1
|
Puzzo M, De Santo M, Morelli C, Leggio A, Catalano S, Pasqua L. Colorectal Cancer: Current and Future Therapeutic Approaches and Related Technologies Addressing Multidrug Strategies Against Multiple Level Resistance Mechanisms. Int J Mol Sci 2025; 26:1313. [PMID: 39941081 PMCID: PMC11818749 DOI: 10.3390/ijms26031313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and is associated with a poor prognosis. The mutation profile and related involved pathways of CRC have been, in broad terms, analyzed. The main current therapeutic approaches have been comprehensively reviewed here, and future possible therapeu-tic options and related technologies have been perspectively presented. The complex scenario represented by the multiple-level resistance mechanism in the epidermal growth factor receptor (EGFR) pathway, including mutations in KRAS, NRAS, and BRAF V600E, is discussed. Examples of engineered therapeutic approaches from the literature along with a drug combination tested in clinical trials are discussed. The encouraging results observed with the latter combination (the BEACON clinical trial), totally free from chemotherapy, prompted the authors to imagine a future possible nanotechnology-assisted therapeutic approach for bypassing multiple-level resistance mechanisms, hopefully allowing, in principle, a complete biological cancer remission.
Collapse
Affiliation(s)
- Marianna Puzzo
- Laboratory of Clinical, Biomolecular and Genetic Analyses Unit, Annunziata Hospital, 87100 Cosenza, Italy; (M.P.); (S.C.)
| | - Marzia De Santo
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (M.D.S.); (C.M.); (A.L.)
- NanoSiliCal Devices s.r.l., University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Catia Morelli
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (M.D.S.); (C.M.); (A.L.)
- NanoSiliCal Devices s.r.l., University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Antonella Leggio
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (M.D.S.); (C.M.); (A.L.)
- NanoSiliCal Devices s.r.l., University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Stefania Catalano
- Laboratory of Clinical, Biomolecular and Genetic Analyses Unit, Annunziata Hospital, 87100 Cosenza, Italy; (M.P.); (S.C.)
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (M.D.S.); (C.M.); (A.L.)
| | - Luigi Pasqua
- NanoSiliCal Devices s.r.l., University of Calabria, 87036 Arcavacata di Rende, Italy
- Department of Environmental Engineering, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
2
|
Díaz-Riascos ZV, Llaguno-Munive M, Lafuente-Gómez N, Luengo Y, Holmes S, Volatron J, Ibarrola O, Mancilla S, Sarno F, Aguirre JJ, Razafindrakoto S, Southern P, Terán FJ, Keogh A, Salas G, Prina-Mello A, Lacal JC, Del Pozo A, Pankhurst QA, Hidalgo M, Gazeau F, Somoza Á, Schwartz S, Abasolo I. Preclinical Development of Magnetic Nanoparticles for Hyperthermia Treatment of Pancreatic Cancer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2924-2939. [PMID: 39745145 DOI: 10.1021/acsami.4c16129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a very challenging disease with a very poor prognosis. It is characterized by a dense desmoplastic stroma that hampers drug penetration and limits the effectiveness of conventional chemotherapy (CT). As an alternative, the combination of CT with hyperthermia (HT) has been proposed as an innovative treatment modality for PDAC. In previous works, we reported on the development of iron oxide magnetic nanoparticles (MNPs) that, when exposed to time-varying magnetic fields, exhibit strong HT responses that inhibited the growth of pancreatic cancers. We report here on advances toward the clinical use of these MNPs as an intratumorally administered sterile magnetic fluid (the "NoCanTher ThermoTherapy" or "NTT" Agent) alongside intravenous standard-of-care drugs (gemcitabine and nab-paclitaxel) for the treatment of PDAC. In vitro cell viability assays show that the combination of low doses of CT and HT is highly synergistic, particularly in the BxPC-3 cell line. In vivo, biodistribution assays showed that the NTT Agent MNPs remained mainly within the tumor, concentrated around areas with a high stromal component. Moreover, the combined CT/HT treatment shows clear advantages over CT alone in terms of drug penetration and reduction of the tumor volume, suggesting a potential direct effect of HT in the disruption of the interstitial stroma to facilitate the access of the drugs to malignant cells. These studies have led to the approval and commencement of a clinical investigational study at the Vall d'Hebron University Hospital (Barcelona, Spain) of the NTT Agent alongside CT in patients with locally advanced PDAC.
Collapse
Affiliation(s)
- Zamira V Díaz-Riascos
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
- Functional Validation & Preclinical Research (FVPR), Unit20 ICTS Nanbiosis, Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
| | - Monserrat Llaguno-Munive
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
| | - Nuria Lafuente-Gómez
- IMDEA Nanociencia, Unidad Asociada al Centro Nacional de Biotecnología (CSIC) 28049 Madrid, Spain
| | - Yurena Luengo
- IMDEA Nanociencia, Unidad Asociada al Centro Nacional de Biotecnología (CSIC) 28049 Madrid, Spain
| | - Sarah Holmes
- Nanomedicine and Molecular Imaging group, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin (TCD), Dublin 8 Dublin, Ireland
| | - Jeanne Volatron
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, Université Paris Diderot, Paris 75205, cedex, France
| | | | - Sandra Mancilla
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
- Functional Validation & Preclinical Research (FVPR), Unit20 ICTS Nanbiosis, Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
| | - Francesca Sarno
- Grupo de Oncología Traslacional, Hospital Universitario de Fuenlabrada, 28942 Madrid, Spain
| | | | - Sarah Razafindrakoto
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, Université Paris Diderot, Paris 75205, cedex, France
| | | | - Francisco J Terán
- IMDEA Nanociencia, Unidad Asociada al Centro Nacional de Biotecnología (CSIC) 28049 Madrid, Spain
- Unidad Asociada de Nanobiotecnología (CNB-CSIC e IMDEA Nanociencia), 28049 Madrid, Spain
- Unidad de Nanomateriales Avanzados, IMDEA Nanociencia (Unidad de I+D+I Asociada al Instituto de Ciencia de Materiales de Madrid, CSIC), 28049 Madrid, Spain
| | - Anna Keogh
- Department of Histopathology, St. James's Hospital and Trinity College Dublin, Cancer Molecular Diagnostics, Dublin 8 Dublin, Ireland
| | - Gorka Salas
- IMDEA Nanociencia, Unidad Asociada al Centro Nacional de Biotecnología (CSIC) 28049 Madrid, Spain
- Unidad Asociada de Nanobiotecnología (CNB-CSIC e IMDEA Nanociencia), 28049 Madrid, Spain
- Unidad de Nanomateriales Avanzados, IMDEA Nanociencia (Unidad de I+D+I Asociada al Instituto de Ciencia de Materiales de Madrid, CSIC), 28049 Madrid, Spain
| | - Adriele Prina-Mello
- Nanomedicine and Molecular Imaging group, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin (TCD), Dublin 8 Dublin, Ireland
- Trinity St. James's Cancer Institute, School of Medicine (TCD) and St. James's Hospital, Dublin 8 Dublin, Ireland
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM), TTMI, School of Medicine, Trinity College Dublin, Dublin 8 Dublin, Ireland
| | - Juan Carlos Lacal
- Grupo de Oncología Traslacional, Hospital Universitario de Fuenlabrada, 28942 Madrid, Spain
- Instituto de Investigaciones Biomédicas (IIB), CSIC, 28029 Madrid, Spain
| | - Angel Del Pozo
- Nanomedicine and Molecular Imaging group, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin (TCD), Dublin 8 Dublin, Ireland
| | - Quentin A Pankhurst
- Resonant Circuits Limited, London W1S 4BS, U.K
- Healthcare Biomagnetics Laboratory, University College London, London W1S 4BS, U.K
| | - Manuel Hidalgo
- Grupo de Oncología Traslacional, Hospital Universitario de Fuenlabrada, 28942 Madrid, Spain
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, Université Paris Diderot, Paris 75205, cedex, France
| | - Álvaro Somoza
- IMDEA Nanociencia, Unidad Asociada al Centro Nacional de Biotecnología (CSIC) 28049 Madrid, Spain
- Unidad Asociada de Nanobiotecnología (CNB-CSIC e IMDEA Nanociencia), 28049 Madrid, Spain
| | - Simó Schwartz
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
- Servei de Bioquímica, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Ibane Abasolo
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
- Functional Validation & Preclinical Research (FVPR), Unit20 ICTS Nanbiosis, Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Servei de Bioquímica, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Instituto de Química Avanzada de Cataluña (IQAC), CSIC, 08034 Barcelona, Spain
| |
Collapse
|
3
|
Kumar A, Pramanik J, Batta K, Bamal P, Gaur M, Rustagi S, Prajapati BG, Bhattacharya S. Impact of metallic nanoparticles on gut microbiota modulation in colorectal cancer: A review. CANCER INNOVATION 2024; 3:e150. [PMID: 39398260 PMCID: PMC11467490 DOI: 10.1002/cai2.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer. Ongoing research aims to uncover the causes of CRC, with a growing focus on the role of gut microbiota (GM) in carcinogenesis. The GM influences CRC development, progression, treatment efficacy, and therapeutic toxicities. For example, Fusobacterium nucleatum and Escherichia coli can regulate microbial gene expression through the incorporation of human small noncode RNA and potentially contribute to cancer progression. Metallic nanoparticles (MNPs) have both negative and positive impacts on GM, depending on their type. Several studies state that titanium dioxide may increase the diversity, richness, and abundance of probiotics bacteria, whereas other studies demonstrate dose-dependent GM dysbiosis. The MNPs offer cytotoxicity through the modulation of MAPK signaling pathways, NF-kB signaling pathways, PI3K/Akt signaling pathways, extrinsic signaling pathways, intrinsic apoptosis, and cell cycle arrest at G1, G2, or M phase. MNPs enhance drug delivery, enable targeted therapy, and may restore GM. However, there is a need to conduct well-designed clinical trials to assess the toxicity, safety, and effectiveness of MNPs-based CRC therapies.
Collapse
Affiliation(s)
- Akash Kumar
- Department of Food TechnologySRM University, Delhi NCRSonepatIndia
- MMICT & BM (Hotel Management), Maharishi Markandeshwar (Deemed to be University)MullanaIndia
| | - Jhilam Pramanik
- Department of Food TechnologyWilliam Carey UniversityShillongIndia
| | - Kajol Batta
- Department of Food TechnologyITM UniversityGwaliorIndia
| | - Pooja Bamal
- Department of Food TechnologyChaudhary Devi Lal UniversitySirsaIndia
| | - Mukesh Gaur
- Department of Food TechnologyGuru Jambheshwar University of Science and TechnologyHisarIndia
| | - Sarvesh Rustagi
- School of Applied and Life SciencesUttaranchal UniversityDehradunIndia
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and ResearchGanpat UniversityMehsanaIndia
| | - Sankha Bhattacharya
- Department of PharmaceuticsSchool of Pharmacy & Technology Management, SVKM'S NMIMS Deemed‐to‐be UniversityShirpurMaharashtraIndia
| |
Collapse
|
4
|
Ilie CI, Spoiala A, Chircov C, Dolete G, Oprea OC, Vasile BS, Crainiceanu SA, Nicoara AI, Marinas IC, Stan MS, Ditu LM, Ficai A, Oprea E. Antioxidant, Antitumoral, Antimicrobial, and Prebiotic Activity of Magnetite Nanoparticles Loaded with Bee Pollen/Bee Bread Extracts and 5-Fluorouracil. Antioxidants (Basel) 2024; 13:895. [PMID: 39199141 PMCID: PMC11351729 DOI: 10.3390/antiox13080895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
The gut microbiota dysbiosis that often occurs in cancer therapy requires more efficient treatment options to be developed. In this concern, the present research approach is to develop drug delivery systems based on magnetite nanoparticles (MNPs) as nanocarriers for bioactive compounds. First, MNPs were synthesized through the spraying-assisted coprecipitation method, followed by loading bee pollen or bee bread extracts and an antitumoral drug (5-fluorouracil/5-FU). The loaded-MNPs were morphologically and structurally characterized through transmission electron microscopy (TEM), selected area electron diffraction (SAED), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Dynamic Light Scattering (DLS), and thermogravimetric analysis. UV-Vis spectroscopy was applied to establish the release profiles and antioxidant activity. Furthermore, the antibacterial and antitumoral activity of loaded-MNPs was assessed. The results demonstrate that MNPs with antioxidant, antibacterial, antiproliferative, and prebiotic properties are obtained. Moreover, the data highlight the improvement of 5-FU antibacterial activity by loading on the MNPs' surface and the synergistic effects between the anticancer drug and phenolic compounds (PCs). In addition, the prolonged release behavior of PCs for many hours (70-75 h) after the release of 5-FU from the developed nanocarriers is an advantage, at least from the point of view of the antioxidant activity of PCs. Considering the enhancement of L. rhamnosus MF9 growth and antitumoral activity, this study developed promising drug delivery alternatives for colorectal cancer therapy.
Collapse
Affiliation(s)
- Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | - Angela Spoiala
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- Research Center for Advanced Materials, Products and Processes, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | - Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- Research Center for Advanced Materials, Products and Processes, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- Academy of Romanian Scientists, 010719 Bucharest, Romania;
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Bogdan-Stefan Vasile
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- Research Center for Advanced Materials, Products and Processes, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 010719 Bucharest, Romania;
| | - Simona Adriana Crainiceanu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
| | - Adrian-Ionut Nicoara
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | | | - Miruna Silvia Stan
- The Research Institute, University of Bucharest, 050663 Bucharest, Romania (M.S.S.)
- Department of Biochemistry, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Lia-Mara Ditu
- The Research Institute, University of Bucharest, 050663 Bucharest, Romania (M.S.S.)
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- Academy of Romanian Scientists, 010719 Bucharest, Romania;
| | - Eliza Oprea
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| |
Collapse
|
5
|
Narayana S, Gowda BHJ, Hani U, Shimu SS, Paul K, Das A, Ashique S, Ahmed MG, Tarighat MA, Abdi G. Inorganic nanoparticle-based treatment approaches for colorectal cancer: recent advancements and challenges. J Nanobiotechnology 2024; 22:427. [PMID: 39030546 PMCID: PMC11264527 DOI: 10.1186/s12951-024-02701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/03/2024] [Indexed: 07/21/2024] Open
Abstract
Colorectal cancer, the third most prevalent cancer globally, contributes significantly to mortality rates, with over 1.9 million reported cases and nearly 935,000 fatalities annually. Surgical resection is a primary approach for localized colorectal tumors, with adjunct therapies like chemotherapy, radiotherapy, and targeted/immunotherapy considered depending on the tumor stage. However, despite preferences for targeted and immunotherapy post-surgery, chemotherapy remains commonly chosen due to its lower cost and high cancer-killing efficiency. Yet, chemotherapy faces issues such as tumor resistance and severe side effects. Nanotechnology has emerged in cancer therapy by alleviating the drawbacks of current treatment approaches. In the past few decades, inorganic nanoparticles have shown promise in combating colorectal cancer, offering advantages over conventional chemotherapy. Compared to organic nanoparticles, inorganic nanoparticles exhibit properties like photosensitivity, conductivity, magnetic allure, and thermal proficiency, allowing them to function as both drug carriers and therapeutic agents. Derived primarily from carbon, silica, metals, and metal oxides, they offer superior drug-loading capacity, heightened quantum yield, and participation in advanced photothermal and photodynamic therapies. This review provides a brief overview of the pathophysiology of colorectal cancer and the pivotal role of inorganic nanoparticles in photothermal therapy photodynamic therapy, and drug delivery. Additionally, it discusses numerous inorganic nanoparticles in colorectal cancer therapy based on recent literature.
Collapse
Affiliation(s)
- Soumya Narayana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, 61421, Saudi Arabia
| | - Sharmin Sultana Shimu
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Karthika Paul
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570015, Karnataka, India.
| | - Avinaba Das
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
- School of Pharmaceutical Sciences , Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Maryam Abbasi Tarighat
- Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, 75169, Iran
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran.
| |
Collapse
|
6
|
Avgoustakis K, Angelopoulou A. Biomaterial-Based Responsive Nanomedicines for Targeting Solid Tumor Microenvironments. Pharmaceutics 2024; 16:179. [PMID: 38399240 PMCID: PMC10892652 DOI: 10.3390/pharmaceutics16020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Solid tumors are composed of a highly complex and heterogenic microenvironment, with increasing metabolic status. This environment plays a crucial role in the clinical therapeutic outcome of conventional treatments and innovative antitumor nanomedicines. Scientists have devoted great efforts to conquering the challenges of the tumor microenvironment (TME), in respect of effective drug accumulation and activity at the tumor site. The main focus is to overcome the obstacles of abnormal vasculature, dense stroma, extracellular matrix, hypoxia, and pH gradient acidosis. In this endeavor, nanomedicines that are targeting distinct features of TME have flourished; these aim to increase site specificity and achieve deep tumor penetration. Recently, research efforts have focused on the immune reprograming of TME in order to promote suppression of cancer stem cells and prevention of metastasis. Thereby, several nanomedicine therapeutics which have shown promise in preclinical studies have entered clinical trials or are already in clinical practice. Various novel strategies were employed in preclinical studies and clinical trials. Among them, nanomedicines based on biomaterials show great promise in improving the therapeutic efficacy, reducing side effects, and promoting synergistic activity for TME responsive targeting. In this review, we focused on the targeting mechanisms of nanomedicines in response to the microenvironment of solid tumors. We describe responsive nanomedicines which take advantage of biomaterials' properties to exploit the features of TME or overcome the obstacles posed by TME. The development of such systems has significantly advanced the application of biomaterials in combinational therapies and in immunotherapies for improved anticancer effectiveness.
Collapse
Affiliation(s)
- Konstantinos Avgoustakis
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
- Clinical Studies Unit, Biomedical Research Foundation Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece
| | - Athina Angelopoulou
- Department of Chemical Engineering, Polytechnic School, University of Patras, 26504 Patras, Greece
| |
Collapse
|
7
|
Ahmed S, Nadeem M, Hussain I, Fatima S, Anwar S, Rizvi MA, Hassan MI, Tabish M. Preparation of nanoformulation of 5-fluorouracil to improve anticancer efficacy: integrated spectroscopic, docking, and MD simulation approaches. J Biomol Struct Dyn 2023; 42:12523-12536. [PMID: 37850451 DOI: 10.1080/07391102.2023.2270704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/08/2023] [Indexed: 10/19/2023]
Abstract
Nanoformulations (NFs) can be used as a novel drug delivery system to treat all cancer types. One of the major drawbacks of conventional anticancer drugs is that they have poor specificity and higher toxicity towards normal cells. 5-fluorouracil (5-FU) is a well-studied anticancer drug that has a significant role in various cancers, specifically colorectal cancer therapy. This study was performed to determine the functional groups, particle size, surface charge, heterogeneity, and stability of the NF. The NFs of 5-FU were prepared through the ultrasonication technique by increasing the surfactant (Tween-80) concentrations. Among all three NFs, nanoformulated 5-FU (n5-FU) showed the most effective particle size (10.72 nm) with a zeta potential of (-4.57 mV). The cytotoxicity and apoptosis profiles confirmed that n5-FU enhanced the anticancer effect of the pure drug in HCT-116 cells, as evident from MTT assay, fluorescence microscopy, and FACS analysis. In HCT-116 cells, the IC50 values of pure and n5-FU were obtained as 41.3 μM and 18.8 μM, respectively, indicating that n5-FU was more effective against the cancer cell line. The cellular uptake study was performed to check the intake of NF in cancer cells. However, the microtubule-affinity regulating kinase-4 (MARK-4), a cancer-target protein, was purified to study the inhibition and interaction studies. The inhibition assay confirmed the inhibitory potential of 5-FU against MARK-4 protein. the multi-spectroscopic, molecular docking and MD simulation studies were performed to analyse the conformational changes, binding studies, intermolecular interactions, and stability of MARK-4 protein upon binding 5-FU. This demonstrates that NF can enhance the effectiveness of anticancer drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shahbaz Ahmed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Masood Nadeem
- Department of Biosciences, Jamia Milia Islamia, New Delhi, India
| | - Irfan Hussain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Sana Fatima
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Saleha Anwar
- Center for Interdisciplinary Research in Basic Sciences, Jamia Milia Islamia, New Delhi, India
| | | | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Milia Islamia, New Delhi, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, India
| |
Collapse
|
8
|
Gago L, Quiñonero F, Perazzoli G, Melguizo C, Prados J, Ortiz R, Cabeza L. Nanomedicine and Hyperthermia for the Treatment of Gastrointestinal Cancer: A Systematic Review. Pharmaceutics 2023; 15:1958. [PMID: 37514144 PMCID: PMC10386177 DOI: 10.3390/pharmaceutics15071958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The incidence of gastrointestinal cancers has increased in recent years. Current treatments present numerous challenges, including drug resistance, non-specificity, and severe side effects, needing the exploration of new therapeutic strategies. One promising avenue is the use of magnetic nanoparticles, which have gained considerable interest due to their ability to generate heat in tumor regions upon the application of an external alternating magnetic field, a process known as hyperthermia. This review conducted a systematic search of in vitro and in vivo studies published in the last decade that employ hyperthermia therapy mediated by magnetic nanoparticles for treating gastrointestinal cancers. After applying various inclusion and exclusion criteria (studies in the last 10 years where hyperthermia using alternative magnetic field is applied), a total of 40 articles were analyzed. The results revealed that iron oxide is the preferred material for magnetism generation in the nanoparticles, and colorectal cancer is the most studied gastrointestinal cancer. Interestingly, novel therapies employing nanoparticles loaded with chemotherapeutic drugs in combination with magnetic hyperthermia demonstrated an excellent antitumor effect. In conclusion, hyperthermia treatments mediated by magnetic nanoparticles appear to be an effective approach for the treatment of gastrointestinal cancers, offering advantages over traditional therapies.
Collapse
Affiliation(s)
- Lidia Gago
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| |
Collapse
|
9
|
Farzanegan Z, Tahmasbi M. Evaluating the applications and effectiveness of magnetic nanoparticle-based hyperthermia for cancer treatment: A systematic review. Appl Radiat Isot 2023; 198:110873. [PMID: 37257266 DOI: 10.1016/j.apradiso.2023.110873] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/03/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Magnetic nanoparticle-based hyperthermia as a new cancer treatment technology has been applied for some kinds of tumors. To review the different applications and effectiveness of this new cancer treatment technique, PubMed, Science Direct, Web of Science, and Google Scholar databases were explored up to November 2022, using the following keywords combined in different ways: "Magnetic Nanoparticles Based Hyperthermia", "Magnetic Nanoparticles" AND "Hyperthermia" AND "Cancer". The obtained results were screened for the title and abstract and the relevant papers were reviewed for further details. Finally, 24 papers were included in the study. These papers have evaluated the application of magnetic nanoparticle-based hyperthermia for treating different cancers including breast, liver, prostate, pancreas, colon, brain, lung, and stem cell. Various nanoparticles including Iron Oxide (Fe2O3, Fe3O4), Dextran Spermine, Iron Chloride, Magnetic nanoparticles conjugated with Liposomes (MCLs), and Variable Molecular Weight Nanoparticles (VMWNPs) were used in different reviewed studies. The results of reviewed studies revealed that the nanoparticle-based hyperthermia technique as a new progressive modality can significantly improve treatment outcomes for some special cancers. Increasing life expectancy by up to 30% using Iron Oxide magnetic nanoparticle-based hyperthermia for pancreatic cancer and increasing tumor ablation by about 33% for other cancers were reported in reviewed articles. However, further studies are required to extend this new treatment technique to other cancers and for providing more accurate information on nanoparticle-based hyperthermia's effectiveness as a complementary technique in cancer treatment.
Collapse
Affiliation(s)
- Zahra Farzanegan
- Medical Physics and Radiotherapy Department, School of Allied Medical Sciences, Arak University of Medical Sciences, Arak, Iran.
| | - Marziyeh Tahmasbi
- Radiologic Technology Department, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Kasi PB, Mallela VR, Ambrozkiewicz F, Trailin A, Liška V, Hemminki K. Theranostics Nanomedicine Applications for Colorectal Cancer and Metastasis: Recent Advances. Int J Mol Sci 2023; 24:ijms24097922. [PMID: 37175627 PMCID: PMC10178331 DOI: 10.3390/ijms24097922] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide, and metastatic CRC is a fatal disease. The CRC-affected tissues show several molecular markers that could be used as a fresh strategy to create newer methods of treating the condition. The liver and the peritoneum are where metastasis occurs most frequently. Once the tumor has metastasized to the liver, peritoneal carcinomatosis is frequently regarded as the disease's final stage. However, nearly 50% of CRC patients with peritoneal carcinomatosis do not have liver metastases. New diagnostic and therapeutic approaches must be developed due to the disease's poor response to present treatment choices in advanced stages and the necessity of an accurate diagnosis in the early stages. Many unique and amazing nanomaterials with promise for both diagnosis and treatment may be found in nanotechnology. Numerous nanomaterials and nanoformulations, including carbon nanotubes, dendrimers, liposomes, silica nanoparticles, gold nanoparticles, metal-organic frameworks, core-shell polymeric nano-formulations, and nano-emulsion systems, among others, can be used for targeted anticancer drug delivery and diagnostic purposes in CRC. Theranostic approaches combined with nanomedicine have been proposed as a revolutionary approach to improve CRC detection and treatment. This review highlights recent studies, potential, and challenges for the development of nanoplatforms for the detection and treatment of CRC.
Collapse
Affiliation(s)
- Phanindra Babu Kasi
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
| | - Venkata Ramana Mallela
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
| | - Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
| | - Andriy Trailin
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
| | - Václav Liška
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
- Department of Surgery, University Hospital in Pilsen and Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 323 00 Pilsen, Czech Republic
| | - Kari Hemminki
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
- Department of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Mamun A, Sabantina L. Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications-Technology, Mechanism, and Materials. Polymers (Basel) 2023; 15:1902. [PMID: 37112049 PMCID: PMC10143376 DOI: 10.3390/polym15081902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The number of cancer patients is rapidly increasing worldwide. Among the leading causes of human death, cancer can be regarded as one of the major threats to humans. Although many new cancer treatment procedures such as chemotherapy, radiotherapy, and surgical methods are nowadays being developed and used for testing purposes, results show limited efficiency and high toxicity, even if they have the potential to damage cancer cells in the process. In contrast, magnetic hyperthermia is a field that originated from the use of magnetic nanomaterials, which, due to their magnetic properties and other characteristics, are used in many clinical trials as one of the solutions for cancer treatment. Magnetic nanomaterials can increase the temperature of nanoparticles located in tumor tissue by applying an alternating magnetic field. A very simple, inexpensive, and environmentally friendly method is the fabrication of various types of functional nanostructures by adding magnetic additives to the spinning solution in the electrospinning process, which can overcome the limitations of this challenging treatment process. Here, we review recently developed electrospun magnetic nanofiber mats and magnetic nanomaterials that support magnetic hyperthermia therapy, targeted drug delivery, diagnostic and therapeutic tools, and techniques for cancer treatment.
Collapse
Affiliation(s)
- Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Lilia Sabantina
- Faculty of Clothing Technology and Garment Engineering, HTW-Berlin University of Applied Sciences, 12459 Berlin, Germany
| |
Collapse
|
12
|
Gogoi P, Kaur G, Singh NK. Nanotechnology for colorectal cancer detection and treatment. World J Gastroenterol 2022; 28:6497-6511. [PMID: 36569271 PMCID: PMC9782835 DOI: 10.3748/wjg.v28.i46.6497] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/28/2022] [Accepted: 11/18/2022] [Indexed: 12/08/2022] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed cancer and the second leading cause of cancer-related mortality in the United States. Across the globe, people in the age group older than 50 are at a higher risk of CRC. Genetic and environmental risk factors play a significant role in the development of CRC. If detected early, CRC is preventable and treatable. Currently, available screening methods and therapies for CRC treatment reduce the incidence rate among the population, but the micrometastasis of cancer may lead to recurrence. Therefore, the challenge is to develop an alternative therapy to overcome this complication. Nanotechnology plays a vital role in cancer treatment and offers targeted chemotherapies directly and selectively to cancer cells, with enhanced therapeutic efficacy. Additionally, nanotechnology elevates the chances of patient survival in comparison to traditional chemotherapies. The potential of nanoparticles includes that they may be used simultaneously for diagnosis and treatment. These exciting properties of nanoparticles have enticed researchers worldwide to unveil their use in early CRC detection and as effective treatment. This review discusses contemporary methods of CRC screening and therapies for CRC treatment, while the primary focus is on the theranostic approach of nanotechnology in CRC treatment and its prospects. In addition, this review aims to provide knowledge on the advancement of nanotechnology in CRC and as a starting point for researchers to think about new therapeutic approaches using nanotechnology.
Collapse
Affiliation(s)
- Purnima Gogoi
- Integrative Biosciences Center, OVAS, Wayne State University School of Medicine, Detroit, MI 48202, United States
| | - Geetika Kaur
- Integrative Biosciences Center, OVAS, Wayne State University School of Medicine, Detroit, MI 48202, United States
| | - Nikhlesh K Singh
- Integrative Biosciences Center, OVAS, Wayne State University School of Medicine, Detroit, MI 48202, United States
| |
Collapse
|
13
|
Szewczyk OK, Roszczenko P, Czarnomysy R, Bielawska A, Bielawski K. An Overview of the Importance of Transition-Metal Nanoparticles in Cancer Research. Int J Mol Sci 2022; 23:6688. [PMID: 35743130 PMCID: PMC9223356 DOI: 10.3390/ijms23126688] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Several authorities have implied that nanotechnology has a significant future in the development of advanced cancer therapies. Nanotechnology makes it possible to simultaneously administer drug combinations and engage the immune system to fight cancer. Nanoparticles can locate metastases in different organs and deliver medications to them. Using them allows for the effective reduction of tumors with minimal toxicity to healthy tissue. Transition-metal nanoparticles, through Fenton-type or Haber-Weiss-type reactions, generate reactive oxygen species. Through oxidative stress, the particles induce cell death via different pathways. The main limitation of the particles is their toxicity. Certain factors can control toxicity, such as route of administration, size, aggregation state, surface functionalization, or oxidation state. In this review, we attempt to discuss the effects and toxicity of transition-metal nanoparticles.
Collapse
Affiliation(s)
- Olga Klaudia Szewczyk
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (R.C.); (K.B.)
| | - Piotr Roszczenko
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (P.R.); (A.B.)
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (R.C.); (K.B.)
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (P.R.); (A.B.)
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (R.C.); (K.B.)
| |
Collapse
|