1
|
Li J, Sheridan CA, Alanazi O, Fink JB. In Vitro Comparison of Inspiration-Synchronized and Continuous Vibrating Mesh Nebulizer During Adult Invasive Mechanical Ventilation. J Aerosol Med Pulm Drug Deliv 2025; 38:64-70. [PMID: 39648821 DOI: 10.1089/jamp.2024.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024] Open
Abstract
Background: Aerosol delivery may be enhanced by utilizing an inspiration-synchronized nebulization mode, where nebulization occurs only during inspiration. This study aimed to compare aerosol delivery of albuterol via a prototype of an inspiration-synchronized vibrating mesh nebulizer (VMN) versus continuous VMN during invasive mechanical ventilation. Methods: A critical care ventilator equipped with a heated-wire circuit to deliver adult parameters was attached to an endotracheal tube (ETT), a collection filter, and a test lung. The nebulizer was placed at the humidifier's inlet, inspiratory limb at the Y-piece, and between the Y-piece and ETT. Conventional VMNs producing standard size aerosol particles (Solo; Aerogen Ltd) were compared with prototype small-particle VMNs (Aerogen Pharma) in both inspiration-synchronization and continuous modes. In each run, 1 mL of albuterol (2.5 mg) was used (n = 5). The drug was eluted from the collection filter and assayed with UV spectrophotometry (276 nm). Results: The inhaled dose with inspiration-synchronization mode was 1.4 to 3.6 times that with the continuous mode, regardless of nebulizer positions (all p < 0.001). The small-particle VMN delivered an 8%-69% greater inhaled dose than the conventional VMN (Solo), regardless of the nebulizer placement or aerosol generation mode (all p < 0.001). The highest inhaled dose (50%-60%) with the inspiration-synchronized VMN was observed when it was placed at the ETT (all p < 0.001), whereas the continuous VMN performed better when positioned near the humidifier, with an inhaled dose of 21%-37% (p < 0.001). Conclusion: The inspiration-synchronized VMN delivered a greater inhaled dose than continuous VMN, irrespective of nebulizer placement. The prototype VMN producing smaller aerosol particles resulted in a greater inhaled dose than the conventional VMN (Solo), regardless of placement or aerosol generation modes. The inspiration-synchronized VMN achieved the highest delivery when placed close to the airway, whereas the continuous VMN delivered the most when positioned near the ventilator.
Collapse
Affiliation(s)
- Jie Li
- Department of Cardiopulmonary Sciences, Division of Respiratory Care, Rush University, Chicago, Illinois, USA
| | - Caylie A Sheridan
- Department of Cardiopulmonary Sciences, Division of Respiratory Care, Rush University, Chicago, Illinois, USA
| | - Osama Alanazi
- Department of Cardiopulmonary Sciences, Division of Respiratory Care, Rush University, Chicago, Illinois, USA
- Department of Respiratory Care, Batterjee Medical College, Abha, Saudi Arabia
| | - James B Fink
- Department of Cardiopulmonary Sciences, Division of Respiratory Care, Rush University, Chicago, Illinois, USA
- Aerogen Pharma Corp, San Mateo, California, USA
| |
Collapse
|
2
|
Berlinski A, Fonzie J, Willis LD. Delivery Efficiency of Albuterol Pressurized Metered Dose Inhaler Through Small Size Laryngeal Mask Airways in an Infant and Child Model. Respir Care 2025; 70:170-175. [PMID: 39472071 DOI: 10.4187/respcare.12055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Background: Intraoperative bronchospasm in pediatric patients supported through laryngeal mask airways (LMAs) is commonly treated with pressurized metered-dose inhaler (pMDI) albuterol. The aim of the study was to evaluate delivery of pMDI albuterol through LMAs under different conditions in a model of infant/child supported with a ventilator. Methods: We compared drug delivery efficiency of 4 actuations of albuterol pMDI (captured on a filter placed between the LMA and a test lung), drug deposition in the circuit (elbow) and in the LMA under different experimental conditions. Outcomes were expressed of percentage of nominal dose. We compared devices (valved holding chamber [VHC] and adapter), timing of administration (inspiration and expiration), tidal volumes (50 mL and 100 mL), mode of actuation (single and multiple), and LMA sizes (1, 1.5, and 2). Multiple regression analysis was used to evaluate the contribution of each to these components to the outcomes. P < .05 was considered statistically significant. Results: Results are expressed as median (interquartile range) of pooled data. Drug delivery efficiency was 0% (0-1.1) and 6.3% (3.2-14.7) for adapter and VHC, respectively. Elbow deposition was 25.8% (19.2-63.3) and 2.9% (1.4-6.4) for adapter and VHC, respectively. LMA deposition was 2.6% (1.3-4.6) and 4.6% (2.9-6.1) for adapter and VHC, respectively. Multiple regression analysis showed that device, timing of actuation, and LMA size explained 33%, 17%, and 8% of the observed variation in delivery efficiency (R2 0.63), respectively. Multiple regression analysis showed that device and timing of actuation explained 52% and 16% of the observed variation, respectively (R2 0.70). Multiple regression analysis poorly explained factors associated with LMA deposition (R2 0.22). Conclusions: Using a VHC, actuating the pMDI during exhalation, and using a small LMA size increased drug delivery efficiency. The adapter was an inefficient add-on device for aerosol delivery with a pMDI through an LMA that caused significant circuit deposition.
Collapse
Affiliation(s)
- Ariel Berlinski
- Dr Berlinski is affiliated with Department of Pediatrics, University of Arkansas for Medical Sciences, College of Medicine, Little Rock, Arkansas; Pediatric Aerosol Research Laboratory, Arkansas Children's Research Institute, Little Rock, Arkansas; and Respiratory Care Services, Arkansas Children's Hospital, Little Rock, Arkansas
| | - Jessica Fonzie
- Mss Fonzie and Willis are affiliated with Respiratory Care Services, Arkansas Children's Hospital, Little Rock, Arkansas
| | - L Denise Willis
- Mss Fonzie and Willis are affiliated with Respiratory Care Services, Arkansas Children's Hospital, Little Rock, Arkansas
| |
Collapse
|
3
|
Li J, Karabelas P, Gong L, Sheridan CA, Fink JB. Efficacy of a prototype inspiratory-synchronized small particle versus conventional vibrating mesh nebulizer during pediatric and neonatal mechanical ventilation. Pediatr Pulmonol 2025; 60:e27356. [PMID: 39503177 DOI: 10.1002/ppul.27356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/16/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND An inspiration-synchronized vibrating mesh nebulizer (VMN) has been reported to improve aerosol delivery during adult mechanical ventilation. A prototype VMN generating smaller particles was developed. We aimed to compare the aerosol delivery efficiency of small-particle and conventional VMNs in inspiration-synchronized and continuous modes during neonatal and pediatric mechanical ventilation. METHODS A critical care ventilator with heated humidified circuits connected to an endotracheal tube (ETT) and passive test lung was set to pediatric and neonate parameters. Albuterol (2.5 mg/ml, 1 ml) was administered using both small-particle and conventional VMNs in inspiration-synchronization and continuous modes. For the pediatric model, VMN was placed at the humidifier inlet, inspiratory limb at Y-piece, and between Y-piece and ETT (Y-ETT). For the neonatal model, VMN was placed at the humidifier inlet and between Y-ETT. Each setup was repeated five times. Albuterol collected on the filter distal to the ETT was eluted and assayed with UV spectrophotometry (276 nm). RESULTS The inspiration-synchronized VMN generated higher inhaled doses compared to continuous VMN across all nebulizer placements, particle sizes, and aerosol generation models (all p < .05). The highest inhaled doses (42.2 ± 2.0% and 40.7 ± 1.0% for pediatric and neonate, respectively) were observed with the small-particle inspiration-synchronized VMN placed at Y-ETT. In the pediatric model, the inhaled dose with inspiration-synchronized conventional VMN was similar, independent of nebulizer placements (24.4 ~ 27.0%). In contrast, the inhaled dose was greatest with continuous VMN placed at the humidifier inlet. With the neonatal model, VMN placed at Y-ETT yielded higher doses than the humidifier inlet, and small-particle VMNs outperformed conventional VMNs across all settings (all p < .05). CONCLUSION The prototype small-particle VMN positioned between Y-piece and ETT in an inspiration-synchronized mode optimized aerosol delivery during mechanical ventilation in both pediatric and neonatal models.
Collapse
Affiliation(s)
- Jie Li
- Department of Cardiopulmonary Sciences, Division of Respiratory Care, Rush University, Chicago, Illinois, USA
| | - Paul Karabelas
- Department of Cardiopulmonary Sciences, Division of Respiratory Care, Rush University, Chicago, Illinois, USA
- Department of Respiratory Care, Advocate Children's Hospital in Park Ridge, Park Ridge, Illinois, USA
| | - Lingyue Gong
- Department of Cardiopulmonary Sciences, Division of Respiratory Care, Rush University, Chicago, Illinois, USA
| | - Caylie A Sheridan
- Department of Cardiopulmonary Sciences, Division of Respiratory Care, Rush University, Chicago, Illinois, USA
| | - James B Fink
- Department of Cardiopulmonary Sciences, Division of Respiratory Care, Rush University, Chicago, Illinois, USA
- Aerogen Pharma Corp., San Mateo, California, USA
| |
Collapse
|
4
|
Dhege CT, Kumar P, Choonara YE. Pulmonary drug delivery devices and nanosystems as potential treatment strategies for acute respiratory distress syndrome (ARDS). Int J Pharm 2024; 657:124182. [PMID: 38697584 DOI: 10.1016/j.ijpharm.2024.124182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/10/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Despite advances in drug delivery technologies, treating acute respiratory distress syndrome (ARDS) is challenging due to pathophysiological barriers such as lung injury, oedema fluid build-up, and lung inflammation. Active pharmaceutical ingredients (API) can be delivered directly to the lung site of action with the use of aerosol-based drug delivery devices, and this circumvents the hepatic first-pass effect and improves the bioavailability of drugs. This review discusses the various challenges and barriers for pulmonary drug delivery, current interventions for delivery, considerations for effective drug delivery, and the use of nanoparticle drug delivery carriers as potential strategies for delivering therapeutics in ARDS. Nanosystems have the added benefit of entrapping drugs, increase pulmonary drug bioavailability, and using biocompatible and biodegradable excipients that can facilitate targeted and/or controlled delivery. These systems provide an alternative to existing conventional systems. An effective way to deliver drugs for the treatment of ARDS can be by using colloidal systems that are aerosolized or inhaled. Drug distribution to the deeper pulmonary tissues is necessary due to the significant endothelial cell destruction that is prevalent in ARDS. The particle size of nanoparticles (<0.5 μm) makes them ideal candidates for treating ARDS as they can reach the alveoli. A look into the various potential benefits and limitations of nanosystems used for other lung disorders is also considered to indicate how they may be useful for the potential treatment of ARDS.
Collapse
Affiliation(s)
- Clarence T Dhege
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
5
|
Arnott A, Watson M, Sim M. Nebuliser therapy in critical care: The past, present and future. J Intensive Care Soc 2024; 25:78-88. [PMID: 39323591 PMCID: PMC11421288 DOI: 10.1177/17511437231199899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Nebulisers are devices that reduce a body of liquid into a fine aerosol suitable for inhalation. Utilising the efficiency of pulmonary drug absorption, they offer a safe and powerful modality for local and systemic drug delivery in the treatment of critical illness. In comparison to conventional jet (JN) and ultrasonic nebulisers (USN), the advent of vibrating mesh nebulisers (VMN) has significantly improved the therapeutic potential of modern devices. This review article aims to summarise the history and evolution of nebulisers from first inception through to the modern vibrating mesh technology. It provides an overview on the basic science of nebulisation and pulmonary drug delivery, and the current use of nebulised therapies in critical care.
Collapse
Affiliation(s)
| | | | - Malcolm Sim
- Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|
6
|
Reilly L, Mac Giolla Eain M, Murphy S, O’Sullivan A, Joyce M, MacLoughlin R. An in vitro study of the effects of respiratory circuit setup and parameters on aerosol delivery during mechanical ventilation. Front Med (Lausanne) 2024; 10:1307301. [PMID: 38327274 PMCID: PMC10847248 DOI: 10.3389/fmed.2023.1307301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/26/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction Aerosol therapy is often prescribed concurrently during invasive mechanical ventilation (IMV). This study determines the effects of nebuliser position, circuit humidification source, and most importantly, lung health on the delivery of aerosol in simulated adult and paediatric IMV patients. Furthermore, the influence of closed suction catheters on aerosol delivery is also addressed. Methods A vibrating mesh nebuliser was used to deliver Albuterol to simulated adult and paediatric IMV patients with differing states of lung health. Four different nebuliser positions and two types of humidification were analysed. Closed suction catheter mounts, a mainstay in IMV therapy, were incorporated into the circuits. The mean ± SD dose of aerosol (%) was assayed from a filter at the distal end of the endotracheal tube. Results Nebuliser placement and circuit humidification source had no effect on the delivered dose (%) in adults, yet both significantly did in the simulated paediatric patients. The use of closed suction catheter mounts significantly reduced the delivered dose (%) in adults but not in paediatric patients. A simulated healthy lung state generated the largest delivered dose (%), irrespective of nebuliser position in the adult. However, different lung health and nebuliser positions yielded higher delivered doses (%) in paediatrics. Conclusion Lung health and respiratory circuit composition significantly affect aerosol delivery in both adult and paediatric IMV patients. Nebuliser placement and respiratory circuit humidification source do not affect the delivered dose in adult but do in paediatric IMV patients.
Collapse
Affiliation(s)
- Leanne Reilly
- Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, Galway, Ireland
| | - Marc Mac Giolla Eain
- Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, Galway, Ireland
| | - Sarah Murphy
- Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, Galway, Ireland
| | - Andrew O’Sullivan
- Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, Galway, Ireland
| | - Mary Joyce
- Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, Galway, Ireland
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, Galway, Ireland
- School of Pharmacy & Biomolecular Science, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinty College, Dublin, Ireland
| |
Collapse
|
7
|
McCarthy SD, Tilbury MA, Masterson CH, MacLoughlin R, González HE, Laffey JG, Wall JG, O'Toole D. Aerosol Delivery of a Novel Recombinant Modified Superoxide Dismutase Protein Reduces Oxidant Injury and Attenuates Escherichia coli Induced Lung Injury in Rats. J Aerosol Med Pulm Drug Deliv 2023; 36:246-256. [PMID: 37638822 DOI: 10.1089/jamp.2022.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Background: Acute respiratory distress syndrome (ARDS) is a life-threatening respiratory failure syndrome with diverse etiologies characterized by increased permeability of alveolar-capillary membranes, pulmonary edema, and acute onset hypoxemia. During the ARDS acute phase, neutrophil infiltration into the alveolar space results in uncontrolled release of reactive oxygen species (ROS) and proteases, overwhelming antioxidant defenses and causing alveolar epithelial and lung endothelial injury. Objectives: To investigate the therapeutic potential of a novel recombinant human Cu-Zn-superoxide dismutase (SOD) fusion protein in protecting against ROS injury and for aerosolized SOD delivery to treat Escherichia coli induced ARDS. Methods: Fusion proteins incorporating human Cu-Zn-SOD (hSOD1), with (pep1-hSOD1-his) and without (hSOD1-his) a fused hyaluronic acid-binding peptide, were expressed in E. coli. Purified proteins were evaluated in in vitro assays with human bronchial epithelial cells and through aerosolized delivery to the lung of an E. coli-induced ARDS rat model. Results: SOD proteins exhibited high SOD activity in vitro and protected bronchial epithelial cells from oxidative damage. hSOD1-his and pep1-hSOD1-his retained SOD activity postnebulization and exhibited no adverse effects in the rat. Pep1-hSOD1-his administered through instillation or nebulization to the lung of an E. coli-induced pneumonia rat improved arterial oxygenation and lactate levels compared to vehicle after 48 hours. Static lung compliance was improved when the pep1-hSOD1-his protein was delivered by instillation. White cell infiltration to the lung was significantly reduced by aerosolized delivery of protein, and reduction of cytokine-induced neutrophil chemoattractant-1, interferon-gamma, and interleukin 6 pro-inflammatory cytokine concentrations in bronchoalveolar lavage was observed. Conclusions: Aerosol delivery of a novel recombinant modified SOD protein reduces oxidant injury and attenuates E. coli induced lung injury in rats. The results provide a strong basis for further investigation of the therapeutic potential of hSOD1 in the treatment of ARDS.
Collapse
Affiliation(s)
- Sean D McCarthy
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Discipline of Anaesthesia, School of Medicine, University of Galway, Galway, Ireland
| | - Maura A Tilbury
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Claire H Masterson
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | | | - Héctor E González
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Discipline of Anaesthesia, School of Medicine, University of Galway, Galway, Ireland
| | - John G Laffey
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Discipline of Anaesthesia, School of Medicine, University of Galway, Galway, Ireland
| | - J Gerard Wall
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Daniel O'Toole
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Discipline of Anaesthesia, School of Medicine, University of Galway, Galway, Ireland
| |
Collapse
|
8
|
Green O, Shenberg G, Baruch R, Argaman L, Levin T, Michelson I, Hadary R, Isakovich B, Golos M, Schwartz R, MacLoughlin R, Adi N, Arber N, Shapira S. Inhaled Exosomes Genetically Manipulated to Overexpress CD24 (EXO-CD24) as a Compassionate Use in Severe ARDS Patients. Biomedicines 2023; 11:2523. [PMID: 37760963 PMCID: PMC10525844 DOI: 10.3390/biomedicines11092523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
RATIONALE Acute respiratory distress syndrome (ARDS) is a major global health concern with a significant unmet need. EXO-CD24 is delivered via inhalation-reduced cytokines and chemokine secretion and lung injury in ARDS and improved survival in mice models of ARDS, influenza, and sepsis. OBJECTIVES This clinical paper aims to evaluate the potential of EXO-CD24, a novel immunomodulatory treatment, in the compassionate care of critically ill, intubated patients with post-infection-induced acute respiratory distress syndrome (ARDS). METHODS Eleven critically ill patients diagnosed with post-infection ARDS (10 with COVID-19 and one with an adenovirus-associated infection) were administered EXO-CD24 in four medical centers across Israel. The patients had multiple co-morbidities, including cancer, hypertension, diabetes, and ischemic heart disease, and met the criteria for severe ARDS according to the Berlin classification. EXO-CD24 was administered via inhalation, and adverse events related to its use were carefully monitored. MEASUREMENTS AND MAIN RESULTS The administration of EXO-CD24 did not result in any recorded adverse events. The median hospitalization duration was 11.5 days, and the overall mortality rate was 36%. Notably, patients treated at the Tel Aviv Medical Center (TASMC) showed a lower mortality rate of 12.5%. The WBC and CRP levels decreased in comparison to baseline levels at hospitalization, and rapid responses occurred even in patients with kidney transplants who were off the ventilator within a few days and discharged shortly thereafter. The production of cytokines and chemokines was significantly suppressed in all patients, including those who died. Among the patients at TASMC, four had kidney transplants and were on immunosuppressive drugs, and all of them fully recovered and were discharged from the hospital. CONCLUSIONS EXO-CD24 holds promise as a potential therapeutic agent for all stages of ARDS, even in severe intubated cases. Importantly, EXO-CD24 demonstrated a favorable safety profile without any apparent side effects with promising efficacy. Furthermore, the potential of EXO-CD24 as a platform for addressing hyper-inflammatory states warrants exploration. Further research and larger-scale clinical trials are warranted to validate these preliminary findings.
Collapse
Affiliation(s)
- Orr Green
- Health Promotion Center and Integrated Cancer Prevention Center, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (O.G.); (G.S.); (L.A.); (I.M.); (N.A.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel; (R.B.); (R.S.); (N.A.)
| | - Gil Shenberg
- Health Promotion Center and Integrated Cancer Prevention Center, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (O.G.); (G.S.); (L.A.); (I.M.); (N.A.)
| | - Roni Baruch
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel; (R.B.); (R.S.); (N.A.)
- Department of Kidney Transplantation, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Lihi Argaman
- Health Promotion Center and Integrated Cancer Prevention Center, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (O.G.); (G.S.); (L.A.); (I.M.); (N.A.)
| | - Talya Levin
- Health Promotion Center and Integrated Cancer Prevention Center, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (O.G.); (G.S.); (L.A.); (I.M.); (N.A.)
| | - Ian Michelson
- Health Promotion Center and Integrated Cancer Prevention Center, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (O.G.); (G.S.); (L.A.); (I.M.); (N.A.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel; (R.B.); (R.S.); (N.A.)
| | - Ruthy Hadary
- Department of Internal Medicine C, Meir Medical Center, Kefar-Saba 4428164, Israel;
| | - Boris Isakovich
- Intensive Care Unit, Hillel Yaffe Medical Center, Hadera 3820302, Israel;
| | - Miri Golos
- Carmel Medical Center, Haifa 3436212, Israel;
| | - Reut Schwartz
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel; (R.B.); (R.S.); (N.A.)
- Anesthesia and Intensive Care Unit, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Ronan MacLoughlin
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons, D02 YN77 Dublin, Ireland;
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
| | - Nimrod Adi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel; (R.B.); (R.S.); (N.A.)
- Anesthesia and Intensive Care Unit, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Nadir Arber
- Health Promotion Center and Integrated Cancer Prevention Center, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (O.G.); (G.S.); (L.A.); (I.M.); (N.A.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel; (R.B.); (R.S.); (N.A.)
| | - Shiran Shapira
- Health Promotion Center and Integrated Cancer Prevention Center, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (O.G.); (G.S.); (L.A.); (I.M.); (N.A.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel; (R.B.); (R.S.); (N.A.)
| |
Collapse
|
9
|
Li J, Liu K, Lyu S, Jing G, Dai B, Dhand R, Lin HL, Pelosi P, Berlinski A, Rello J, Torres A, Luyt CE, Michotte JB, Lu Q, Reychler G, Vecellio L, de Andrade AD, Rouby JJ, Fink JB, Ehrmann S. Aerosol therapy in adult critically ill patients: a consensus statement regarding aerosol administration strategies during various modes of respiratory support. Ann Intensive Care 2023; 13:63. [PMID: 37436585 DOI: 10.1186/s13613-023-01147-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/31/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Clinical practice of aerosol delivery in conjunction with respiratory support devices for critically ill adult patients remains a topic of controversy due to the complexity of the clinical scenarios and limited clinical evidence. OBJECTIVES To reach a consensus for guiding the clinical practice of aerosol delivery in patients receiving respiratory support (invasive and noninvasive) and identifying areas for future research. METHODS A modified Delphi method was adopted to achieve a consensus on technical aspects of aerosol delivery for adult critically ill patients receiving various forms of respiratory support, including mechanical ventilation, noninvasive ventilation, and high-flow nasal cannula. A thorough search and review of the literature were conducted, and 17 international participants with considerable research involvement and publications on aerosol therapy, comprised a multi-professional panel that evaluated the evidence, reviewed, revised, and voted on recommendations to establish this consensus. RESULTS We present a comprehensive document with 20 statements, reviewing the evidence, efficacy, and safety of delivering inhaled agents to adults needing respiratory support, and providing guidance for healthcare workers. Most recommendations were based on in-vitro or experimental studies (low-level evidence), emphasizing the need for randomized clinical trials. The panel reached a consensus after 3 rounds anonymous questionnaires and 2 online meetings. CONCLUSIONS We offer a multinational expert consensus that provides guidance on the optimal aerosol delivery techniques for patients receiving respiratory support in various real-world clinical scenarios.
Collapse
Affiliation(s)
- Jie Li
- Department of Cardiopulmonary Sciences, Division of Respiratory Care, Rush University, 600 S Paulina St, Suite 765, Chicago, IL, 60612, USA.
| | - Kai Liu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shan Lyu
- Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Guoqiang Jing
- Department of Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Bing Dai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Rajiv Dhand
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - Hui-Ling Lin
- Department of Respiratory Therapy, Chang Gung University, Taoyuan, Taiwan
| | - Paolo Pelosi
- Anesthesiology and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Ariel Berlinski
- Pulmonary and Sleep Medicine Division, Department of Pediatrics, University of Arkansas for Medical Sciences, and Pediatric Aerosol Research Laboratory at Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Jordi Rello
- Clinical Research/Epidemiology in Pneumonia and Sepsis (CRIPS), Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Clinical Research in the ICU, Anaesthesia Department, CHU Nimes, Université de Nimes-Montpellier, Nimes, France
| | - Antoni Torres
- Servei de Pneumologia, Hospital Clinic, University of Barcelona, IDIBAPS CIBERES, Icrea, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Charles-Edouard Luyt
- Médecine Intensive Réanimation, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne-Université, and INSERM, UMRS_1166-ICAN Institute of Cardiometabolism and Nutrition, Paris, France
| | - Jean-Bernard Michotte
- School of Health Sciences (HESAV), HES-SO University of Applied Sciences and Arts of Western Switzerland, Lausanne, Switzerland
| | - Qin Lu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, and Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Gregory Reychler
- Secteur de Kinésithérapie et Ergothérapie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Service de Pneumologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL and Dermatologie, Université Catholique de Louvain, Brussels, Belgium
| | | | | | - Jean-Jacques Rouby
- Research Department DMU DREAM and Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Sorbonne University of Paris, Paris, France
| | - James B Fink
- Department of Cardiopulmonary Sciences, Division of Respiratory Care, Rush University, 600 S Paulina St, Suite 765, Chicago, IL, 60612, USA
- Chief Science Officer, Aerogen Pharma Corp, San Mateo, CA, USA
| | - Stephan Ehrmann
- CHRU Tours, Médecine Intensive Réanimation, CIC INSERM 1415, CRICS-TriggerSep F-CRIN Research Network, and INSERM, Centre d'étude des Pathologies Respiratoires, U1100, Université de Tours, Tours, France
| |
Collapse
|
10
|
Creane S, Joyce M, MacLoughlin R, Weldon S, Dalton JP, Taggart CC. In vitro evaluation of the potential use of snake-derived peptides in the treatment of respiratory infections using inhalation therapy: A proof of concept study. Eur J Pharm Sci 2023; 183:106398. [PMID: 36740103 DOI: 10.1016/j.ejps.2023.106398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Inhalation therapy using nebulisers is an attractive non-invasive route for drug delivery, particularly for the treatment of lung infections with anti-inflammatory and anti-microbial compounds. This study evaluated the suitability of three snake-derived peptides (termed Sn1b, SnE1 and SnE1-F), which we have recently shown have potent anti-inflammatory and bacteriostatic activities, for nebulisation using a vibrating mesh nebuliser (VMN). The effect of nebulisation on peptide concentration, stability and function were assessed, prior to progression to aerodynamic particle size distribution, and in vitro drug delivery in simulated adult spontaneous breathing and mechanical ventilated patient models. When nebulised, all three peptides exhibited similar functions to their non-nebulised counterparts and were found to be respirable during simulated mechanical ventilation. Based on the assessment of the droplet distributions of nebulised peptides using a Next Generation Impactor (NGI) demonstrated that if administered in vivo each peptide would likely be delivered to the lower airways. These data suggest that nebulisation using a VMN is a viable means of anti-microbial / anti-inflammatory peptide delivery targeting microbial respiratory infections, and possibly even systemic infections.
Collapse
Affiliation(s)
- Shannice Creane
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Mary Joyce
- Research & Development, Science & Emerging Technologies, Aerogen Limited, Galway Business Park, Galway H91 HE94, Ireland
| | - Ronan MacLoughlin
- Research & Development, Science & Emerging Technologies, Aerogen Limited, Galway Business Park, Galway H91 HE94, Ireland; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland; School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin D02 PN40, Ireland
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - John P Dalton
- Zoology Department, School of Natural Sciences, Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland.; School of Biological Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Clifford C Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK..
| |
Collapse
|
11
|
Wang R, Leime CO, Gao W, MacLoughlin R. Aerosol delivery in models of pediatric high flow nasal oxygen and mechanical ventilation. Pediatr Pulmonol 2023; 58:878-886. [PMID: 36478520 DOI: 10.1002/ppul.26270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Aerosol drug delivery during high flow nasal oxygen (HFNO) and invasive mechanical ventilation (IMV) are key respiratory care strategies available for the treatment of pediatric patients. We aimed to quantify the impact of different HFNO and IMV set-ups on tracheal drug delivery via a vibrating mesh nebuliser (VMN). METHODS Percent tracheal dose via VMN was quantified during HFNO therapy and IMV in a benchtop model of a 9-month-old infant. Under HFNO, 3 cannula sizes were used at 3 flow rate settings with the VMN placed at the dry side of the humidifier. Under IMV, tracheal dose when VMN was placed at the dry side of the humidifier, 15 cm from the wye and between the wye and endotracheal tube (ETT) was assessed. Salbutamol at 2.5 mg/2.5 ml (1 mg/ml) was used for each test (N = 5). The impact of VMN refill on circuit pressure under HFNO and IMV was also assessed. RESULTS Tracheal dose was highest during HFNO with the largest cannula size (OPT318) set to the lowest flow rate setting of 2 L/min (liter per minute) (5.80 ± 0.17%). Increasing flow rate reduced tracheal drug delivery for all cannulas. For IMV, VMN on the dry side of the humidifier and between the wye and ETT gave optimal drug delivery (4.49 ± 0.14% vs. 4.43 ± 0.26% respectively). VMN refill did not impact circuit pressure for either HFNO therapy or IMV. CONCLUSIONS Gas flow rate and cannula size during HFNO and VMN position during IMV has a significant effect on tracheal drug delivery in a pediatric setting.
Collapse
Affiliation(s)
- Ran Wang
- Research and Development, Science & Emerging Technologies, Aerogen Limited, Galway Business Park, Galway, Ireland
| | - Ciaran O Leime
- Research and Development, Science & Emerging Technologies, Aerogen Limited, Galway Business Park, Galway, Ireland
| | - Weiwei Gao
- Neonatology Department, Guangdong Women and Children Hospital, Guangdong Neonatal ICU Medical Quality Control Center, Guangdong, China
| | - Ronan MacLoughlin
- Research and Development, Science & Emerging Technologies, Aerogen Limited, Galway Business Park, Galway, Ireland.,School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| |
Collapse
|
12
|
MacLoughlin R, Martin-Loeches I. Not all nebulizers are created equal: Considerations in choosing a nebulizer for aerosol delivery during mechanical ventilation. Expert Rev Respir Med 2023; 17:131-142. [PMID: 36803134 DOI: 10.1080/17476348.2023.2183194] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
INTRODUCTION Aerosol therapy is commonly prescribed in the mechanically ventilated patient. Jet nebulizers (JN) and vibrating mesh nebulizers (VMN) are the most common nebulizer types, however, despite VMN's well established superior performance, JN use remains the most commonly used of the two. In this review, we describe the key differentiators between nebulizer types and how considered selection of nebulizer type may enable successful therapy and the optimization of drug/device combination products. AREAS COVERED Following a review of the published literature up to February 2023, the current state of the art in relation to JN and VMN is discussed under the headings of in vitro performance of nebulizers during mechanical ventilation, respective compatibility with formulations for inhalation, clinical trials making use of VMN during mechanical ventilation, distribution of nebulized aerosol throughout the lung, measuring the respective performance of nebulizers in the patient and non-drug delivery considerations in nebulizer choice. EXPERT OPINION Whether for standard care, or the development of drug/device combination products, the choice of nebulizer type should not be made without consideration of the unique needs of the combination of each of drug, disease and patient types, as well as target site for deposition, and healthcare professional and patient safety.
Collapse
Affiliation(s)
- Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Ltd, Dangan, Ireland.,School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland.,School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), Dublin, Ireland
| |
Collapse
|
13
|
Azhdari MH, Goodarzi N, Doroudian M, MacLoughlin R. Molecular Insight into the Therapeutic Effects of Stem Cell-Derived Exosomes in Respiratory Diseases and the Potential for Pulmonary Delivery. Int J Mol Sci 2022; 23:ijms23116273. [PMID: 35682948 PMCID: PMC9181737 DOI: 10.3390/ijms23116273] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
Respiratory diseases are the cause of millions of deaths annually around the world. Despite the recent growth of our understanding of underlying mechanisms contributing to the pathogenesis of lung diseases, most therapeutic approaches are still limited to symptomatic treatments and therapies that only delay disease progression. Several clinical and preclinical studies have suggested stem cell (SC) therapy as a promising approach for treating various lung diseases. However, challenges such as the potential tumorigenicity, the low survival rate of the SCs in the recipient body, and difficulties in cell culturing and storage have limited the applicability of SC therapy. SC-derived extracellular vesicles (SC-EVs), particularly SC-derived exosomes (SC-Exos), exhibit most therapeutic properties of stem cells without their potential drawbacks. Similar to SCs, SC-Exos exhibit immunomodulatory, anti-inflammatory, and antifibrotic properties with the potential to be employed in the treatment of various inflammatory and chronic respiratory diseases. Furthermore, recent studies have demonstrated that the microRNA (miRNA) content of SC-Exos may play a crucial role in the therapeutic potential of these exosomes. Several studies have investigated the administration of SC-Exos via the pulmonary route, and techniques for SCs and SC-Exos delivery to the lungs by intratracheal instillation or inhalation have been developed. Here, we review the literature discussing the therapeutic effects of SC-Exos against respiratory diseases and advances in the pulmonary route of delivery of these exosomes to the damaged tissues.
Collapse
Affiliation(s)
- Mohammad H. Azhdari
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (M.H.A.); (N.G.)
| | - Nima Goodarzi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (M.H.A.); (N.G.)
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (M.H.A.); (N.G.)
- Correspondence: author: (M.D.); (R.M.)
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Limited, IDA Business Park, H91 HE94 Galway, Ireland
- School of Pharmacy, Royal College of Surgeons, D02 YN77 Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Correspondence: author: (M.D.); (R.M.)
| |
Collapse
|
14
|
Gallagher L, Joyce M, Murphy B, Mac Giolla Eain M, MacLoughlin R. The Impact of Head Model Choice on the In Vitro Evaluation of Aerosol Drug Delivery. Pharmaceutics 2021; 14:pharmaceutics14010024. [PMID: 35056920 PMCID: PMC8777612 DOI: 10.3390/pharmaceutics14010024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 11/20/2022] Open
Abstract
There are variations in the values reported for aerosol drug delivery across in vitro experiments throughout the published literature, and often with the same devices or similar experimental setups. Factors contributing to this variability include, but are not limited to device type, equipment settings, drug type and quantification methods. This study assessed the impact of head model choice on aerosol drug delivery using six different adults and three different paediatric head models in combination with a facemask, mouthpiece, and high-flow nasal cannula. Under controlled test conditions, the quantity of drug collected varied depending on the choice of head model. Head models vary depending on a combination of structural design differences, facial features (size and structure), internal volume measurements and airway geometries and these variations result in the differences in aerosol delivery. Of the widely available head models used in this study, only three were seen to closely predict in vivo aerosol delivery performance in adults compared with published scintigraphy data. Further, this testing identified the limited utility of some head models under certain test conditions, for example, the range reported across head models was aerosol drug delivery of 2.62 ± 2.86% to 37.79 ± 1.55% when used with a facemask. For the first time, this study highlights the impact of head model choice on reported aerosol drug delivery within a laboratory setting and contributes to explaining the differences in values reported within the literature.
Collapse
Affiliation(s)
- Lauren Gallagher
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland; (L.G.); (M.J.); (B.M.); (M.M.G.E.)
| | - Mary Joyce
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland; (L.G.); (M.J.); (B.M.); (M.M.G.E.)
| | - Barry Murphy
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland; (L.G.); (M.J.); (B.M.); (M.M.G.E.)
| | - Marc Mac Giolla Eain
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland; (L.G.); (M.J.); (B.M.); (M.M.G.E.)
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland; (L.G.); (M.J.); (B.M.); (M.M.G.E.)
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
- Correspondence:
| |
Collapse
|