1
|
Olivera C, Boscolo O, Dobrecky C, Ortega CA, Favier LS, Cianchino VA, Flor S, Lucangioli S. Development and Characterization of Trihexyphenidyl Orodispersible Minitablets: A Challenge to Fill the Therapeutic Gap in Neuropediatrics. Pharmaceutics 2024; 17:5. [PMID: 39861657 PMCID: PMC11769368 DOI: 10.3390/pharmaceutics17010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Trihexyphenidyl (THP) has been widely used for over three decades as pediatric pharmacotherapy in patients affected by segmental and generalized dystonia. In order to achieve effective and safe pharmacotherapy for this population, new formulations are needed. Objective: The aim of this work is the development of trihexyphenidyl orodispersible minitablets (ODMTs) for pediatric use. Methods: Six different excipients were tested as diluents. The properties of powder mixtures were evaluated before direct compression and pharmacotechnical tests were performed on the final formulation. The determination of the API content, uniformity of dosage, and physicochemical stability studies were analyzed by an HPLC-UV method. Results: The developed ODMTs met pharmacopeia specifications for content, hardness, friability, disintegration, and dissolution tests. The physicochemical stability study performed over 18 months shows that API content remains within 90.0-110.0% at least for this period. Conclusions: These ODMTs will allow efficient, safe, and high-quality pharmacotherapy.
Collapse
Affiliation(s)
- Camila Olivera
- Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, Buenos Aires C1113AAD, Argentina; (C.O.); (S.F.)
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, Buenos Aires C1113AAD, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1414AAD, Argentina
| | - Oriana Boscolo
- Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, Buenos Aires C1113AAD, Argentina; (C.O.); (S.F.)
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, Buenos Aires C1113AAD, Argentina
| | - Cecilia Dobrecky
- Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, Buenos Aires C1113AAD, Argentina; (C.O.); (S.F.)
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, Buenos Aires C1113AAD, Argentina
- Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, Buenos Aires C1113AAD, Argentina
| | - Claudia A. Ortega
- Área de Farmacotecnia, Ética y Legislación Farmacéutica, Departamento de Farmacia, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis D5700HHW, Argentina
| | - Laura S. Favier
- Área de Farmacotecnia, Ética y Legislación Farmacéutica, Departamento de Farmacia, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis D5700HHW, Argentina
| | - Valeria A. Cianchino
- Área de Farmacotecnia, Ética y Legislación Farmacéutica, Departamento de Farmacia, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis D5700HHW, Argentina
| | - Sabrina Flor
- Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, Buenos Aires C1113AAD, Argentina; (C.O.); (S.F.)
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, Buenos Aires C1113AAD, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1414AAD, Argentina
| | - Silvia Lucangioli
- Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, Buenos Aires C1113AAD, Argentina; (C.O.); (S.F.)
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, Buenos Aires C1113AAD, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1414AAD, Argentina
| |
Collapse
|
2
|
Aleksić I, Glišić T, Ćirin-Varađan S, Djuris M, Djuris J, Parojčić J. Evaluation of the Potential of Novel Co-Processed Excipients to Enable Direct Compression and Modified Release of Ibuprofen. Pharmaceutics 2024; 16:1473. [PMID: 39598596 PMCID: PMC11597293 DOI: 10.3390/pharmaceutics16111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Improving the production rates of modern tablet presses places ever greater demands on the performance of excipients. Although co-processing has emerged as a promising solution, there is still a lack of directly compressible excipients for modified-release formulations. The aim of the present study was to address this issue by investigating the potential of novel co-processed excipients for the manufacture of modified-release tablets containing ibuprofen. Methods: The excipients were prepared by melt granulation of lactose monohydrate with glyceryl palmitostearate as a binder. The influence of glyceryl palmitostearate particle size, ibuprofen content, compression pressure, and compression speed on the compaction behavior of the tablet blends was analyzed. Results: Novel co-processed excipients ensured good flowability and acceptable mechanical properties of the tablets containing up to 70% ibuprofen. Furthermore, lipid-based co-processed excipients proved to be very promising for directly compressible formulations with high-dose, highly adhesive active pharmaceutical ingredients such as ibuprofen, as they do not require additional lubricants. The influence of compression speed on the tensile strength of the tablets prepared was not pronounced, indicating the robustness of these directly compressible excipients. The investigated lipid-based excipients enabled a prolonged release of ibuprofen over 10 h. Conclusions: The novel lipid-based co-processed excipients have shown great potential for directly compressible formulations with modified release of high-dose, challenging active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Ivana Aleksić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (T.G.); (S.Ć.-V.); (J.D.); (J.P.)
| | - Teodora Glišić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (T.G.); (S.Ć.-V.); (J.D.); (J.P.)
| | - Slobodanka Ćirin-Varađan
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (T.G.); (S.Ć.-V.); (J.D.); (J.P.)
| | - Mihal Djuris
- Department of Catalysis and Chemical Engineering, Institute of Chemistry, Technology and Metallurgy—National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Jelena Djuris
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (T.G.); (S.Ć.-V.); (J.D.); (J.P.)
| | - Jelena Parojčić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (T.G.); (S.Ć.-V.); (J.D.); (J.P.)
| |
Collapse
|
3
|
Neacșu SM, Mititelu M, Ozon EA, Musuc AM, Iuga IDM, Manolescu BN, Petrescu S, Pandele Cusu J, Rusu A, Surdu VA, Oprea E, Lupuliasa D, Popescu IA. Comprehensive Analysis of Novel Synergistic Antioxidant Formulations: Insights into Pharmacotechnical, Physical, Chemical, and Antioxidant Properties. Pharmaceuticals (Basel) 2024; 17:690. [PMID: 38931357 PMCID: PMC11206646 DOI: 10.3390/ph17060690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: Oxidative stress plays a pivotal role in the pathogenesis of various diseases, including neurodegenerative disorders, cardiovascular diseases, cancer, and diabetes, highlighting the pressing need for effective antioxidant interventions. (2) Methods: In this study, we aimed to develop and characterise two novel antioxidant formulations, F3 and F4, as therapeutic interventions for oxidative stress-related conditions. (3) Results: The physicochemical characterisation, preformulation analysis, formulation, preparation of filling powders for capsules, capsule content evaluation, and antioxidant activity assessment of the two novel antioxidant formulations were assessed. These formulations comprise a combination of well-established antioxidants like quercetin, biotin, coenzyme Q10, and resveratrol. Through comprehensive testing, the formulations' antioxidant efficacy, stability, and potential synergistic interactions were evaluated. (4) Conclusions: The findings underscore the promising potential of these formulations as therapeutic interventions for oxidative stress-related disorders and highlight the significance of antioxidant interventions in mitigating their progression.
Collapse
Affiliation(s)
- Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.M.N.); (D.L.); (I.A.P.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (M.M.); (I.D.M.I.)
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.M.N.); (D.L.); (I.A.P.)
| | - Adina Magdalena Musuc
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (S.P.); (J.P.C.); (A.R.)
| | - Izabela Dana Maria Iuga
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (M.M.); (I.D.M.I.)
| | - Bogdan Nicolae Manolescu
- “C. Nenitescu” Department of Organic Chemistry, Faculty of Applied Chemistry and Science of Materials, National University for Science and Technology Politehnica Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Simona Petrescu
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (S.P.); (J.P.C.); (A.R.)
| | - Jeanina Pandele Cusu
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (S.P.); (J.P.C.); (A.R.)
| | - Adriana Rusu
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (S.P.); (J.P.C.); (A.R.)
| | - Vasile-Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University for Science and Technology Politehnica Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Eliza Oprea
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1–3 Portocalilor Way, 060101 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.M.N.); (D.L.); (I.A.P.)
| | - Ioana Andreea Popescu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.M.N.); (D.L.); (I.A.P.)
| |
Collapse
|
4
|
Shi C, Zhao H, Fang Y, Shen L, Zhao L. Lactose in tablets: Functionality, critical material attributes, applications, modifications and co-processed excipients. Drug Discov Today 2023; 28:103696. [PMID: 37419210 DOI: 10.1016/j.drudis.2023.103696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/06/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Lactose is one of the most widespread excipients used in the pharmaceutical industry. Because of its water solubility and acceptable flowability, lactose is generally added into tablet formulation to improve wettability and undesirable flowability. Based on Quality by Design, a better understanding of the critical material attributes (CMAs) of raw materials is beneficial in guiding the improvement of tablet quality and the development of lactose. Additionally, the modifications and co-processing of lactose can introduce more-desirable characteristics to the resulting particles. This review focuses on the functionality, CMAs, applications, modifications and co-processing of lactose in tablets.
Collapse
Affiliation(s)
- Chuting Shi
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China
| | - Haiyue Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China
| | - Ying Fang
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China.
| | - Lijie Zhao
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China.
| |
Collapse
|
5
|
Preparation and Evaluation of a Dosage Form for Individualized Administration of Lyophilized Probiotics. Pharmaceutics 2023; 15:pharmaceutics15030910. [PMID: 36986771 PMCID: PMC10053861 DOI: 10.3390/pharmaceutics15030910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Probiotics have been used in human and veterinary medicine to increase resistance to pathogens and provide protection against external impacts for many years. Pathogens are often transmitted to humans through animal product consumption. Therefore, it is assumed that probiotics protecting animals may also protect the humans who consume them. Many tested strains of probiotic bacteria can be used for individualized therapy. The recently isolated Lactobacillus plantarum R2 Biocenol™ has proven to be preferential in aquaculture, and potential benefits in humans are expected. A simple oral dosage form should be developed to test this hypothesis by a suitable preparation method, i.e., lyophilization, allowing the bacteria to survive longer. Lyophilizates were formed from silicates (Neusilin® NS2N; US2), cellulose derivates (Avicel® PH-101), and saccharides (inulin; saccharose; modified starch® 1500). They were evaluated for their physicochemical properties (pH leachate, moisture content, water absorption, wetting time, DSC tests, densities, and flow properties); their bacterial viability was determined in conditions including relevant studies over 6 months at 4 °C and scanned under an electron microscope. Lyophilizate composed of Neusilin® NS2N and saccharose appeared to be the most advantageous in terms of viability without any significant decrease. Its physicochemical properties are also suitable for capsule encapsulation, subsequent clinical evaluation, and individualized therapy.
Collapse
|
6
|
Ćirin-Varađan S, Đuriš J, Mirković M, Ivanović M, Parojčić J, Aleksić I. Comparative evaluation of mechanical properties of lactose-based excipients co-processed with lipophilic glycerides as meltable binders. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Bailly C, Thuru X, Quesnel B. Modulation of the Gal-9/TIM-3 Immune Checkpoint with α-Lactose. Does Anomery of Lactose Matter? Cancers (Basel) 2021; 13:cancers13246365. [PMID: 34944985 PMCID: PMC8699133 DOI: 10.3390/cancers13246365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The disaccharide lactose is a common excipient in pharmaceutical products. In addition, the two anomers α- and β-lactose can exert immuno-modulatory effects. α-Lactose functions as a major regulator of the T-cell immunoglobulin mucin-3 (Tim-3)/Galectin-9 (Gal-9) immune checkpoint, through direct binding to the β-galactoside-binding lectin galectin-9. The blockade of TIM-3 with monoclonal antibodies or small molecules represents a promising approach to combat onco-hematological diseases, in particular myelodysplastic syndromes, and acute myeloid leukemia. Alternatively, the activity of the checkpoint can be modulated via targeting of Gal-9 with both α- and β-lactose. In fact, lactose is a quasi-pan-galectin ligand, capable of modulating the functions of most of the 16 galectin molecules. This review discusses the capacity of lactose and Gal-9 to modulate the TIM-3/Gal-9 and PD-1/PD-L1 immune checkpoints in oncology. The immuno-regulatory roles of lactose and Gal-9 are highlighted. Abstract The disaccharide lactose is an excipient commonly used in pharmaceutical products. The two anomers, α- and β-lactose (α-L/β-L), differ by the orientation of the C-1 hydroxyl group on the glucose unit. In aqueous solution, a mutarotation process leads to an equilibrium of about 40% α-L and 60% β-L at room temperature. Beyond a pharmaceutical excipient in solid products, α-L has immuno-modulatory effects and functions as a major regulator of TIM-3/Gal-9 immune checkpoint, through direct binding to the β-galactoside-binding lectin galectin-9. The blockade of the co-inhibitory checkpoint TIM-3 expressed on T cells with anti-TIM-3 antibodies represents a promising approach to combat different onco-hematological diseases, in particular myelodysplastic syndromes and acute myeloid leukemia. In parallel, the discovery and development of anti-TIM-3 small molecule ligands is emerging, including peptides, RNA aptamers and a few specifically designed heterocyclic molecules. An alternative option consists of targeting the different ligands of TIM-3, notably Gal-9 recognized by α-lactose. Modulation of the TIM-3/Gal-9 checkpoint can be achieved with both α- and β-lactose. Moreover, lactose is a quasi-pan-galectin ligand, capable of modulating the functions of most of the 16 galectin molecules. The present review provides a complete analysis of the pharmaceutical and galectin-related biological functions of (α/β)-lactose. A focus is made on the capacity of lactose and Gal-9 to modulate both the TIM-3/Gal-9 and PD-1/PD-L1 immune checkpoints in oncology. Modulation of the TIM-3/Gal-9 checkpoint is a promising approach for the treatment of cancers and the role of lactose in this context is discussed. The review highlights the immuno-regulatory functions of lactose, and the benefit of the molecule well beyond its use as a pharmaceutical excipient.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, 59290 Lille, France
- Correspondence:
| | - Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020—UMR1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; (X.T.); (B.Q.)
| | - Bruno Quesnel
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020—UMR1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; (X.T.); (B.Q.)
| |
Collapse
|
8
|
Isaac JA, Ekere KE, Ezekiel E, Galadima IH, Abdulahi R, Samali A. Compressional Physics of Binary Mixture of Dried Andrographis paniculata and Moringa oleifera Leaves. BORNEO JOURNAL OF PHARMACY 2021. [DOI: 10.33084/bjop.v4i4.2544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Traditionally, the leafy part of Andrographis paniculata and Moringa oleifera have been widely reported to manage hypertension. Investigation of its pharmacological actions justifies its use. As part of formulation studies to standardize them, this study focused on their compaction and compression properties. Compacts equivalent to 250 mg of A. paniculata and M. oleifera were produced by compressing powders and granules at various compression pressure. Results show that M. oleifera met the WHO limit for ash values. Relative density values for granulated batches were higher, while their moisture content values were lower when compared to those of direct compression. The result from Heckel plots shows that batches deform mainly by plastic flow. For Kawakita plots, values of 1/b show that batches containing microcrystalline cellulose were less cohesive. The plot of tensile strength signifies that granulated batches achieved maximum crushing strength faster at low pressure. Formulations containing maize starch were shown to have higher percent porosity, and granulated batches gave higher values for apparent density-pressure relationship and lower friability values. Tablets produced by the wet granulation method showed better compression and compaction properties than those formulated by direct compression.
Collapse
Affiliation(s)
| | | | - Ekeh Ezekiel
- National Institute for Pharmaceutical Research and Development
| | | | | | - Ayuba Samali
- National Institute for Pharmaceutical Research and Development
| |
Collapse
|