C.)
| | - Sergio Bissoli
- Nuclear Medicine Unit, AULSS1 Dolomiti, San Martino Hospital, 32100 Belluno, Italy; (P.A.); (S.B.)
| | - Francesca Porto
- Department of Translational Medicine, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy; (L.U.); (C.C.); (F.P.)
| | - Alessandra Boschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Laura Evangelista
- Department of Medicine DIMED, University of Padua, 35128 Padua, Italy;
| | - Mirco Bartolomei
- Nuclear Medicine Unit, Oncological Medical and Specialist Department, University Hospital of Ferrara, 44124 Cona, Italy; (A.N.); (M.B.)
| |
Collapse
|
14
|
Rubira L, Deshayes E, Santoro L, Kotzki PO, Fersing C. 225Ac-Labeled Somatostatin Analogs in the Management of Neuroendocrine Tumors: From Radiochemistry to Clinic. Pharmaceutics 2023; 15:1051. [PMID: 37111537 PMCID: PMC10146019 DOI: 10.3390/pharmaceutics15041051] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
The widespread use of peptide receptor radionuclide therapy (PRRT) represents a major therapeutic breakthrough in nuclear medicine, particularly since the introduction of 177Lu-radiolabeled somatostatin analogs. These radiopharmaceuticals have especially improved progression-free survival and quality of life in patients with inoperable metastatic gastroenteropancreatic neuroendocrine tumors expressing somatostatin receptors. In the case of aggressive or resistant disease, the use of somatostatin derivatives radiolabeled with an alpha-emitter could provide a promising alternative. Among the currently available alpha-emitting radioelements, actinium-225 has emerged as the most suitable candidate, especially regarding its physical and radiochemical properties. Nevertheless, preclinical and clinical studies on these radiopharmaceuticals are still few and heterogeneous, despite the growing momentum for their future use on a larger scale. In this context, this report provides a comprehensive and extensive overview of the development of 225Ac-labeled somatostatin analogs; particular emphasis is placed on the challenges associated with the production of 225Ac, its physical and radiochemical properties, as well as the place of 225Ac-DOTATOC and 225Ac-DOTATATE in the management of patients with advanced metastatic neuroendocrine tumors.
Collapse
Affiliation(s)
- Léa Rubira
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
| | - Emmanuel Deshayes
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Lore Santoro
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Pierre Olivier Kotzki
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Cyril Fersing
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
15
|
Relevance of Volumetric Parameters Applied to [ 68Ga]Ga-DOTATOC PET/CT in NET Patients Treated with PRRT. Diagnostics (Basel) 2023; 13:diagnostics13040606. [PMID: 36832093 PMCID: PMC9955025 DOI: 10.3390/diagnostics13040606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND this study aims to explore the prognostic and predictive role of volumetric parameters on [68Ga]Ga-DOTATOC PET/CT in neuroendocrine tumors (NET) patients treated with peptide receptor radionuclide therapy (PRRT). METHODS We retrospectively evaluated 39 NET patients (21 male, 18 female; mean age 60.7 y) within the FENET-2016 trial (CTiD:NCT04790708). PRRT was proposed with [177Lu]Lu-DOTATOC alone or combined with [90Y]Y-DOTATOC. [68Ga]Ga-DOTATOC PET/CT was performed at baseline and 3 months after PRRT. For each PET/CT, we calculated SUVmax, SUVmean, somatostatin receptor expressing tumor volume (SRETV), and total lesion somatostatin receptor expression (TLSRE), as well as their percentage of changes (Δ), both for liver (_L) and for total tumor burden (_WB). Early clinical response (3 months after PRRT) and PFS were evaluated according to RECIST 1.1 and institutional NET board. RESULTS Early clinical response identified 9 partial response (PR), 25 stable disease (SD), and 5 progressive disease (PD). Post-SRETV_WB and ΔSRETV_WB were progressively increased among response groups (p = 0.02 and p = 0.03, respectively). Likewise, median post-SRETV_L was significantly higher in PD patients (p = 0.03). SUVmax and TLSRE did not correlate with early clinical response. Median PFS was 31 months. Patients with ΔSRETV_WB lower than -4.17% as well as those with post-SRETV_WB lower than 34.8 cm3 showed a longer PFS (p = 0.006 and p = 0.06, respectively). Finally, multivariate analysis identified ΔSRETV_WB as an independent predictor for PFS. CONCLUSIONS our results could strengthen the importance of evaluating the burden of disease on [68Ga]Ga-DOTATOC PET/CT in NET patients treated with PRRT.
Collapse
|
16
|
DNA Damage Repair Defects and Targeted Radionuclide Therapies for Prostate Cancer: Does Mutation Really Matter? A Systematic Review. Life (Basel) 2022; 13:life13010055. [PMID: 36676004 PMCID: PMC9860912 DOI: 10.3390/life13010055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The aim of the present review was to assess the impact of DNA damage repair (DDR) mutations on response and outcome of patients (pts) affected by advanced prostate cancer (PCa) submitted to radionuclide therapies with [223Ra]RaCl2 (223Ra-therapy) or prostate specific membrane antigen (PSMA) ligands. A systematic literature search according to PRISMA criteria was made by using two main databases. Only studies published up until to October 2022 in the English language with ≥10 enrolled patients were selected. Seven studies including 326 pts, of whom 201 (61.6%) harboring DDR defects, were selected. The majority of selected papers were retrospective and four out of seven (57.1%) had small sample size (<50 pts). Three out of seven (42.8%) studies reported a more favorable outcome (overall or progression free survival) after therapy with alpha emitters (223Ra-therapy or [225Ac]Ac-PSMA-617) in subjects with DDR defects with respect to those without mutations. In two studies employing alpha or beta emitters ([177Lu]/[225Ac]-PMSA), no significant benefit was registered in pts harboring DDR defects. In all but one paper, no significant difference in response rate was reported among pts with or without DDR mutations. Although preliminary and biased by the retrospective design, preliminary data suggest a trend towards a longer survival in PCa pts harboring DDR defects submitted to radionuclide targeted therapy with alpha emitters.
Collapse
|
17
|
Urso L, Nieri A, Rambaldi I, Castello A, Uccelli L, Cittanti C, Panareo S, Gagliardi I, Ambrosio MR, Zatelli MC, Bartolomei M. Radioligand therapy (RLT) as neoadjuvant treatment for inoperable pancreatic neuroendocrine tumors: a literature review. Endocrine 2022; 78:255-261. [PMID: 36018539 PMCID: PMC9585010 DOI: 10.1007/s12020-022-03170-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/08/2022] [Indexed: 01/09/2023]
Abstract
In the last 10 years, several literature reports supported radioligand therapy (RLT) in neoadjuvant settings for pancreatic neuroendocrine tumors (PanNETs). Indeed, primary tumor shrinkage has been frequently reported following RLT in unresectable or borderline resectable PanNETs. Moreover, RLT-induced intratumoral modifications facilitate surgery, both on primary tumor and metastasis, having a great impact on progression free survival (PFS), overall survival (OS) and quality of life (QoL). However, prospective controlled investigations are necessary to confirm preliminary data and to define the best RLT scheme and the ideal patient that, in a multidisciplinary approach, should be referred to neoadjuvant RLT.
Collapse
Affiliation(s)
- Luca Urso
- Nuclear Medicine Unit, Department of Oncology and Specialist Medicines, University Hospital of Ferrara, Ferrara, Italy
- Translational Medicine Department, Ferrara University, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Alberto Nieri
- Nuclear Medicine Unit, Department of Oncology and Specialist Medicines, University Hospital of Ferrara, Ferrara, Italy
| | - Ilaria Rambaldi
- Nuclear Medicine Unit, Department of Oncology and Specialist Medicines, University Hospital of Ferrara, Ferrara, Italy
| | - Angelo Castello
- Department of Nuclear Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Licia Uccelli
- Nuclear Medicine Unit, Department of Oncology and Specialist Medicines, University Hospital of Ferrara, Ferrara, Italy
- Translational Medicine Department, Ferrara University, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Corrado Cittanti
- Nuclear Medicine Unit, Department of Oncology and Specialist Medicines, University Hospital of Ferrara, Ferrara, Italy
- Translational Medicine Department, Ferrara University, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Stefano Panareo
- Nuclear Medicine Unit, Oncology and Haematology Department, University Hospital of Modena, Modena, Italy
| | - Irene Gagliardi
- Section of Endocrinology, Geriatric and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria Rosaria Ambrosio
- Section of Endocrinology, Geriatric and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria Chiara Zatelli
- Section of Endocrinology, Geriatric and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
| | - Mirco Bartolomei
- Nuclear Medicine Unit, Department of Oncology and Specialist Medicines, University Hospital of Ferrara, Ferrara, Italy
| |
Collapse
|
18
|
Glucose Metabolism Modification Induced by Radioligand Therapy with [ 177Lu]Lu/[ 90Y]Y-DOTATOC in Advanced Neuroendocrine Neoplasms: A Prospective Pilot Study within FENET-2016 Trial. Pharmaceutics 2022; 14:pharmaceutics14102009. [PMID: 36297443 PMCID: PMC9612170 DOI: 10.3390/pharmaceutics14102009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/13/2022] Open
Abstract
[18F]F-FDG (FDG) PET is emerging as a relevant diagnostic and prognostic tool in neuroendocrine neoplasms (NENs), as a simultaneous decrease in [68Ga]Ga-DOTA peptides and increase in FDG uptake (the “flip-flop” phenomenon) occurs during the natural history of these tumors. The aim of this study was to evaluate the variations on FDG PET in NEN patients treated with two different schemes of radioligand therapy (RLT) and to correlate them with clinical−pathologic variables. A prospective evaluation of 108 lesions in 56 patients (33 males and 23 females; median age, 64.5 years) affected by NENs of various primary origins (28 pancreatic, 13 gastrointestinal, 9 bronchial, 6 unknown primary (CUP-NENs) and 1 pheochromocytoma) and grades (median Ki-67 = 9%) was performed. The patients were treated with RLT within the phase II clinical trial FENET-2016 (CTID: NCT04790708). RLT was offered for 32 patients with the MONO scheme (five cycles of [177Lu]Lu-DOTATOC) and for 24 with the DUO scheme (three cycles of [177Lu]Lu-DOTATOC alternated with two cycles of [90Y]Y-DOTATOC). Variations in terms of the ΔSUVmax of a maximum of three target lesions per patient (58 for MONO and 50 for DUO RLT) were assessed between baseline and 3 months post-RLT FDG PET. In patients with negative baseline FDG PET, the three most relevant lesions on [68Ga]Ga-DOTA-peptide PET were assessed and matched on post-RLT FDG PET, to check for any possible changes in FDG avidity. Thirty-five patients (62.5%) had at least one pathological FDG uptake at the baseline scans, but the number was reduced to 29 (52%) after RLT. In the patients treated with DUO-scheme RLT, 20 out of 50 lesions were FDG positive before therapy, whereas only 14 were confirmed after RLT (p = 0.03). Moreover, none of the 30 FDG-negative lesions showed an increased FDG uptake after RLT. The lesions of patients with pancreatic and CUP-NENs treated with the DUO scheme demonstrated a significant reduction in ΔSUVmax in comparison to those treated with MONO RLT (p = 0.03 and p = 0.04, respectively). Moreover, we found a mild positive correlation between the grading and ΔSUVmax in patients treated with the MONO scheme (r = 0.39, p < 0.02), while no evidence was detected for patients treated with the DUO scheme. Our results suggest that RLT, mostly with the DUO scheme, could be effective in changing NEN lesions’ glycometabolism, in particular, in patients affected by pancreatic and CUP-NENs, regardless of their Ki-67 index. Probably, associating [90Y]Y-labelled peptides, which have high energy emission and a crossfire effect, and [177Lu]Lu ones, characterized by a longer half-life and a safer profile for organs at risk, might represent a valid option in FDG-positive NENs addressed to RLT. Further studies are needed to validate our preliminary findings. In our opinion, FDG PET/CT should represent a potent tool for fully assessing a patient’s disease characteristics, both before and after RLT.
Collapse
|
19
|
Modica R, Liccardi A, Minotta R, Cannavale G, Benevento E, Colao A. Therapeutic strategies for patients with neuroendocrine neoplasms: current perspectives. Expert Rev Endocrinol Metab 2022; 17:389-403. [PMID: 35822906 DOI: 10.1080/17446651.2022.2099840] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Neuroendocrine neoplasms (NENs) are a heterogeneous group of malignancies mainly arising in the gastroenteropancreatic (GEP) and bronchopulmonary systems, with steadily increasing incidence. The therapeutic landscape has widened and the therapeutic strategy should be based on new sequences and combinations, still debated. AREAS COVERED Herein, we provide an overview of current approved pharmacological treatments in patients with NENs, with the aim to summarize evidence of efficacy of the main different options in GEP and pulmonary NENs, principally focusing on somatostatin analogs (SSAs), targeted therapy with everolimus and sunitinib, peptide receptor radionuclide therapy (PRRT) and chemotherapy. We discuss biological rationale and toxicities, including current indications according to differentiation and placement in the therapeutic algorithm, clinical trials, and combinations. Furthermore, we recommend areas for further research. EXPERT OPINION Therapeutic management of patients with NENs represents a challenge for clinicians and the identification of effective sequences and combinations is of utmost importance. Major efforts should be directed to early identify and overcome resistance and to limit toxicity. The progress in the therapeutic management of NENs grows faster and the choice of the best approach should be based on randomized clinical trials, as well as on long-term, real-world data.
Collapse
Affiliation(s)
- Roberta Modica
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Alessia Liccardi
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Roberto Minotta
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Giuseppe Cannavale
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Elio Benevento
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Annamaria Colao
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
- UNESCO Chair, Education for Health and Sustainable Development, Federico II University, Naples, Italy
| |
Collapse
|
20
|
Uccelli L, Martini P, Urso L, Ghirardi T, Marvelli L, Cittanti C, Carnevale A, Giganti M, Bartolomei M, Boschi A. Rhenium Radioisotopes for Medicine, a Focus on Production and Applications. Molecules 2022; 27:5283. [PMID: 36014521 PMCID: PMC9412410 DOI: 10.3390/molecules27165283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/08/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022] Open
Abstract
In recent decades, the use of alpha; pure beta; or beta/gamma emitters in oncology, endocrinology, and interventional cardiology rheumatology, has proved to be an important alternative to the most common therapeutic regimens. Among radionuclides used for therapy in nuclear medicine, two rhenium radioisotopes are of particular relevance: rhenium-186 and rhenium-188. The first is routinely produced in nuclear reactors by direct neutron activation of rhenium-186 via 185Re(n,γ)186Re nuclear reaction. Rhenium-188 is produced by the decay of the parent tungsten-188. Separation of rhenium-188 is mainly performed using a chromatographic 188W/188Re generator in which tungsten-188 is adsorbed on the alumina column, similar to the 99Mo/99mTc generator system, and the radionuclide eluted in saline solution. The application of rhenium-186 and rhenium-188 depends on their specific activity. Rhenium-186 is produced in low specific activity and is mainly used for labeling particles or diphosphonates for bone pain palliation. Whereas, rhenium-188 of high specific activity can be used for labeling peptides or bioactive molecules. One of the advantages of rhenium is its chemical similarity with technetium. So, diagnostic technetium analogs labeled with radiorhenium can be developed for therapeutic applications. Clinical trials promoting the use of 186/188Re-radiopharmaceuticals is, in particular, are discussed.
Collapse
Affiliation(s)
- Licia Uccelli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Nuclear Medicine Unit, University Hospital, 44124 Ferrara, Italy
| | - Petra Martini
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Luca Urso
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Nuclear Medicine Unit, University Hospital, 44124 Ferrara, Italy
| | - Teresa Ghirardi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Lorenza Marvelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Corrado Cittanti
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Nuclear Medicine Unit, University Hospital, 44124 Ferrara, Italy
| | - Aldo Carnevale
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Radiology Unit, University Hospital, 44124 Ferrara, Italy
| | - Melchiore Giganti
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Radiology Unit, University Hospital, 44124 Ferrara, Italy
| | - Mirco Bartolomei
- Nuclear Medicine Unit, University Hospital, 44124 Ferrara, Italy
| | - Alessandra Boschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
21
|
Urso L, Lancia F, Ortolan N, Frapoli M, Rauso M, Artioli P, Cittanti C, Uccelli L, Frassoldati A, Evangelista L, Bartolomei M. 18F-Choline PET/CT or PET/MR and the evaluation of response to systemic therapy in prostate cancer: are we ready? Clin Transl Imaging 2022; 10:687-695. [PMID: 35919380 PMCID: PMC9333077 DOI: 10.1007/s40336-022-00515-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/18/2022] [Indexed: 01/01/2023]
Abstract
Purpose During the last decade, [18F]F-choline positron emission tomography (PET) had a rising role in prostate cancer (PCa) imaging. However, despite auspicious premises, [18F]F-choline PET is not currently recommended for the evaluation of response to therapy assessment in PCa, mainly due to the lack of large-scale prospective trials. Methods We report the cases of seven patients affected by PCa, in which [18F]F-choline PET (either with computed tomography—CT or magnetic resonance imaging—MR) contributed significantly in the systemic therapy response evaluation. Results and conclusion [18F]F-choline PET/CT or PET/MR demonstrated to be a useful imaging modality in the assessment of response to systemic therapy in metastatic PCa patients, irrespective of the stage of disease (either in hormone sensitive and in castrate resistant condition) and the kind of systemic treatment. In most cases, PSA serum values and [18F]F-choline PET showed a synchronous disease evolution after systemic therapy. ADT can alter [18F]F-choline uptake, therefore the time of scan should be correctly planned. Finally, PET/CT with [18F]F-choline is a useful tool for reinforcing the identification of metastatic disease in case of a switch from metastatic castration sensitive to castration resistant PCa.
Collapse
Affiliation(s)
- Luca Urso
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy
| | - Federica Lancia
- Oncological Medical and Specialists Department, Oncology Unit, University Hospital of Ferrara, Ferrara, Italy
| | - Naima Ortolan
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy
| | - Marta Frapoli
- Oncological Medical and Specialists Department, Oncology Unit, University Hospital of Ferrara, Ferrara, Italy
| | - Martina Rauso
- Oncological Medical and Specialists Department, Oncology Unit, University Hospital of Ferrara, Ferrara, Italy
| | - Paolo Artioli
- Nuclear Medicine Unit, Department of Medicine, DIMED University of Padua, Padua, Italy
| | - Corrado Cittanti
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy
| | - Licia Uccelli
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy
| | - Antonio Frassoldati
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Oncological Medical and Specialists Department, Oncology Unit, University Hospital of Ferrara, Ferrara, Italy
| | - Laura Evangelista
- Nuclear Medicine Unit, Department of Medicine, DIMED University of Padua, Padua, Italy
| | - Mirco Bartolomei
- Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy
| |
Collapse
|
22
|
Urso L, Castello A, Rocca GC, Lancia F, Panareo S, Cittanti C, Uccelli L, Florimonte L, Castellani M, Ippolito C, Frassoldati A, Bartolomei M. Role of PSMA-ligands imaging in Renal Cell Carcinoma management: current status and future perspectives. J Cancer Res Clin Oncol 2022; 148:1299-1311. [PMID: 35217902 PMCID: PMC9114025 DOI: 10.1007/s00432-022-03958-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/14/2022] [Indexed: 12/17/2022]
Abstract
Background Renal masses detection is continually increasing worldwide, with Renal Cell Carcinoma (RCC) accounting for approximately 90% of all renal cancers and remaining one of the most aggressive urological malignancies. Despite improvements in cancer management, accurate diagnosis and treatment strategy of RCC by computed tomography (CT) and magnetic resonance imaging (MRI) are still challenging. Prostate-Specific Membrane Antigen (PSMA) is known to be highly expressed on the endothelial cells of the neovasculature of several solid tumors other than prostate cancer, including RCC. In this context, recent preliminary studies reported a promising role for positron emission tomography (PET)/CT with radiolabeled molecules targeting PSMA, in alternative to fluorodeoxyglucose (FDG) in RCC patients. Purpose The aim of our review is to provide an updated overview of current evidences and major limitations regarding the use of PSMA PET/CT in RCC. Methods A literature search, up to 31 December 2021, was performed using the following electronic databases: PubMed, SCOPUS, Web of Science, and Google Scholar. Results The findings of this review suggest that PSMA PET/CT could represent a valid imaging option for diagnosis, staging, and therapy response evaluation in RCC, particularly in clear cell RCC. Conclusions Further studies are needed for this “relatively” new imaging modality to consolidate its indications, timing, and practical procedures.
Collapse
Affiliation(s)
- Luca Urso
- Department of Translational Medicine, University of Ferrara, Via Aldo Moro 8, 44124, Ferrara, Italy.,Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, Ferrara, Italy
| | - Angelo Castello
- Department of Nuclear Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Federica Lancia
- Oncological Medical and Specialists Department, Oncology Unit, University Hospital of Ferrara, Ferrara, Italy
| | - Stefano Panareo
- Nuclear Medicine Unit, Oncology and Haematology Department, University Hospital of Modena, Modena, Italy
| | - Corrado Cittanti
- Department of Translational Medicine, University of Ferrara, Via Aldo Moro 8, 44124, Ferrara, Italy. .,Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, Ferrara, Italy.
| | - Licia Uccelli
- Department of Translational Medicine, University of Ferrara, Via Aldo Moro 8, 44124, Ferrara, Italy.,Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, Ferrara, Italy
| | - Luigia Florimonte
- Department of Nuclear Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Castellani
- Department of Nuclear Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Carmelo Ippolito
- Urology Unit, Surgical Department, University Hospital of Ferrara, Ferrara, Italy
| | - Antonio Frassoldati
- Oncological Medical and Specialists Department, Oncology Unit, University Hospital of Ferrara, Ferrara, Italy
| | - Mirco Bartolomei
- Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, Ferrara, Italy
| |
Collapse
|