1
|
Lhaglham P, Jiramonai L, Jia Y, Huang B, Huang Y, Gao X, Zhang J, Liang XJ, Zhu M. Drug nanocrystals: Surface engineering and its applications in targeted delivery. iScience 2024; 27:111185. [PMID: 39555405 PMCID: PMC11564948 DOI: 10.1016/j.isci.2024.111185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Drug nanocrystals have received significant attention in drug development due to their enhanced dissolution rate and improved water solubility, making them effective in overcoming issues related to drug hydrophobicity, thereby improving drug bioavailability and treatment effectiveness. Recent advances in preparation techniques have facilitated research on drug surface properties, leading to valuable surface engineering strategies. Surface modification can stabilize drug nanocrystals, making them suitable for versatile drug delivery platforms. Functionalized ligands further enhance the potential for targeted delivery, enabling precision medicine. This review focuses on the surface engineering of drug nanocrystals, discussing various preparation methods, surface ligand design strategies, and their applications in targeted drug delivery, especially for cancer treatments. Finally, challenges and future directions are also discussed to promote the development of drug nanocrystals. The surface engineering of drug nanocrystals promises new opportunities for treating complex and chronic diseases while broadening the application of drug delivery systems.
Collapse
Affiliation(s)
- Phattalapol Lhaglham
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Sri-ayudhya Road, Bangkok 10400, Thailand
| | - Luksika Jiramonai
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaru Jia
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Baoying Huang
- MHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xueyun Gao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengliang Zhu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Elbanna SA, Ebada HMK, Abdallah OY, Essawy MM, Abdelhamid HM, Barakat HS. Novel tetrahydrocurcumin integrated mucoadhesive nanocomposite κ-carrageenan/xanthan gum sponges: a strategy for effective local treatment of oral cancerous and precancerous lesions. Drug Deliv 2023; 30:2254530. [PMID: 37668361 PMCID: PMC10481765 DOI: 10.1080/10717544.2023.2254530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/27/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023] Open
Abstract
Oral cancer is one of the leading causes of death worldwide. Oral precancerous lesions (OPL) are the precursors of oral cancer, with varying degrees of progression. Tetrahydrocurcumin (THC) is a major metabolite of curcumin with superior anticancer properties against various types of cancer. However, THC's clinical outcome is limited by its poor aqueous solubility. Herein, we developed novel mucoadhesive biopolymer-based composite sponges for buccal delivery of THC, exploiting nanotechnology and mucoadhesion for efficient prevention and treatment of oral cancer. Firstly, THC-nanocrystals (THC-NC) were formulated and characterized for subsequent loading into mucoadhesive composite sponges. The anticancer activity of THC-NC was assessed on a human tongue squamous carcinoma cell line (SCC-4). Finally, the chemopreventive activity of THC-NC loaded sponges (THC-NC-S) was examined in DMBA-induced hamster OPL. The selected THC-NC exhibited a particle size of 532.68 ± 13.20 nm and a zeta potential of -46.08 ± 1.12 mV. Moreover, THC-NC enhanced the anticancer effect against SCC-4 with an IC50 value of 80 µg/mL. THC-NC-S exhibited good mucoadhesion properties (0.24 ± 0.02 N) with sustained drug release, where 90% of THC was released over 4 days. Furthermore, THC-NC-S had a magnificent potential for maintaining high chemopreventive activity, as demonstrated by significant regression in the dysplasia degree and a decline in cyclin D1 (control: 40.4 ± 12.5, THC-NC-S: 12.07 ± 5.2), culminating in significant amelioration after 25 days of treatment. Conclusively, novel THC-NC-S represent a promising platform for local therapy of OPL, preventing their malignant transformation into cancer.
Collapse
Affiliation(s)
- Shimaa A. Elbanna
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Heba M. K. Ebada
- Central Lab, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Ossama Y. Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Marwa M. Essawy
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hend M. Abdelhamid
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hebatallah S. Barakat
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Nour EM, El-Habashy SE, Shehat MG, Essawy MM, El-Moslemany RM, Khalafallah NM. Atorvastatin liposomes in a 3D-printed polymer film: a repurposing approach for local treatment of oral candidiasis. Drug Deliv Transl Res 2023; 13:2847-2868. [PMID: 37184748 PMCID: PMC10545585 DOI: 10.1007/s13346-023-01353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2023] [Indexed: 05/16/2023]
Abstract
Oral candidiasis (OC) is an opportunistic fungal infection, common amongst the elderly and the immunocompromised. Unfortunately, the therapeutic efficacy of common antifungals is imperiled by the rise of antifungal drug resistance. An alternative promising therapeutic option possibly contributing to antifungal therapy is drug repurposing. Herein, we aimed to employ novel pharmaceutical drug delivery for enhancing the emerging antifungal potential of the hypocholesterolemic drug atorvastatin (ATV). ATV-propylene-glycol-liposomes (ATV/PG-Lip) were prepared then integrated in 3D-printed (3DP) mucoadhesive films comprising chitosan, polyvinyl-alcohol and hydroxypropyl methylcellulose, as an innovative blend, for the management of OC. ATV/PG-Lip demonstrated good colloidal properties of particle size (223.3 ± 2.1 nm), PDI (0.12 ± 0.001) and zeta potential (-18.2 ± 0.3 mV) with high entrapment efficiency (81.15 ± 1.88%) and sustained drug release. Also, ATV/PG-Lip showed acceptable three-month colloidal stability and in vitro cytocompatibility on human gingival fibroblasts. The developed 3DP-films exhibited controlled ATV release (79.4 ± 1.4% over 24 h), reasonable swelling and mucoadhesion (2388.4 ± 18.4 dyne/cm2). In vitro antifungal activity of ATV/PG-Lip was confirmed against fluconazole-resistant Candida albicans via minimum inhibitory concentration determination, time-dependent antifungal activity, agar diffusion and scanning electron microscopy. Further, ATV/PG-Lip@3DP-film exceeded ATV@3DP-film in amelioration of infection and associated inflammation in an in vivo oral candidiasis rabbit model. Accordingly, the results confirm the superiority of the fabricated ATV/PG-Lip@3DP-film for the management of oral candidiasis and tackling antifungal resistance.
Collapse
Affiliation(s)
- Eman M Nour
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, P.O. Box 21521, Azarita, Alexandria, Egypt
| | - Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, P.O. Box 21521, Azarita, Alexandria, Egypt.
| | - Michael G Shehat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Marwa M Essawy
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, P.O. Box 21521, Azarita, Alexandria, Egypt
| | - Nawal M Khalafallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, P.O. Box 21521, Azarita, Alexandria, Egypt
| |
Collapse
|
4
|
Marques SM, Kumar L. Factors affecting the preparation of nanocrystals: characterization, surface modifications and toxicity aspects. Expert Opin Drug Deliv 2023; 20:871-894. [PMID: 37222381 DOI: 10.1080/17425247.2023.2218084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/22/2023] [Indexed: 05/25/2023]
Abstract
INTRODUCTION The fabrication of well-defined nanocrystals in size and form is the focus of much investigation. In this work, we have critically reviewed several recent instances from the literature that shows how the production procedure affects the physicochemical properties of the nanocrystals. AREAS COVERED Scopus, MedLine, PubMed, Web of Science, and Google Scholar were searched for peer-review articles published in the past few years using different key words. Authors chose relevant publications from their files for this review. This review focuses on the range of techniques available for producing nanocrystals. We draw attention to several recent instances demonstrating the impact of various process and formulation variables that affect the nanocrystals' physicochemical properties. Moreover, various developments in the characterization techniques explored for nanocrystals concerning their size, morphology, etc. have been discussed. Last but not least, recent applications, the effect of surface modifications, and the toxicological traits of nanocrystals have also been reviewed. EXPERT OPINION The selection of an appropriate production method for the formation of nanocrystals, together with a deep understanding of the relationship between the drug's physicochemical properties, unique features of the various formulation alternatives, and anticipated in-vivo performance, would significantly reduce the risk of failure during human clinical trials that are inadequate.
Collapse
Affiliation(s)
- Shirleen Miriam Marques
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| |
Collapse
|
5
|
Youssef JR, Boraie NA, Ibrahim HF, Ismail FA, El-Moslemany RM. Correction: Youssef et al. Glibenclamide Nanocrystal-Loaded Bioactive Polymeric Scaffolds for Skin Regeneration: In Vitro Characterization and Preclinical Evaluation. Pharmaceutics 2021, 13, 1469. Pharmaceutics 2023; 15:pharmaceutics15041156. [PMID: 37111803 PMCID: PMC10144820 DOI: 10.3390/pharmaceutics15041156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Figure Correction [...]
Collapse
Affiliation(s)
- Julie R. Youssef
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21523, Egypt
| | - Nabila A. Boraie
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21523, Egypt
| | - Heba F. Ibrahim
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria 21523, Egypt
| | - Fatma A. Ismail
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21523, Egypt
| | - Riham M. El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21523, Egypt
| |
Collapse
|
6
|
Preparation and Characterization of Polysaccharide-Based Hydrogels for Cutaneous Wound Healing. Polymers (Basel) 2022; 14:polym14091716. [PMID: 35566885 PMCID: PMC9105569 DOI: 10.3390/polym14091716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/05/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Natural hydrogels are growing in interest as a priority for wound healing. Plant polysaccharides have a variety of biological pharmacological activities, and chitosan hydrogels have proven strong antimicrobial effects, but hydrogels prepared with polysaccharides alone have certain deficiencies. Polysaccharides from flowers of Lonicera japonica Thunb. (LP) and the aerial parts of Mentha canadensis L. (MP) were extracted and oxidized by sodium periodate (NaIO4) and then cross-linked with oxidized-carboxymethylated chitosan (O-CCS) to develop oxidized plant- polysaccharides-chitosan hydrogels (OPHs). SEM observation showed that OPHs had porous interior structures with interconnecting pores. The OPHs showed good swelling, water-retention ability, blood coagulation, cytocompatibility properties, and low cytotoxicity (classed as grade 1 according to United States Pharmacopoeia), which met the requirements for wound dressings. Then the cutaneous wound-healing effect was evaluated in BALB/C mice model, after 7 days treatment, the wound-closure rate of OPHs groups were all greater than 50%, and after 14 days, all were greater than 90%, while the value of the control group was only 72.6%. Of them, OPH-2 and OPH-3 were more favorable to the wound-healing process, as the promotion was more significant. The plant polysaccharides and CS-based hydrogel should be a candidate for cutaneous wound dressings.
Collapse
|