1
|
Zhai R, Liang Y, Shi R, Xie H. Challenges and improvements in multi-layer mucosa-adhesive films for oral diseases treatment and prognosis. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:663-687. [PMID: 39508677 DOI: 10.1080/09205063.2024.2422213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
Due to the complexity of oral physiology and pathology, the treatment of oral diseases faces multiple and complex clinical requirements. Mucosa-adhesive films (MAFs) with a single layer have demonstrated considerable potential in delivering therapeutic bioactive ingredients directly to the site of oral diseases. However, their functions are often hindered by certain factors such as limited loading capacity, poor site specificity, and sensitivity to mechanical stimuli. To overcome these limitations, the development of multi-layer MAFs has become a focal point for recent research. This involves the improvement of construction methods for multi-layer MAFs to minimize potential health risks from residual solvents, and conducting comprehensive in vivo studies to evaluate their safety and therapeutic efficacy more accurately, thus paving the way for their commercialization. Additionally, the exploration of multi-layer MAFs as personalized drug delivery systems could further broaden their application prospect. Precisely, multi-layer MAFs compensate for the shortcomings of current therapeutic strategies for oral diseases to a great extent, indicating a promising future in the market.
Collapse
Affiliation(s)
- Ruohan Zhai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yaxian Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Ruijianghan Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Huixu Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Potaś-Stobiecka J, Wach RA, Rokita B, Simonik WK, Wróblewska M, Borkowska K, Mork S, Škalko-Basnet N, Winnicka K. Improving Atorvastatin Release from Polyelectrolyte Complex-Based Hydrogels Using Freeze-Drying: Formulation and Pharmaceutical Assessment of a Novel Delivery System for Oral Candidiasis Treatment. Int J Mol Sci 2025; 26:2267. [PMID: 40076888 PMCID: PMC11900555 DOI: 10.3390/ijms26052267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Atorvastatin calcium, an antifungal agent, has the potential to be repositioned/repurposed to combat the increasing antimicrobial resistance. However, one of the most crucial issues in developing atorvastatin calcium-loaded products with a topical antifungal effect is achieving the optimal release and dissolution rates of this statin to produce the desired therapeutic effect. In this paper, we report on the development and pharmaceutical assessment of hydrogels composed of low-molecular-weight chitosan, tragacanth, and xanthan gum/pectin/κ-carrageenan as potential drug carriers for atorvastatin calcium for buccal delivery. Multidirectional analysis of the carriers with regard to their drug-release profiles and mucoadhesive, antimicrobial, and cytotoxic properties was accompanied by an evaluation of the freeze-drying process used to improve the hydrogels' applicability. Using differential scanning calorimetry, Fourier transform infrared spectroscopy, and scanning electron microscopy techniques, the role of lyophilization in enhancing atorvastatin calcium delivery from polyelectrolyte complex-based matrices via drug amorphization was demonstrated. The freeze-dried hydrogels had significantly improved release and dissolution rates for the amorphic statin. Therefore, there is great potential for the use of lyophilization in the design of polyelectrolyte complex-based semi-solids in usable dosage forms for numerous crystalline and poorly water-soluble active substances.
Collapse
Affiliation(s)
- Joanna Potaś-Stobiecka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (M.W.); (K.W.)
| | - Radosław Aleksander Wach
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Łódź University of Technology, Wróblewskiego 15, 93-590 Łódź, Poland; (R.A.W.); (B.R.)
| | - Bożena Rokita
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Łódź University of Technology, Wróblewskiego 15, 93-590 Łódź, Poland; (R.A.W.); (B.R.)
| | - Weronika Kaja Simonik
- Student Scientific Group, Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; (W.K.S.); (K.B.)
| | - Magdalena Wróblewska
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (M.W.); (K.W.)
| | - Karolina Borkowska
- Student Scientific Group, Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; (W.K.S.); (K.B.)
| | - Silje Mork
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (S.M.); (N.Š.-B.)
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (S.M.); (N.Š.-B.)
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (M.W.); (K.W.)
| |
Collapse
|
3
|
Caro-León FJ, Silva-Campa E, Navarro-López RA, Fernández-Quiroz D, Figueroa-León VA, Trujillo-Ramirez MA, López-Martínez LM, Aguilar MR, Álvarez-Bajo O. Production and Characterization of Nanoparticulate Polyelectrolyte Complexes of Chitosan-Catechol, Ulvan, and Hyaluronic Acid. ACS OMEGA 2025; 10:3474-3485. [PMID: 39926506 PMCID: PMC11800033 DOI: 10.1021/acsomega.4c07429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 02/11/2025]
Abstract
This work provides the first description of the synthesis and characterization of polymeric nanoparticles (NPs) obtained by polyelectrolyte complexes (PECs) of three polysaccharides: chitosan (Cs) or its catecholic derivative, ulvan, and hyaluronic acid (HA). The carbodiimide method used catechol group conjugation onto the Cs backbone using the catechol-containing compound hydrocaffeic acid. A degree of substitution of 2.98% was determined by spectroscopy in the chitosan-catechol (CsC) conjugate. DLS studies showed hydrodynamic diameter (D h) close to 300 nm for PECs of Cs and CsC with ulvan, with positive zeta potential for both complexes. HA coating was confirmed by obtaining negative zeta potential. The HA coating reduced the D h values of the materials by approximately 100 nm. This resulted in maintaining stability in water suspension for up to 8 weeks, yielding unimodal size distribution. ATR-FTIR spectra confirmed the presence of the polyelectrolytes in the PECs. FE-SEM studies demonstrated that HA-coated NPs exhibited smaller sizes than their uncoated counterparts. PECs with CsC maintained higher free radical scavenging activity than those with unmodified Cs, with the HA coating only reducing antioxidant activity by 16%. All tested NPs demonstrated biocompatibility at concentrations up to 200 μg/mL in ARPE-19 cell cultures derived from human retinal pigment epithelial cells.
Collapse
Affiliation(s)
- Francisco J. Caro-León
- Instituto
de Ciencia y Tecnología de Polímeros (ICTP) CSIC, 28006 Madrid, Spain
- Departamento
de Investigación en Física de la Universidad de Sonora
(DIFUS), 83000 Hermosillo Sonora, Mexico
| | - Erika Silva-Campa
- Departamento
de Investigación en Física de la Universidad de Sonora
(DIFUS), 83000 Hermosillo Sonora, Mexico
| | - René A. Navarro-López
- Departamento
de Investigación en Física de la Universidad de Sonora
(DIFUS), 83000 Hermosillo Sonora, Mexico
| | - Daniel Fernández-Quiroz
- Departamento
de Ingeniería Química y Metalurgia, Universidad de Sonora, 83000 Hermosillo Sonora, Mexico
| | | | | | - Luis Miguel López-Martínez
- Departamento
de Investigación en Polímeros y Materiales (DIPM), Universidad de Sonora, 83000 Hermosillo Sonora, Mexico
- Universidad
Estatal de Sonora (UES), Av. Ley Federal del Trabajo s/n, Col. Apolo, 83100 Hermosillo, Sonora, Mexico
| | - Maria Rosa Aguilar
- Instituto
de Ciencia y Tecnología de Polímeros (ICTP) CSIC, 28006 Madrid, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Osiris Álvarez-Bajo
- Departamento
de Investigación en Física de la Universidad de Sonora
(DIFUS), 83000 Hermosillo Sonora, Mexico
- Consejo
Nacional de Humanidades Ciencia y Tecnología CONAHCyT, Ave. Insurgentes Sur 1582, Col.
Crédito Constructor, Benito Juárez 03940, CDMX, Mexico
| |
Collapse
|
4
|
Savdenbekova B, Seidulayeva A, Sailau A, Bekissanova Z, Rakhmatullayeva D, Jumagaziyeva A. Investigation of Antibacterial Coatings Based on Chitosan/Polyacrylic Acid/Chlorhexidine for Orthopedic Implants. ACS POLYMERS AU 2024; 4:498-511. [PMID: 39679059 PMCID: PMC11638784 DOI: 10.1021/acspolymersau.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 12/17/2024]
Abstract
Antibacterial coatings on model silicon wafers and implants, based on chitosan (CHI), poly(acrylic acid) (PAA), and the antibacterial agent chlorhexidine digluconate (CHX), were obtained using a layer-by-layer assembly method. The surface roughness and 2D and 3D images of the surfaces of CHI/PAA/CHX coatings obtained from different pH assemblies were investigated by atomic force microscopy, revealing that pH 6 enabled optimal inclusion of CHX in the multilayer film. The structure and elemental composition before and after implementation of CHX into the coating were investigated via scanning electron microscopy and energy-dispersive X-ray spectroscopy. The obtained films exhibited antimicrobial efficacy against Staphylococcus aureus and Staphylococcus epidermidis. The effects of CHX concentration and duration of contact with the coating on bacterial activity were investigated, and the quantitative release of CHX from coated implants in phosphate buffer was determined as a function of the incubation time. The biocompatibility of the PAA/CHI/CHX coatings was investigated using human mononuclear cells (HMNCs) and quantified using an MTT assay. HMNCs demonstrated high viability in eluted solutions obtained from implants coated with PAA/CHI/CHX (0.025%) and PAA/CHI/CHX (0.0125%), while the extract of implants coated with PAA/CHI/CHX (0.05%) induced slight cytotoxicity.
Collapse
Affiliation(s)
- Balzhan Savdenbekova
- Faculty
of Chemistry and Chemical Technology, Al-Farabi
Kazakh National University, Almaty 050040, Kazakhstan
- Center
of Physical−Chemical Methods of Research and Analysis, Almaty 050012, Kazakhstan
| | - Ayazhan Seidulayeva
- Faculty
of Chemistry and Chemical Technology, Al-Farabi
Kazakh National University, Almaty 050040, Kazakhstan
- Center
of Physical−Chemical Methods of Research and Analysis, Almaty 050012, Kazakhstan
| | - Aruzhan Sailau
- Faculty
of Chemistry and Chemical Technology, Al-Farabi
Kazakh National University, Almaty 050040, Kazakhstan
- Center
of Physical−Chemical Methods of Research and Analysis, Almaty 050012, Kazakhstan
| | - Zhanar Bekissanova
- Faculty
of Chemistry and Chemical Technology, Al-Farabi
Kazakh National University, Almaty 050040, Kazakhstan
- Center
of Physical−Chemical Methods of Research and Analysis, Almaty 050012, Kazakhstan
| | - Dilafruz Rakhmatullayeva
- Faculty
of Chemistry and Chemical Technology, Al-Farabi
Kazakh National University, Almaty 050040, Kazakhstan
- Center
of Physical−Chemical Methods of Research and Analysis, Almaty 050012, Kazakhstan
| | | |
Collapse
|
5
|
Roslan MNF, Naharudin I, Musa N, Anuar NK. Bioadhesive polymer in antifungal drug delivery for therapeutic treatment of candidiasis. J Adv Pharm Technol Res 2024; 15:139-143. [PMID: 39290549 PMCID: PMC11404442 DOI: 10.4103/japtr.japtr_538_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 09/19/2024] Open
Abstract
Candida species are the primary cause of candidiasis, a common yeast infection, with Candida albicans being the most prevalent pathogen. These infections often infiltrate the body through cutaneous and vaginal routes. Given the potential severity of some Candida infections, particularly invasive cases, there is a critical need for effective antifungal treatments. Controlled drug delivery strategies have been developed to achieve optimal release kinetics and precise targeting of active agents, especially in fungal infection therapeutics. Consequently, significant attention has been focused on exploring and utilizing bioadhesive polymers to enhance the performance of drug delivery systems for antifungal medications. Bioadhesive drug delivery systems aim to sustain the release of therapeutic agents, reducing the need for frequent dosing. This article provides a comprehensive review of scientific investigations into the use of antifungal drugs within bioadhesive drug delivery systems for treating candidiasis, locally and systemically. The evaluation covers the efficacy of these systems against candidiasis, factors affecting prolonged contact at the application site, and the underlying mechanisms of drug delivery.
Collapse
Affiliation(s)
- Muhamad Naquib Faisal Roslan
- Jabatan Farmasi Hospital Tengku Ampuan Rahimah, Klang, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Puncak Alam, Selangor, Malaysia
| | - Idanawati Naharudin
- Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Puncak Alam, Selangor, Malaysia
- Nondestructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Puncak Alam, Selangor, Malaysia
| | - Nafisah Musa
- Nondestructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Puncak Alam, Selangor, Malaysia
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Nor Khaizan Anuar
- Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Puncak Alam, Selangor, Malaysia
- Nondestructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Puncak Alam, Selangor, Malaysia
- Food Process and Engineering Research Group (FOPERG), Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| |
Collapse
|
6
|
Yang B, Liu B, Gao Y, Wei J, Li G, Zhang H, Wang L, Hou Z. PEG-crosslinked O-carboxymethyl chitosan films with degradability and antibacterial activity for food packaging. Sci Rep 2024; 14:10825. [PMID: 38734808 PMCID: PMC11088648 DOI: 10.1038/s41598-024-61642-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024] Open
Abstract
This study developed a kind of PEG-crosslinked O-carboxymethyl chitosan (O-CMC-PEG) with various PEG content for food packaging. The crosslinking agent of isocyanate-terminated PEG was firstly synthesized by a simple condensation reaction between PEG and excess diisocyanate, then the crosslink between O-carboxymethyl chitosan (O-CMC) and crosslinking agent occurred under mild conditions to produce O-CMC-PEG with a crosslinked structure linked by urea bonds. FT-IR and 1H NMR techniques were utilized to confirm the chemical structures of the crosslinking agent and O-CMC-PEGs. Extensive research was conducted to investigate the impact of the PEG content (or crosslinking degree) on the physicochemical characteristics of the casted O-CMC-PEG films. The results illuminated that crosslinking and components compatibility could improve their tensile features and water vapor barrier performance, while high PEG content played the inverse effects due to the microphase separation between PEG and O-CMC segments. The in vitro degradation rate and water sensitivity primarily depended on the crosslinking degree in comparison with the PEG content. Furthermore, caused by the remaining -NH2 groups of O-CMC, the films demonstrated antibacterial activity against Escherichia coli and Staphylococcus aureus. When the PEG content was 6% (medium crosslinking degree), the prepared O-CMC-PEG-6% film possessed optimal tensile features, high water resistance, appropriate degradation rate, low water vapor transmission rate and fine broad-spectrum antibacterial capacity, manifesting a great potential for application in food packaging to extend the shelf life.
Collapse
Affiliation(s)
- Bing Yang
- Key Laboratory of Public Security Management Technology in Universities of Shandong, School of Intelligence Engineering, Shandong Management University, Jinan, Shandong, China
| | - Baoliang Liu
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong, China.
| | - Yuanyuan Gao
- Taian Yingxiongshan Middle School, Taian, Shandong, China
| | - Junjie Wei
- Key Laboratory of Public Security Management Technology in Universities of Shandong, School of Intelligence Engineering, Shandong Management University, Jinan, Shandong, China
| | - Gang Li
- Shandong Tianming Pharmaceutical Co, Ltd., Jinan, Shandong, China
| | - Hui Zhang
- Key Laboratory of Public Security Management Technology in Universities of Shandong, School of Intelligence Engineering, Shandong Management University, Jinan, Shandong, China
| | - Linlin Wang
- Key Laboratory of Public Security Management Technology in Universities of Shandong, School of Intelligence Engineering, Shandong Management University, Jinan, Shandong, China
| | - Zhaosheng Hou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, China.
| |
Collapse
|
7
|
Jana BK, Singh M, Dutta RS, Mazumder B. Current Drug Delivery Strategies for Buccal Cavity Ailments using Mouth Dissolving Wafer Technology: A Comprehensive Review on the Present State of the Art. Curr Drug Deliv 2024; 21:339-359. [PMID: 36443976 DOI: 10.2174/1567201820666221128152010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/02/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mouth-dissolving wafer is polymer-based matrice that incorporates various pharmaceutical agents for oral drug delivery. This polymeric wafer is ingenious in the way that it needs not be administered with water, like in conventional tablet dosage form. It has better compliance among the pediatric and geriatric groups owing to its ease of administration. OBJECTIVE The polymeric wafer dissolves quickly in the oral cavity and is highly effective for a targeted local effect in buccal-specific ailments. It is a safe, effective, and versatile drug delivery carrier for a range of drugs used to treat a plethora of oral cavity-specific ailments that inflict common people, like thrush, canker sores, periodontal disease, benign oral cavity tumors, buccal neoplasm, and malignancies. This review paper focuses thoroughly on the present state of the art in mouth-dissolving wafer technology for buccal drug delivery and targeting. Moreover, we have also addressed present-time limitations associated with wafer technology to aid researchers in future developments in the arena of buccal drug delivery. CONCLUSION This dynamic novel formulation has tremendous future implications for designing drug delivery systems to target pernicious ailments and diseases specific to the buccal mucosa. In a nutshell, this review paper aims to summarize the present state of the art in buccal targeted drug delivery.
Collapse
Affiliation(s)
- Bani Kumar Jana
- Department of Pharmaceutical sciences, Dibrugarh University, Dibrugarh-786004, Assam, India
| | - Mohini Singh
- Department of Pharmaceutical sciences, Dibrugarh University, Dibrugarh-786004, Assam, India
| | - Rajat Subhra Dutta
- Department of Pharmaceutical sciences, Dibrugarh University, Dibrugarh-786004, Assam, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical sciences, Dibrugarh University, Dibrugarh-786004, Assam, India
| |
Collapse
|
8
|
Chamsai B, Opanasopit P, Samprasit W. Fast disintegrating dosage forms of mucoadhesive-based nanoparticles for oral insulin delivery: Optimization to in vivo evaluation. Int J Pharm 2023; 647:123513. [PMID: 37839494 DOI: 10.1016/j.ijpharm.2023.123513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 10/17/2023]
Abstract
The aim of this work was to develop fast disintegrating dosage forms, including fast disintegrating tablets (FDTs) and films (FDFs), for oral insulin delivery incorporating mucoadhesive thiolated chitosan (TCS)-based nanoparticles (NPs). Cyclodextrin (CD)-insulin complexes were formed to prevent insulin from degradation and further optimally prepared NPs in order to improve the mucoadhesive properties. After that, these NPs were incorporated into the dosage forms and then evaluated for their morphology as well as physical and mechanical properties. The disintegration time, insulin content, mucoadhesive properties, insulin release, cytotoxicity, in vivo hypoglycemic effect, and stability of dosage forms were studied. Results showed that the CD-insulin complexes were successfully encapsulated into the mucoadhesive NPs. The 15 %w/w CD-insulin complex-loaded NPs, which were probably dispersed and/or fused into the dosage forms, showed promising characteristics, including rapid disintegration as well as good physical and mechanical properties to withstand erosion during handling and storage. The porous structure of the FDTs promoted liquid flow and induced rapid disintegration. The dosage forms provided buccal mucoadhesion before, during, and/or after the disintegration. The FDFs containing hydroxypropyl β-cyclodextrin (HPβCD)-insulin complex-loaded NPs increased mucoadhesion, increasing insulin release. Furthermore, these dosage forms provided excellent in vivo hypoglycemic response with a prolonged effect in diabetic mice and had no cytotoxicity toward the gingival fibroblast cells. In addition, they were stable at temperatures between 2 and 8 °C for three months. The results indicate that these formulations could be applied as promising dosage forms for use in oral insulin delivery.
Collapse
Affiliation(s)
- Benchawan Chamsai
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Praneet Opanasopit
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Wipada Samprasit
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand.
| |
Collapse
|
9
|
Deshkar S, Yeole P, Mahore J, Shinde A, Giram P. Polyelectrolyte-Complex-Based Hydrogel Inserts for Vaginal Delivery of Posaconazole and Probiotics. Gels 2023; 9:851. [PMID: 37998941 PMCID: PMC10670537 DOI: 10.3390/gels9110851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Worldwide, 40 to 50% of women suffer from reproductive tract infections. Most of these infections are mixed infections, are recurrent and difficult to treat with antimicrobials or antifungals alone. For symptomatic relief of infections, oral antimicrobial therapy must be combined with topical therapy. The purpose of this work is to optimize and develop a polyelectrolyte complex (PEC) of chitosan/anion for the formulation of posaconazole- and probiotic-loaded vaginal hydrogel inserts with prolonged release and significant mucoadhesion. PECs were prepared using chitosan as cationic and carrageenan, pectin and polycarbophil as anionic polymers via a lyophilization technique. PEC formation was confirmed by scanning electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry, by observing changes in its surface, physical and thermal properties. The probiotic, Lactobacillus casei, was added to the PEC during the lyophilization process and the effect on the probiotic viability was studied. The PECs were further compressed along with posaconazole to form hydrogel inserts and optimized using a 32 full-factorial design. The hydrogel inserts were assessed for swelling behavior, drug release, in vitro mucoadhesion and in vitro antifungal activity. The chitosan-pectin hydrogel insert demonstrated excellent mucoadhesion (1.25 N), sustained drug release (88.2 ± 2.4% in 8 h) and a swelling index of 154.7%. The efficacy of hydrogel inserts was evaluated using in vitro study with a co-culture of Lactobacillus casei and Candida albicans. This study revealed an increase in Lactobacilli casei count and a significant drop in the viable count of Candida albicans (4-log reduction in 24 h), indicating the effectiveness of hydrogel inserts in alleviating the fungal infection. Overall, our study demonstrated the potential of the hydrogel insert for preventing vaginal infection and restoring normal vaginal microbiota.
Collapse
Affiliation(s)
- Sanjeevani Deshkar
- Department of Pharmaceutics, Dr. D. Y. Patil Unitech Society’s, Dr. D. Y. Patil Institute of Pharmaceutical Science & Research, Pune 411018, India; (P.Y.); (J.M.); (A.S.)
| | - Purva Yeole
- Department of Pharmaceutics, Dr. D. Y. Patil Unitech Society’s, Dr. D. Y. Patil Institute of Pharmaceutical Science & Research, Pune 411018, India; (P.Y.); (J.M.); (A.S.)
| | - Jayashri Mahore
- Department of Pharmaceutics, Dr. D. Y. Patil Unitech Society’s, Dr. D. Y. Patil Institute of Pharmaceutical Science & Research, Pune 411018, India; (P.Y.); (J.M.); (A.S.)
| | - Ankita Shinde
- Department of Pharmaceutics, Dr. D. Y. Patil Unitech Society’s, Dr. D. Y. Patil Institute of Pharmaceutical Science & Research, Pune 411018, India; (P.Y.); (J.M.); (A.S.)
| | - Prabhanjan Giram
- Department of Pharmaceutics, Dr. D. Y. Patil Unitech Society’s, Dr. D. Y. Patil Institute of Pharmaceutical Science & Research, Pune 411018, India; (P.Y.); (J.M.); (A.S.)
- Department of Pharmaceutical Sciences, The State University of New York, Buffalo, NY 14214, USA
| |
Collapse
|
10
|
Szekalska M, Czajkowska-Kośnik A, Maciejewski B, Misztalewska-Turkowicz I, Wilczewska AZ, Bernatoniene J, Winnicka K. Mucoadhesive Alginate/Pectin Films Crosslinked by Calcium Carbonate as Carriers of a Model Antifungal Drug-Posaconazole. Pharmaceutics 2023; 15:2415. [PMID: 37896175 PMCID: PMC10610174 DOI: 10.3390/pharmaceutics15102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
The mucosal membrane of the oral cavity, due to its unique structure and availability, constitutes an appropriate site for the delivery of drugs, both with local and systemic effects. Mucoadhesive buccal films are drug dosage forms that due to their convenience of application, flexibility and size, are characterized by patients' compliance. Sodium alginate and pectin are natural polymers from the polysaccharides group, with mucoadhesive properties, that are widely applied to obtain buccal films. However, their hydrophilic nature and poor water resistance limit their application in sustained drug release formulations. Hence, the aim of this investigation was to design alginate/pectin buccal films by a one-step crosslinking technique-with the application of calcium carbonate. This technique was applied to prepare crosslinked alginate and alginate/pectin mucoadhesive films with a model antifungal drug-posaconazole. The obtained formulations were evaluated for the impact of crosslinking and pectin's presence on their pharmaceutical, mucoadhesive, mechanical and physicochemical properties. Additionally, the antifungal activity of the prepared films against Candida spp. was evaluated. It was shown that pectin's presence in the formulations improved flexibility, mucoadhesion and antifungal activity. The crosslinking process reduced mucoadhesiveness and antifungal activity but significantly enhanced the mechanical properties and stability and enabled prolonged drug release.
Collapse
Affiliation(s)
- Marta Szekalska
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (A.C.-K.); (K.W.)
| | - Anna Czajkowska-Kośnik
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (A.C.-K.); (K.W.)
| | - Bartosz Maciejewski
- Department of Pharmaceutical Technology, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland;
| | - Iwona Misztalewska-Turkowicz
- Department of Polymers and Organic Synthesis, Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland (A.Z.W.)
| | - Agnieszka Zofia Wilczewska
- Department of Polymers and Organic Synthesis, Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland (A.Z.W.)
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (A.C.-K.); (K.W.)
| |
Collapse
|
11
|
Visan AI, Cristescu R. Polysaccharide-Based Coatings as Drug Delivery Systems. Pharmaceutics 2023; 15:2227. [PMID: 37765196 PMCID: PMC10537422 DOI: 10.3390/pharmaceutics15092227] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Therapeutic polysaccharide-based coatings have recently emerged as versatile strategies to transform a conventional medical implant into a drug delivery system. However, the translation of these polysaccharide-based coatings into the clinic as drug delivery systems still requires a deeper understanding of their drug degradation/release profiles. This claim is supported by little or no data. In this review paper, a comprehensive description of the benefits and challenges generated by the polysaccharide-based coatings is provided. Moreover, the latest advances made towards the application of the most important representative coatings based on polysaccharide types for drug delivery are debated. Furthermore, suggestions/recommendations for future research to speed up the transition of polysaccharide-based drug delivery systems from the laboratory testing to clinical applications are given.
Collapse
Affiliation(s)
- Anita Ioana Visan
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania
| | - Rodica Cristescu
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania
| |
Collapse
|
12
|
Kida D, Konopka T, Jurczyszyn K, Karolewicz B. Technological Aspects and Evaluation Methods for Polymer Matrices as Dental Drug Carriers. Biomedicines 2023; 11:biomedicines11051274. [PMID: 37238944 DOI: 10.3390/biomedicines11051274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
The development of polymer matrices as dental drug carriers takes into account the following technological aspects of the developed formulations: the composition and the technology used to manufacture them, which affect the properties of the carriers, as well as the testing methods for assessing their behavior at application sites. The first part of this paper characterizes the methods for fabricating dental drug carriers, i.e., the solvent-casting method (SCM), lyophilization method (LM), electrospinning (ES) and 3D printing (3DP), describing the selection of technological parameters and pointing out both the advantages of using the mentioned methods and their limitations. The second part of this paper describes testing methods to study the formulation properties, including their physical and chemical, pharmaceutical, biological and in vivo evaluation. Comprehensive in vitro evaluation of carrier properties permits optimization of formulation parameters to achieve prolonged retention time in the dynamic oral environment and is essential for explaining carrier behavior during clinical evaluation, consequently enabling the selection of the optimal formulation for oral application.
Collapse
Affiliation(s)
- Dorota Kida
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Tomasz Konopka
- Department of Periodontology, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Kamil Jurczyszyn
- Department of Dental Surgery, Faculty of Medicine and Dentistry, Medical University of Wroclaw, Krakowska 26, 50-425 Wroclaw, Poland
| | - Bożena Karolewicz
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| |
Collapse
|
13
|
Nemati A, Rezaei H, Poturcu K, Hanaee J, Jouyban A, Zhao H, Rahimpour E. Effect of temperature and propylene glycol as a cosolvent on dissolution of clotrimazole. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:258-266. [PMID: 36252866 DOI: 10.1016/j.pharma.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Herein, the solubility study of clotrimazole was performed in a propylene glycol+water system. The solubility values were fitted to various cosolvency equations. The model accuracies were studied with the computation of the mean relative deviations. The thermodynamic behavior was investigated according to the van't Hoff and Gibbs equations for clotrimazole in the propylene glycol+water system. Furthermore, the density data for clotrimazole were determined in mixtures of propylene glycol+water and fitted to the Jouyban-Acree equation.
Collapse
Affiliation(s)
- A Nemati
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - H Rezaei
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - K Poturcu
- Department of Chemistry, Arts and Science Faculty, Suleyman Demirel University, Isparta, Turkey
| | - J Hanaee
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - A Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Near East University, PO BOX: 99138 Nicosia, North Cyprus, Mersin 10, Turkey
| | - H Zhao
- College of Chemistry & Chemical Engineering, YangZhou University, YangZhou, 225002 Jiangsu, PR China
| | - E Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, 5165665811 Tabriz, Iran.
| |
Collapse
|
14
|
Yang D, Gong L, Li Q, Fan B, Ma C, He YC. Preparation of a biobased polyelectrolyte complex from chitosan and sodium carboxymethyl cellulose and its antibacterial characteristics. Int J Biol Macromol 2023; 227:524-534. [PMID: 36526065 DOI: 10.1016/j.ijbiomac.2022.12.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Using chitosan (CTS) and sodium carboxymethyl cellulose (CMCNa) as raw biobased materials, polyelectrolyte complex (PEC), which is the product of strong electrostatic interaction between two bio-based polyelectrolytes with opposite charges, was attempted to prepare. To enlarge the reactive contact area between CTS and CMCNa, the crosslinked vacuolar structure of PEC was prepared without addition of cross-linked agent. The preparation conditions had a significant impact on the yield of PEC and the bibulous rate of PEC. When pH, mass ratio of CMC-Na-to-CTS, stirring speed and reaction system temperature were 5, 1:2 [(1 wt% CMCNa, 2 wt% CTS), CMC-Na:CTS = 1:1 (v/v)], 800 rpm, 2 min and 25 °C, the yield of PEC reached 71.2 %. The prepared PEC was characterized by XRD and FT-IR. Afterwards, the antibacterial performance of PEC was examined. The prepared PEC had certain bacteriostatic effect on gram-positive and gram-negative bacteria. The bacteriostasis ratios of PEC against Escherichia coli and Staphylococcus aureus were 18.7 % and 31.3 %, respectively. By controlling the combination parameters of the preparation system, an effective strategy was successfully developed for preparation of biobased PEC with bacteriostatic and crosslinked vacuolar structure through simple physical blending without the application of additional crosslinker.
Collapse
Affiliation(s)
- Dong Yang
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China
| | - Lei Gong
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China
| | - Qing Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, PR China
| | - Bo Fan
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, PR China
| | - Yu-Cai He
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, PR China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China.
| |
Collapse
|
15
|
Szekalska M, Wróblewska M, Czajkowska-Kośnik A, Sosnowska K, Misiak P, Wilczewska AZ, Winnicka K. The Spray-Dried Alginate/Gelatin Microparticles with Luliconazole as Mucoadhesive Drug Delivery System. MATERIALS (BASEL, SWITZERLAND) 2023; 16:403. [PMID: 36614742 PMCID: PMC9822401 DOI: 10.3390/ma16010403] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Candida species are opportunistic fungi, which are primary causative agents of vulvovaginal candidiasis. The cure of candidiasis is difficult, lengthy, and associated with the fungi resistivity. Therefore, the research for novel active substances and unconventional drug delivery systems providing effective and safe treatment is still an active subject. Microparticles, as multicompartment dosage forms due to larger areas, provide short passage of drug diffusion, which might improve drug therapeutic efficiency. Sodium alginate is a natural polymer from a polysaccharide group, possessing swelling, mucoadhesive, and gelling properties. Gelatin A is a natural high-molecular-weight polypeptide obtained from porcine collagen. The purpose of this study was to prepare microparticles by the spray-drying of alginate/gelatin polyelectrolyte complex mixture, with a novel antifungal drug-luliconazole. In the next stage of research, the effect of gelatin presence on pharmaceutical properties of designed formulations was assessed. Interrelations among polymers were evaluated with thermal analysis and Fourier transform infrared spectroscopy. A valid aspect of this research was the in vitro antifungal activity estimation of designed microparticles using Candida species: C. albicans, C. krusei, and C. parapsilosis. It was shown that the gelatin addition affected the particles size, improved encapsulation efficiency and mucoadhesiveness, and prolonged the drug release. Moreover, gelatin addition to the formulations improved the antifungal effect against Candida species.
Collapse
Affiliation(s)
- Marta Szekalska
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland
| | - Magdalena Wróblewska
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland
| | - Anna Czajkowska-Kośnik
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland
| | - Katarzyna Sosnowska
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland
| | - Paweł Misiak
- Department of Polymers and Organic Synthesis, Faculty of Chemistry, University of Białystok, 15-245 Białystok, Poland
| | - Agnieszka Zofia Wilczewska
- Department of Polymers and Organic Synthesis, Faculty of Chemistry, University of Białystok, 15-245 Białystok, Poland
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland
| |
Collapse
|
16
|
Buccal films: A review of therapeutic opportunities, formulations & relevant evaluation approaches. J Control Release 2022; 352:1071-1092. [PMID: 36351519 DOI: 10.1016/j.jconrel.2022.10.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022]
Abstract
The potential of the mucoadhesive film technology is hard to ignore, owing to perceived superior patient acceptability versus buccal tablets, and significant therapeutic opportunities compared to conventional oral drug delivery systems, especially for those who suffer from dysphagia. In spite of this, current translation from published literature into the commercial marketplace is virtually non-existent, with no authorised mucoadhesive buccal films available in the UK and very few available in the USA. This review seeks to provide an overview of the mucoadhesive buccal film technology and identify key areas upon which to focus scientific efforts to facilitate the wider adoption of this patient-centric dosage form. Several indications and opportunities for development were identified, while discussing the patient-related factors influencing the use of these dosage forms. In addition, an overview of the technologies behind the manufacturing of these films was provided, highlighting manufacturing methods like solvent casting, hot melt extrusion, inkjet printing and three-dimensional printing. Over thirty mucoadhesive polymers were identified as being used in film formulations, with details surrounding their mucoadhesive capabilities as well as their inclusion alongside other key formulation constituents provided. Lastly, the importance of physiologically relevant in vitro evaluation methodologies was emphasised, which seek to improve in vivo correlations, potentially leading to better translation of mucoadhesive buccal films from the literature into the commercial marketplace.
Collapse
|
17
|
Dubashynskaya NV, Skorik YA. Patches as Polymeric Systems for Improved Delivery of Topical Corticosteroids: Advances and Future Perspectives. Int J Mol Sci 2022; 23:12980. [PMID: 36361769 PMCID: PMC9657685 DOI: 10.3390/ijms232112980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 12/25/2023] Open
Abstract
Mucoadhesive polymer patches are a promising alternative for prolonged and controlled delivery of topical corticosteroids (CS) to improve their biopharmaceutical properties (mainly increasing local bioavailability and reducing systemic toxicity). The main biopharmaceutical advantages of patches compared to traditional oral dosage forms are their excellent bioadhesive properties and their increased drug residence time, modified and unidirectional drug release, improved local bioavailability and safety profile, additional pain receptor protection, and patient friendliness. This review describes the main approaches that can be used for the pharmaceutical R&D of oromucosal patches with improved physicochemical, mechanical, and pharmacological properties. The review mainly focuses on ways to increase the bioadhesion of oromucosal patches and to modify drug release, as well as ways to improve local bioavailability and safety by developing unidirectional -release poly-layer patches. Various techniques for obtaining patches and their influence on the structure and properties of the resulting dosage forms are also presented.
Collapse
Affiliation(s)
| | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia
| |
Collapse
|
18
|
Recent Reports on Polysaccharide-Based Materials for Drug Delivery. Polymers (Basel) 2022; 14:polym14194189. [PMID: 36236137 PMCID: PMC9572459 DOI: 10.3390/polym14194189] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Polysaccharides constitute one of the most important families of biopolymers. Natural polysaccharide-based drug delivery systems are of constant interest to the scientific community due to their unique properties: biocompatibility, non-toxicity, biodegradability, and high availability. These promising biomaterials protect sensitive active agents and provide their controlled release in targeted sites. The application of natural polysaccharides as drug delivery systems is also intensively developed by Polish scientists. The present review focuses on case studies from the last few years authored or co-authored by research centers in Poland. A particular emphasis was placed on the diversity of the formulations in terms of the active substance carried, the drug delivery route, the composition of the material, and its preparation method.
Collapse
|
19
|
Potaś J, Wilczewska AZ, Misiak P, Basa A, Winnicka K. Optimization of Multilayer Films Composed of Chitosan and Low-Methoxy Amidated Pectin as Multifunctional Biomaterials for Drug Delivery. Int J Mol Sci 2022; 23:ijms23158092. [PMID: 35897661 PMCID: PMC9331940 DOI: 10.3390/ijms23158092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Polyelectrolyte multilayers (PEMs) based on polyelectrolyte complex (PEC) structures are recognized as interesting materials for manufacturing functionalized coatings or drug delivery platforms. Difficulties in homogeneous PEC system development generated the idea of chitosan (CS)/low-methoxy amidated pectin (LM PC) multilayer film optimization with regard to the selected variables: the polymer ratio, PC type, and order of polymer mixing. Films were formulated by solvent casting method and then tested to characterize CS/LM PC PECs, using thermal analysis, Fourier transform infrared spectroscopy (FTIR), turbidity, and zeta potential measurements. The internal structure of the films was visualized by using scanning electron microscopy. Analysis of the mechanical and swelling properties enabled us to select the most promising formulations with high uniformity and mechanical strength. Films with confirmed multilayer architecture were indicated as a promising material for the multifunctional systems development for buccal drug delivery. They were also characterized by improved thermal stability as compared to the single polymers and their physical mixtures, most probably as a result of the CS–LM PC interactions. This also might indicate the potential protective effect on the active substances being incorporated in the PEC-based films.
Collapse
Affiliation(s)
- Joanna Potaś
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland;
| | - Agnieszka Zofia Wilczewska
- Department of Polymers and Organic Synthesis, Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland; (A.Z.W.); (P.M.)
| | - Paweł Misiak
- Department of Polymers and Organic Synthesis, Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland; (A.Z.W.); (P.M.)
| | - Anna Basa
- Department of Physical Chemistry, Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland;
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland;
- Correspondence: ; Tel.: +48-85-748-56-15
| |
Collapse
|
20
|
Chitosan film containing antifungal agent-loaded SLNs for the treatment of candidiasis using a Box-Behnken design. Carbohydr Polym 2022; 283:119178. [DOI: 10.1016/j.carbpol.2022.119178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 01/23/2023]
|
21
|
Potaś J, Winnicka K. The Potential of Polyelectrolyte Multilayer Films as Drug Delivery Materials. Int J Mol Sci 2022; 23:ijms23073496. [PMID: 35408857 PMCID: PMC8998809 DOI: 10.3390/ijms23073496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Polyelectrolyte multilayers (PEMs) represent a group of polyelectrolyte complex (PEC)–based materials widely investigated in the biomedical and pharmaceutical sciences. Despite the unflagging popularity of the aforementioned systems in tissue engineering, only a few updated scientific reports concerning PEM potential in drug administration can be found. In fact, PEM coatings are currently recognized as important tools for functionalizing implantable scaffolds; however, only a small amount of attention has been given to PEMs as drug delivery materials. Scientific reports on PEMs reveal two dominant reasons for the limited usability of multilayers in pharmaceutical technology: complex and expensive preparation techniques as well as high sensitivity of interacting polyelectrolytes to the varieties of internal and external factors. The aim of this work was to analyze the latest approaches, concerning the potential of PEMs in pharmacy, chemical technology, and (primarily) tissue engineering, with special attention given to possible polymer combinations, technological parameters, and physicochemical characteristics, such as hydrophilicity, adhesive and swelling properties, and internal/external structures of the systems formed. Careful recognition of the above factors is crucial in the development of PEM-based drug delivery materials.
Collapse
|
22
|
Orodispersible Films with Rupatadine Fumarate Enclosed in Ethylcellulose Microparticles as Drug Delivery Platform with Taste-Masking Effect. MATERIALS 2022; 15:ma15062126. [PMID: 35329589 PMCID: PMC8952792 DOI: 10.3390/ma15062126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 01/22/2023]
Abstract
Orally disintegrating (orodispersible) films provide a versatile tool for drug administration, especially in the pediatric and geriatric population, since they reduce the risk of choking and do not necessitate drinking water during application. By considering their direct contact with the taste buds, palatability is an influential aspect related to patient compliance. The microparticles based on taste-masking polymers containing drugs enclosed inside effectively mask the unpleasant taste of medicines. Ethylcellulose is a hydrophobic polymer widely used as a taste-masking material. Rupatadine fumarate, a second-generation antihistamine drug, is characterised by an intense bitter taste; therefore, it is crucial to achieve a tolerable taste whilst developing orodispersible formulations with its content. The objective of this study was to develop orally disintegrating films with rupatadine fumarate in the form of ethylcellulose-based microparticles obtained from aqueous dispersions of ethylcellulose—Surelease® or Aquacoat® ECD. It was a technological challenge to achieve homogenous drug content per dosage unit and sufficient mechanical properties for film operating due to the necessity to suspend the microparticles in the casting solution. Although the process of obtaining films consisted of several steps (mixing, pouring, drying), the particles were homogeneously dispersed, and each film of the desired size contained the proper dose of the drug. The taste-masking effect was also maintained. This parameter was confirmed by three independent methods: in vivo by healthy volunteers, an electronic tongue and a dissolution test. The applied taste-evaluation techniques showed that the films containing Aquacoat® ECD microparticles have the highest degree of bitter taste reduction, which confirms the results obtained in our previous studies.
Collapse
|
23
|
Janardhanam LSL, Bandi SP, Venuganti VVK. Functionalized LbL Film for Localized Delivery of STAT3 siRNA and Oxaliplatin Combination to Treat Colon Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10030-10046. [PMID: 35170934 DOI: 10.1021/acsami.1c22166] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The aim of the study was to develop and evaluate the efficacy of a functionalized layer-by-layer (LbL) assembled film entrapped with oxaliplatin (OX) and signal transducer and activator of transcription 3 (STAT3) siRNA in the localized treatment of colon cancer. The LbL film was prepared by the sequential layering of chitosan (CS) and alginate to attain desired physical and mechanical properties. The film was functionalized by coating folic acid-conjugated CS on one side. On the other side, polycaprolactone was coated as a backing layer to provide directional drug release. OX was entrapped within the layers of the film, while STAT3 siRNA was complexed with CS to form nanoparticles before entrapment in the LbL film. The CS-siRNA nanoparticles were taken up by the colon carcinoma, Caco-2 cells within 3 h and provided concentration-dependent reduction in STAT3 protein expression. The functionalized LbL film (F-LbL film) selectively adhered to the colon cancer tissue in the mice model, whereas the nonfunctionalized film adhered to the normal colon tissue. The combination of OX and STAT3 siRNA provided significantly greater tumor regression, survival rate, and STAT3 protein suppression after localized delivery through oral administration compared with intravenous administration. Taken together, the F-LbL film can selectively bind to colon tumors for localized delivery of drugs to treat colon cancer.
Collapse
Affiliation(s)
- Leela Sai Lokesh Janardhanam
- Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, Telangana State, India
| | - Sony Priyanka Bandi
- Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, Telangana State, India
| | | |
Collapse
|
24
|
Pilicheva B, Uzunova Y, Marudova M. Polyelectrolyte Multilayer Films as a Potential Buccal Platform for Drug Delivery. Polymers (Basel) 2022; 14:polym14040734. [PMID: 35215645 PMCID: PMC8879725 DOI: 10.3390/polym14040734] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
The goal of this research was to study the potential of polyelectrolyte multilayers as buccal dosage forms for drug delivery and to investigate how the properties of the drugs impact the overall performance of the delivery system. Multilayer films based on the polyelectrolyte interaction between casein and chitosan were developed using benzydamine, tolfenamic acid and betahistine as model drugs. The samples were characterized for surface pH, moisture content and moisture absorption, swelling behavior and mucoadhesion. Additionally, surface morphology was investigated, as well as the drugs' physical state after incorporation in the multilayer films. The samples proved to be non-irritant (pH was within the physiological range), physically stable (moisture content and moisture absorption below 5%) and mucoadhesive, adsorbing from 60 to 70% mucin. The release behavior corelated to the swelling index profiles of the samples and was strongly dependent on the drug solubility. The developed multilayer films appeared to be an optimum delivery system for sparingly soluble drugs due to the high drug loading achieved.
Collapse
Affiliation(s)
- Bissera Pilicheva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria;
- Correspondence:
| | - Yordanka Uzunova
- Research Institute, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria;
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria
| | - Maria Marudova
- Department of Physics, Faculty of Physics and Technology, University of Plovdiv “Paisii Hilendarski”, 24 Tzar Asen Str., 4000 Plovdiv, Bulgaria;
| |
Collapse
|
25
|
Pectin–Zeolite-Based Wound Dressings with Controlled Albumin Release. Polymers (Basel) 2022; 14:polym14030460. [PMID: 35160450 PMCID: PMC8839484 DOI: 10.3390/polym14030460] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
Hypoalbuminemia can lead to poor and delayed wound healing, while it is also associated with acute myocardial infarction, heart failure, malignancies, and COVID-19. In elective surgery, patients with low albumin have high risks of postoperative wound complications. Here, we propose a novel cost-effective wound dressing material based on low-methoxy pectin and NaA-zeolite particles with controlled albumin release properties. We focused on both albumin adsorption and release phenomena for wounds with excess exudate. Firstly, we investigated albumin dynamics and calculated electrostatic surfaces at experimental pH values in water by using molecular dynamics methods. Then, we studied in detail pectin–zeolite hydrogels with both adsorption and diffusion into membrane methods using different pH values and albumin concentrations. To understand if uploaded albumin molecules preserved their secondary conformation in different formulations, we monitored the effect of pH and albumin concentration on the conformational changes in albumin after it was released from the hydrogels by using CD-UV spectroscopy analyses. Our results indicate that at pH 6.4, BSA-containing films preserved the protein’s folded structure while the protein was being released to the external buffer solutions. In vitro wound healing assay indicated that albumin-loaded hydrogels showed no toxic effects on the fibroblast cells.
Collapse
|
26
|
Hemmingsen LM, Škalko-Basnet N, Jøraholmen MW. The Expanded Role of Chitosan in Localized Antimicrobial Therapy. Mar Drugs 2021; 19:697. [PMID: 34940696 PMCID: PMC8704789 DOI: 10.3390/md19120697] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Chitosan is one of the most studied natural origin polymers for biomedical applications. This review focuses on the potential of chitosan in localized antimicrobial therapy to address the challenges of current rising antimicrobial resistance. Due to its mucoadhesiveness, chitosan offers the opportunity to prolong the formulation residence time at mucosal sites; its wound healing properties open possibilities to utilize chitosan as wound dressings with multitargeted activities and more. We provide an unbiased overview of the state-of-the-art chitosan-based delivery systems categorized by the administration site, addressing the site-related challenges and evaluating the representative formulations. Specifically, we offer an in-depth analysis of the current challenges of the chitosan-based novel delivery systems for skin and vaginal infections, including its formulations optimizations and limitations. A brief overview of chitosan's potential in treating ocular, buccal and dental, and nasal infections is included. We close the review with remarks on toxicity issues and remaining challenges and perspectives.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| | | | - May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| |
Collapse
|
27
|
Nanodispersions of Polyelectrolytes Based on Humic Substances: Isolation, Physico-Chemical Characterization and Evaluation of Biological Activity. Pharmaceutics 2021; 13:pharmaceutics13111954. [PMID: 34834368 PMCID: PMC8623726 DOI: 10.3390/pharmaceutics13111954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/16/2022] Open
Abstract
Natural polyelectrolytes, including in the form of complexes with colloidal particles, are increasingly used in pharmacy due to the possibility of regulated attachment of medicinal substances and their targeted delivery to the target organ. However, the formation, stability, and molecular-mass characteristics of polyelectrolyte nanodispersions (ND) vary depending on the nature and composition of the medium of their origin. This is due to the lack of standardized approaches to quality control and regulatory documentation for most natural ND. In this paper, we first introduced the isolation, followed by investigations into their physico-chemical properties and bioactivity. Using the dried droplet method, we were able to detect the “coffee ring effect”. Fractographic studies of the surface structure of EHA and FA dried samples using SEM showed its heterogeneity and the presence of submicron particles encapsulated in the internal molecular cavities of polyelectrolyte. FTIR spectroscopy revealed the ND chemical structure of benzo-α-pyron and benzo-γ-pyron, consisting of nanoparticles and a branched frame part. The main elements detected by X-ray fluorescence in humic substance extract and fulvic acid include Si, P, S, K, Ca, Mn, Fe, Cu, Zn, whereas Fe is in high concentrations. The UV-spectra and fluorescent radiation demonstrated the possibility of studying the effect of the fulvate chromone structure on its optical properties. It is shown that dilution of the initial solutions of polyelectrolytes 1:10 contributes to the detection of smaller nanoparticles and an increase in the absolute value of the negative ζ-potential as a factor of ND stability. A study of the EHS effect on the SARS-CoV-2 virus infectious titer in the Vero E6 cell showed the effective against virus both in the virucidal scheme (the SI is 11.90–22.43) and treatment/prevention scheme (the SI is 34.85–57.33). We assume that polyelectrolyte ND prevent the binding of the coronavirus spike glycoprotein to the receptor. Taking into account the results obtained, we expect that the developed approach can become unified for the standardization of the ND natural polyelectrolytes complex, which has great prospects for use in pharmacy and medicine as a drug with antiviral activity.
Collapse
|