1
|
Spósito L, Morais-Silva G, Fonseca D, Neves MM, Vieira Silva M, Bauab TM, Parreira P, Martins MCL, Meneguin AB, Chorilli M. Nano-in-microparticles approach: Targeted gastric ulcer therapy using trans-resveratrol nanoparticles encapsulated in hyaluronic acid and alginate microparticles. Int J Biol Macromol 2025; 305:141010. [PMID: 39954886 DOI: 10.1016/j.ijbiomac.2025.141010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Gastric ulcers affect 4 million people worldwide and occur when the stomach's defenses are compromised, allowing harmful agents, such as nonsteroidal anti-inflammatory drugs and Helicobacter pylori, to damage the tissue. The naturally occurring polyphenol, trans-resveratrol (RESV), demonstrates promising potential for treating gastric diseases. However, its therapeutic application is limited by its photosensitivity and solubility. To overcome these challenges, RESV was encapsulated in a new nano-in-microparticle system comprised of chitosan nanoparticles incorporated into hyaluronic acid and alginate microparticles (RESV-MNP). RESV-MNP exhibited spherical morphology (~2 μm) and encapsulation efficiency of 79 %, releasing about 41 % of RESV within 24 h, showing a prolonged release profile compared to the free drug. Additionally, RESV-MNP interacted with porcine mucin in an acid environment. RESV-MNP showed no toxicity against AGS/MKN-74 cell lines in vitro and in acute toxicity tests using Galleria mellonella and hemolysis. RESV-MNP presented a minimum inhibitory and bactericidal concentration (MIC/MBC) of 3.9 μg/mL, eradicating H. pylori after 24 h. At 2×MIC, RESV-MNP completely eradicated H. pylori biofilm. In an in vitro infection assay, RESV-MNP reduced H. pylori load. The formulation effectively reduced the mortality rate of H. pylori-infected larvae in the G. mellonella model. Furthermore, RESV-MNP demonstrated gastroprotective effects, reducing the extent and severity of indomethacin-gastric lesions in rats.
Collapse
Affiliation(s)
- Larissa Spósito
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, Porto 4200-135, Portugal
| | - Gessynger Morais-Silva
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Diana Fonseca
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, Porto 4200-135, Portugal
| | - Matheus Morais Neves
- Biotechnology in Experimental Models Laboratory - LABME, Federal University of Uberlândia, 38405-330, MG, Brazil
| | - Murilo Vieira Silva
- Biotechnology in Experimental Models Laboratory - LABME, Federal University of Uberlândia, 38405-330, MG, Brazil
| | - Taís Maria Bauab
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Paula Parreira
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, Porto 4200-135, Portugal
| | - M Cristina L Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, Porto 4200-135, Portugal
| | | | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.
| |
Collapse
|
2
|
Lopes SA, Cardoso VMB, Roque-Borda CA, Chorilli M, Meneguin AB. Dual-action microparticles for ulcerative colitis: Cellulose nanofibers-enhanced delivery of 5-ASA and probiotics. Int J Biol Macromol 2025; 291:139060. [PMID: 39710030 DOI: 10.1016/j.ijbiomac.2024.139060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease initially treated with mesalazine (5-ASA). However, its effectiveness is limited by rapid absorption, low colonic concentration, and exacerbation of dysbiosis. Probiotics can mitigate dysbiosis if they survive the acidic conditions of the stomach. In this study, colon-specific microparticles (MPs) based on RS/P and reinforced with cellulose nanofibers (CNF) were used to co-encapsulate 5-ASA and L. rhamnosus. MPs prepared by spray-drying demonstrated a spherical shape, with sizes ranging from 1 to 10 μm, high encapsulation efficiency (up to 81.5 %), and maintenance of L. rhamnosus viability (5.74 log CFU/g of sample) even after 30 days of storage at 4 °C. Differential scanning calorimetry indicated a reduction in the melting peak of 5-ASA after microencapsulation, suggesting a decrease in its crystallinity. The samples also exhibited high mucoadhesivity, with the presence of CNF significantly increasing the speed of establishing interactions with mucin. In vitro release profiles showed lower release rates in acidic media, resulting in the majority of 5-ASA being released in intestinal and colonic media. These MPs represent a promising strategy for promoting specific release in the colon, minimizing side effects associated with conventional treatment, and potentially improving therapeutic efficacy in the context of UC.
Collapse
Affiliation(s)
- Sílvio André Lopes
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil.
| | - Vinicius Martinho Borges Cardoso
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil.
| | | | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil.
| | - Andréia Bagliotti Meneguin
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil.
| |
Collapse
|
3
|
Meneguin AB, Roque-Borda CA, Piperas ABG, Pollini MFO, Cardoso VMB, Primo LMDG, Alemi F, Pavan FR, Chorilli M. Nanofiber-boosted retrograded starch/pectin microparticles for targeted 5-Aminosalicylic acid delivery in inflammatory bowel disease: In vitro and in vivo non-toxicity evaluation. Carbohydr Polym 2024; 346:122647. [PMID: 39245532 DOI: 10.1016/j.carbpol.2024.122647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
Incorporating 5-aminosalicylic acid (5-ASA) into a colon-specific carrier is crucial for treating inflammatory bowel diseases (IBD), as it enhances therapeutic efficacy, targets the affected regions directly, and minimizes side effects. This study evaluated the impact of incorporating cellulose nanofibers (CNF) on the in vitro and in vivo biological performance of retrograded starch/pectin (RS/P) microparticles (MPs) containing 5-ASA. Using Fourier Transform Infrared (FTIR) Spectroscopy, shifts in the spectra of retrograded samples containing CNF were observed with increasing CNF proportions, suggesting the establishment of new supramolecular interactions. Liquid absorption exhibited pH-dependent behaviors, with reduced absorption in simulated gastric fluid (∼269 %) and increased absorption in simulated colonic fluid (∼662 %). Increasing CNF concentrations enhanced mucoadhesion in porcine colonic sections, with a maximum force of 3.4 N at 50 % CNF. Caco-2 cell viability tests showed biocompatibility across all tested concentrations (0.0625-2.0000 mg/mL). Evaluation of intestinal permeability in Caco-2 cell monolayers demonstrated up to a tenfold increase in 5-ASA permeation, ranging from 29 % to 48 %. An in vivo study using Galleria mellonella larvae, with inflammation induced by LPS, showed reduction of inflammation. Given the scalability of spray-drying, these findings suggest the potential of CNF-incorporated RS/P microparticles for targeted 5-ASA delivery in IBD.
Collapse
Affiliation(s)
- Andréia Bagliotti Meneguin
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-901, SP, Brazil.
| | - Cesar Augusto Roque-Borda
- Vicerrectorado de Investigación, Universidad Católica de Santa María de Arequipa, Arequipa 04000, Peru
| | - Ana Beatriz Grotto Piperas
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-901, SP, Brazil
| | - Maria Fernanda Ortolani Pollini
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-901, SP, Brazil
| | - Vinicius Martinho Borges Cardoso
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-901, SP, Brazil
| | - Laura Maria Duran Gleriani Primo
- Department of Biological Sciences, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-900, SP, Brazil
| | - Forogh Alemi
- School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara 14801-385, SP, Brazil
| | - Fernando Rogério Pavan
- Department of Biological Sciences, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-900, SP, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-901, SP, Brazil
| |
Collapse
|
4
|
Wang C, Zhao M, Xie J, Wang H, Gu Z, Sun F. Colon-Targeted Release of Gel Microspheres Loaded with Antioxidative Fullerenol for Relieving Radiation-Induced Colon Injury and Regulating Intestinal Flora. Adv Healthc Mater 2023; 12:e2301758. [PMID: 37657180 DOI: 10.1002/adhm.202301758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Radiation-induced colitis is a serious clinical problem worldwide. However, the current treatment options for this condition have limited efficacy and can cause side effects. To address this issue, colon-targeted fullerenol@pectin@chitosan gel microspheres (FPCGMs) are developed, which can aggregate on colon tissue for a long time, scavenge free radicals generated in the process of radiation, and regulate intestinal flora to mitigate damage to colonic tissue. First, FPCGMs exhibit acid resistance and colon-targeted release properties, which reduce gastrointestinal exposure and extend the local colonic drug residence time. Second, fullerenol, which has a superior scavenging ability and chemical stability, reduces oxidative stress in colonic epithelial cells. Based on this, it is found that FPCGMs significantly reduce inflammation in colonic tissue, mitigated damage to tight junctions of colonic epithelial cells, and significantly relieved radiation-induced colitis in mice. Moreover, 16S ribosomal DNA (16S rDNA) sequencing results show that the composition of the intestinal flora is optimized after FPCGMs are utilized, indicating that the relative abundance of probiotics increases while harmful bacteria are inhibited. These findings suggest that it is a promising candidate for treating radiation-induced colitis.
Collapse
Affiliation(s)
- Chengyan Wang
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Maoru Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiani Xie
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Hongping Wang
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhanjun Gu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| |
Collapse
|
5
|
Su CY, Xia T, Li D, Wang LJ, Wang Y. Hybrid biodegradable materials from starch and hydrocolloid: fabrication, properties and applications of starch-hydrocolloid film, gel and bead. Crit Rev Food Sci Nutr 2023; 64:12841-12859. [PMID: 37707437 DOI: 10.1080/10408398.2023.2257786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The potential for utilizing starch and hydrocolloids as sustainable biomaterials has garnered significant attention among researchers. The biodegradability and functional properties of composite films, gels, and beads, as well as their environmental friendliness, make them attractive options for a variety of applications. However, the hydrophilicity, brittleness, and regeneration limitations of starch materials can be addressed through the incorporation of non-starch hydrocolloids. This article summarizes the formation mechanisms and interactions of starch-hydrocolloid films, gels, and gel beads, evaluates the factors that affect their structural and functional properties, and presents an overview of the progress made in their physicochemical and functional applications. The structure of starch-hydrocolloid composites is primarily formed through hydrogen bond interactions, and the source, proportion, and preparation conditions of the components are critical factors that affect the properties of the biomaterials. Starch-hydrocolloid films are primarily used for extending the shelf life of food products and detecting food freshness. Starch-hydrocolloid gels are utilized as adsorption materials, wound dressings, and flexible sensors, and starch-hydrocolloid beads are primarily employed for the controlled release of bioactive substances. It is clear that starch-hydrocolloid composites have the potential to develop novel advanced materials for various applications in the food, biological, and materials industries.
Collapse
Affiliation(s)
- Chun-Yan Su
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Tong Xia
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Li-Jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
| | - Yong Wang
- School of Chemical Engineering, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
6
|
Bayer IS. Controlled Drug Release from Nanoengineered Polysaccharides. Pharmaceutics 2023; 15:pharmaceutics15051364. [PMID: 37242606 DOI: 10.3390/pharmaceutics15051364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Polysaccharides are naturally occurring complex molecules with exceptional physicochemical properties and bioactivities. They originate from plant, animal, and microbial-based resources and processes and can be chemically modified. The biocompatibility and biodegradability of polysaccharides enable their increased use in nanoscale synthesis and engineering for drug encapsulation and release. This review focuses on sustained drug release studies from nanoscale polysaccharides in the fields of nanotechnology and biomedical sciences. Particular emphasis is placed on drug release kinetics and relevant mathematical models. An effective release model can be used to envision the behavior of specific nanoscale polysaccharide matrices and reduce impending experimental trial and error, saving time and resources. A robust model can also assist in translating from in vitro to in vivo experiments. The main aim of this review is to demonstrate that any study that establishes sustained release from nanoscale polysaccharide matrices should be accompanied by a detailed analysis of drug release kinetics by modeling since sustained release from polysaccharides not only involves diffusion and degradation but also surface erosion, complicated swelling dynamics, crosslinking, and drug-polymer interactions. As such, in the first part, we discuss the classification and role of polysaccharides in various applications and later elaborate on the specific pharmaceutical processes of polysaccharides in ionic gelling, stabilization, cross-linking, grafting, and encapsulation of drugs. We also document several drug release models applied to nanoscale hydrogels, nanofibers, and nanoparticles of polysaccharides and conclude that, at times, more than one model can accurately describe the sustained release profiles, indicating the existence of release mechanisms running in parallel. Finally, we conclude with the future opportunities and advanced applications of nanoengineered polysaccharides and their theranostic aptitudes for future clinical applications.
Collapse
Affiliation(s)
- Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
7
|
Mucoadhesive carriers for oral drug delivery. J Control Release 2022; 351:504-559. [PMID: 36116580 PMCID: PMC9960552 DOI: 10.1016/j.jconrel.2022.09.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022]
Abstract
Among the various dosage forms, oral medicine has extensive benefits including ease of administration and patients' compliance, over injectable, suppositories, ocular and nasal. Despite of extensive demand and emerging advantages, over 50% of therapeutic molecules are not available in oral form due to their physicochemical properties. More importantly, most of the biologics, proteins, peptide, and large molecular drugs are mostly available in injectable form. Conventional oral drug delivery system has limitation such as degradation and lack of stability within stomach due to presence of highly acidic gastric fluid, hinders their therapeutic efficacy and demand more frequent and higher dosing. Hence, formulation for controlled, sustained, and targeted drug delivery, need to be designed with feasibility to target the specific region of gastrointestinal (GI) tract such as stomach, small intestine, intestine lymphatic, and colon is challenging. Among various oral delivery approaches, mucoadhesive vehicles are promising and has potential for improving oral drug retention and controlled absorption to treat local diseases within the GI tract, as well systemic diseases. This review provides the overview about the challenges and opportunities to design mucoadhesive formulation for oral delivery of therapeutics in a way to target the specific region of the GI tract. Finally, we have concluded with future perspective and potential of mucoadhesive formulations for oral local and systemic delivery.
Collapse
|
8
|
Guo S, Jiang W, Shen L, Zhang G, Gao Y, Yang Y, Yu DG. Electrospun Hybrid Films for Fast and Convenient Delivery of Active Herb Extracts. MEMBRANES 2022; 12:membranes12040398. [PMID: 35448368 PMCID: PMC9031211 DOI: 10.3390/membranes12040398] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 12/12/2022]
Abstract
Herb medicines are popular for safe application due to being a source of natural herbs. However, how to deliver them in an efficacious and convenient manner poses a big challenge to researchers. In this study, a new concept is demonstrated that the electrospun polymer-based hybrid films can be a platform for promoting the delivery of a mixture of active herb extract, i.e., Lianhua Qingwen Keli (LQK), also a commercial traditional Chinese patent medicine. The LQK can be co-dissolved with the filament-forming polymeric polyvinylpyrrolidone K60 and a sweeter sucralose to prepare an electrospinnable solution. A handheld electrospinning apparatus was explored to transfer the solution into solid nanofibers, i.e., the LQK-loaded medicated films. These films were demonstrated to be composed of linear nanofibers. A puncher was utilized to transfer the mat into circular membrane a diameter of 15 mm. Two self-created methods were developed for disclosing the dissolution performances of the electrospun mats. Both the water droplet experiments and the wet paper (mimic tongue) experiments verified that the hybrid films can rapidly disintegrate when they encounter water and release the loaded LQK in an immediate manner. Based on the reasonable selections of polymeric excipients, the present protocols pave a way for delivering many types of active herb extracts in an effective and convenient manner.
Collapse
Affiliation(s)
- Shiri Guo
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (S.G.); (W.J.); (L.S.); (Y.G.)
| | - Wenlai Jiang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (S.G.); (W.J.); (L.S.); (Y.G.)
| | - Liangfei Shen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (S.G.); (W.J.); (L.S.); (Y.G.)
| | - Gaoyi Zhang
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Yiman Gao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (S.G.); (W.J.); (L.S.); (Y.G.)
| | - Yaoyao Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (S.G.); (W.J.); (L.S.); (Y.G.)
- Correspondence: (Y.Y.); (D.-G.Y.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (S.G.); (W.J.); (L.S.); (Y.G.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
- Correspondence: (Y.Y.); (D.-G.Y.)
| |
Collapse
|
9
|
Wang CPJ, Byun MJ, Kim SN, Park W, Park HH, Kim TH, Lee JS, Park CG. Biomaterials as therapeutic drug carriers for inflammatory bowel disease treatment. J Control Release 2022; 345:1-19. [DOI: 10.1016/j.jconrel.2022.02.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022]
|
10
|
Electrospun Structural Hybrids of Acyclovir-Polyacrylonitrile at Acyclovir for Modifying Drug Release. Polymers (Basel) 2021; 13:polym13244286. [PMID: 34960834 PMCID: PMC8708694 DOI: 10.3390/polym13244286] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 01/19/2023] Open
Abstract
In traditional pharmaceutics, drug–crystalline nanoparticles and drug–polymer composites are frequently explored for their ability to modify drug release profiles. In this study, a novel sort of hybrid with a coating of acyclovir crystalline nanoparticles on acyclovir-polyacrylonitrile composites was fabricated using modified, coaxial electrospinning processes. The developed acyclovir-polyacrylonitrile at the acyclovir nanohybrids was loaded with various amounts of acyclovir, which could be realized simply by adjusting the sheath fluid flow rates. Compared with the electrospun composite nanofibers from a single-fluid blending process, the nanohybrids showed advantages of modifying the acyclovir release profiles in the following aspects: (1) the initial release amount was more accurately and intentionally controlled; (2) the later sustained release was nearer to a zero-order kinetic process; and (3) the release amounts at different stages could be easily allocated by the sheath fluid flow rate. X-ray diffraction results verified that the acyclovir nanoparticles were in a crystalline state, and Fourier-transform infrared spectra verified that the drug acyclovir and the polymer polyacrylonitrile had a good compatibility. The protocols reported here could pave the way for developing new types of functional nanostructures.
Collapse
|