1
|
Abd El-Fattah AA, Hamid Sadik NA, Shahin AM, Shahin NN. Simvastatin and eugenol restore autophagic flux and alleviate oxidative, inflammatory, and fibrotic perturbations in an arginine-induced chronic pancreatitis rat model. Arch Biochem Biophys 2025; 768:110357. [PMID: 40015469 DOI: 10.1016/j.abb.2025.110357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Chronic pancreatitis (CP), a progressive inflammatory disease characterized by pancreatic tissue destruction and fibrosis, is considered a challenging health burden due to insufficiencies of current management procedures. Autophagy impairment has emerged as a major triggering event in pancreatitis, raising interest in exploring the potential of targeting autophagy as a possible interventional strategy. This study aimed to evaluate the possible ameliorative effect of two autophagy modulators, simvastatin and eugenol, on CP-related perturbations in an arginine-induced rat model. Repeated l-arginine administration (5 g/kg divided into 2 doses with a 1 h interval, given intraperitoneally every 3rd day for a total of 10 times) provoked CP features, demonstrated by acinar damage, oxidative stress, inflammation, and fibrosis. Arginine-triggered pancreatitis was accompanied by hampered pancreatic autophagic flux, evidenced by overexpression of pancreatic p62 and LC3-Ⅱ and downregulation of pancreatic AMPK and LAMP-1 mRNA expression. Treatment with simvastatin (20 mg/kg, intraperitoneally 24 h, before each arginine dose) and eugenol (50 mg/kg/day orally for 30 days) achieved significant anti-oxidative, anti-inflammatory, and anti-fibrotic effects, and reversed the arginine-instigated autophagic blockade, with superior ameliorative effects attained by eugenol. Altogether, simvastatin and eugenol provide a promising interventional approach for CP, at least partly, by restoring the impaired autophagic flux associated with CP.
Collapse
Affiliation(s)
| | | | - Ahmad Mustafa Shahin
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Nancy Nabil Shahin
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
2
|
Hendawy MS, Hashem MM, Zaki AA, Rabie MA, Sayed NSE, El Dine RS, El-Halawany AM. Efficacy of Aster chinensis aerial parts metabolites in BALB/c mice model of Imiquimod-induced psoriasis skin inflammation. Inflammopharmacology 2025; 33:1973-1996. [PMID: 40072672 PMCID: PMC11991947 DOI: 10.1007/s10787-025-01652-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/08/2025] [Indexed: 03/14/2025]
Abstract
Using a bioassay-guided fractionation approach, the most potent anti-psoriatic components of Aster squamatus herb, Aster chinensis stalks, and Aster chinensis flowers, cultivated in Egypt, were identified and evaluated against Imiquimod (IMQ)-induced psoriasis in female BALB/c mice and compared to standard drug, mometasone. The topical application of A. chinensis stalk methanolic extract exhibited the strongest anti-psoriatic effects against IMQ-induced psoriasis model, as evidenced by improvements in psoriasis area severity index (PASI) score, histopathological analysis, and spleen index. Further fractionation of A. chinensis stalk methanolic extract using petroleum ether, methylene chloride, ethyl acetate, and n-butanol revealed that the methylene chloride fraction (MCF) was the most potent. Indeed, MCF significantly reduced the PASI score, alleviated histopathological changes, and restored spleen index. Mechanistically, MCF exerted its anti-psoriatic effects by suppressing inflammation, evidenced by decreased TLR-4 gene expression and lower levels of HMGB1 and NFκBp65 protein contents. Additionally, MCF reduced serum levels of pro-inflammatory cytokines interleukin (IL)-1β, IL-6, IL-23, and IL-17 while mitigating oxidative stress through increased superoxide dismutase (SOD) activity and reduced malondialdehyde (MDA) content. Notably, the efficacy of MCF was comparable to that of mometasone, with no significant differences observed. In parallel, the chemical profile of the MCF was analyzed using UHPLC-MS/MS techniques in negative and positive ionization full scan modes. MCF of A. chinensis stalk could be used a potential therapeutic agent for psoriasis.
Collapse
Affiliation(s)
- Mai S Hendawy
- Department of Pharmacognosy, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt
| | - Mona M Hashem
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Ahmed A Zaki
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mostafa A Rabie
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Nesrine S El Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Riham Salah El Dine
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Ali M El-Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
3
|
Alsulami KA, Bakr AA, Sirwi A, Elfaky MA, Shaik RA, Alshehri BY, Aodah AH, Al Fayez N, Alshehri AA, Almughem FA, Halwani AA, Tawfik EA. Fusidic Acid and Lidocaine-Loaded Electrospun Nanofibers as a Dressing for Accelerated Healing of Infected Wounds. Int J Nanomedicine 2025; 20:849-869. [PMID: 39867309 PMCID: PMC11760276 DOI: 10.2147/ijn.s467469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/28/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction Wound treatment is a significant health burden in any healthcare system, which requires proper management to minimize pain and prevent bacterial infections that can complicate the wound healing process. Rationale There is a need to develop innovative therapies to accelerate wound healing cost-effectively. Herein, two polymer-based nanofibrous systems were developed using poly-lactic-co-glycolic-acid (PLGA) and polyvinylpyrrolidone (PVP) loaded with a combination of an antibiotic (Fusidic acid, FA) and a local anesthetic (Lidocaine, LDC) via electrospinning technique for an expedited healing process by preventing bacterial infections while reducing the pain sensation. Results The fabricated nanofibers showed an excellent morphology with an average fiber diameter of 556 ± 71 nm and 291 ± 87 nm for the dual drug-loaded PLGA/PVP and PVP nanofibers, respectively. The encapsulation efficiency (EE%) and drug loading (DL) studies revealed that PLGA/PVP loaded with FA and LDC exhibited EE% of 92% and 75%, respectively, while the DL was measured at 40 ± 8 µg/mg for FA and 32 ± 7 µg/mg for LDC. Furthermore, both drugs were fully released from the nanofibers within 48 hours. In contrast, FA/LDC-loaded PVP nanofibers exhibited EE% of 100% for FA and 84% for LDC; DL was measured at 85 ± 3 µg/mg for FA and 70 ± 3 µg/mg for LDC, while both drugs were completely released within 24 hours. The in vitro cytotoxicity study demonstrated a safe concentration of FA and LDC at ≤ 125 μg/mL. The prepared nanofibers were tested in vivo in an S. aureus-infected wound mice model to assess their efficacy, and the results showed that the FA/LDC-PVP had a faster wound closure and the lowest bacterial counts compared to other groups. Conclusion These findings showed the potential application of the fabricated dual drug-loaded nanofibers as a wound-healing plaster against infected acute wounds.
Collapse
Affiliation(s)
- Khulud A Alsulami
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Abrar A Bakr
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Alaa Sirwi
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mahmoud A Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rasheed A Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Bayan Y Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Alhassan H Aodah
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Nojoud Al Fayez
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Abdullah A Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Fahad A Almughem
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Abdulrahman A Halwani
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Essam A Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| |
Collapse
|
4
|
Abdallah MH, Shawky S, Shahien MM, El-Horany HES, Ahmed EH, El-Housiny S. Development and Evaluation of Nano-Vesicular Emulsion-Based Gel as a Promising Approach for Dermal Atorvastatin Delivery Against Inflammation. Int J Nanomedicine 2024; 19:11415-11432. [PMID: 39530108 PMCID: PMC11552413 DOI: 10.2147/ijn.s477001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Atorvastatin (ATV), a medication used to reduce cholesterol levels, possesses properties that can counteract the damaging effects of free radicals and reduce inflammation. However, the administration of ATV orally is associated with low systemic bioavailability due to its limited capacity to dissolve in water and significant first-pass effect. This study aimed to assess the appropriateness of employing nano-vesicles for transdermal administration of ATV in order to enhance its anti-inflammatory effects. Methods ATV-loaded transethosomes (ATV-TEs) were optimized using the 33 Box-Behnken design. The ATV-TEs that were created were evaluated for their vesicle size, encapsulation efficiency (% EE), and percent release of drug. The optimum formulation was integrated into a hydroxypropyl methylcellulose (HPMC) emulsion-based gel (ATV-TEs emulgel) using jojoba oil. ATV-TEs emulgel was examined for its physical characteristics, ex vivo permeability, histological, and anti-inflammatory effect in a rat model of inflamed paw edema. Results The optimized transethosomes exhibited a vesicle size of 158.00 nm and an encapsulation efficiency of 80.14 ± 1.42%. Furthermore, the use of transethosomal vesicles effectively prolonged the release of ATV for a duration of 24 hours, in contrast to the pure drug suspension. In addition, the transethosomal emulgel loaded with ATV exhibited a 3.8-fold increase in the transdermal flow of ATV, in comparison to the pure drug suspension. ATV-TEs emulgel demonstrated a strong anti-inflammatory impact in the carrageenan-induced paw edema model. Discussion This was evident from the significant reduction in paw edema, which was equivalent to the effect of the standard anti-inflammatory medicine, Diclofenac sodium. Conclusion In summary, transethosomes, as a whole, might potentially serve as an effective method for delivering drugs via the skin. This could improve the ability of ATV to reduce inflammation by increasing its absorption through the skin.
Collapse
Affiliation(s)
- Marwa H Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il, 81442, Saudi Arabia
| | - Seham Shawky
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Cairo, 11651, Egypt
| | - Mona M Shahien
- Department of Pediatrics, College of Medicine, University of Ha’il, Ha’il, 81442, Saudi Arabia
| | - Hemat El-Sayed El-Horany
- Department of Biochemistry, College of Medicine, University of Ha’il, Ha’il, 81442, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, 31511, Egypt
| | - Enas Haridy Ahmed
- Department of Anatomy, College of Medicine, University of Ha’il, Ha’il, 81442, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, 11566, Egypt
| | - Shaimaa El-Housiny
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, 4410240, Egypt
| |
Collapse
|
5
|
Abosalha AK, Islam P, Boyajian JL, Thareja R, Schaly S, Kassab A, Makhlouf S, Alali S, Prakash S. Colon-Targeted Sustained-Release Combinatorial 5-Fluorouracil and Quercetin poly(lactic- co-glycolic) Acid (PLGA) Nanoparticles Show Enhanced Apoptosis and Minimal Tumor Drug Resistance for Their Potential Use in Colon Cancer. ACS Pharmacol Transl Sci 2024; 7:2612-2620. [PMID: 39296268 PMCID: PMC11406683 DOI: 10.1021/acsptsci.4c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/21/2024]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide, acting as a significant public health problem. 5-Fluorouracil (5-FU) is a key chemotherapy for various types of cancer, due to its broad anticancer activity. However, the emergence of drug resistance is a considerable limitation in the clinical application of 5-FU. Quercetin (QC) is proposed as an adjuvant therapy to minimize drug resistance to chemotherapeutics and enhance their pharmacological efficacy. The oral delivery of 5-FU and QC is challenged by poor aqueous solubility of QC and poor cellular permeability of 5-FU. To solve this issue, novel polylactide-co-glycolide (PLGA) combinatorial nanoparticles loading 5-FU and QC were prepared to deliver them directly to the colon. These sustained-release combinatorial nanoparticles recorded a significant decrease in cancer cell proliferation, C-reactive protein (CRP) level, and Interleukin-8 (IL-8) expression by 30.08%, 40.7%, and 46.6%, respectively. The results revealed that this combination therapy may offer a new strategy for the targeted delivery of chemotherapeutics to the colon.
Collapse
Affiliation(s)
- Ahmed Kh Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jacqueline L Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Rahul Thareja
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Amal Kassab
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Stephanie Makhlouf
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Sarah Alali
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
6
|
Abdelkader DH, Belal AM, Elkordy EA, Sarhan NI, Essa EA. Fabrication and In-Vivo Evaluation of Polyvinyl pyrrolidone/Poloxamer 188 Hybrid Nanofibers of Deflazacort. Int J Pharm 2024; 655:123997. [PMID: 38484861 DOI: 10.1016/j.ijpharm.2024.123997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
The superior flexibility, efficient drug loading, high surface-to-volume ratio, ease of formulation, and cost-controlled production are considered exceptional advantages of nanofibers (NFs) as a smart delivery system. Deflazacort (DEF) is an anti-inflammatory and immunosuppressant agent. It is categorized as a poorly soluble class II drug. In this study, DEF-loaded polymeric nanofibrous using the electrospinning technique mats, Polyvinyl pyrrolidone (PVP) with or without Poloxamer 188 (PX) were used as mat-forming polymers. Microscopical imaging, drug content (%), and in vitro dissolution studies were conducted for all NFs formulae (F1-F7). All NFs improved the DEF dissolution compared to the unprocessed form, with the superiority of the PVP/PX hybrid. The optimized formula (F7) exhibited an average diameter of 655.46 ± 90.4 nm and % drug content of 84.33 ± 5.58. The dissolution parameters of DEF loaded in PVP/PX NFs (F7) reflected a release of 95.3 % ± 3.1 and 102.6 % ± 1.7 after 5 and 60 min, respectively. NFs (F7) was investigated for drug-polymer compatibility using Fourier-Transform Infrared Spectroscopy (FTIR), Powder X-ray diffraction analysis (PXRD), and Differential Scanning Calorimetry (DSC). In vivo anti-inflammatory study employing male Sprague-Dawley rats showed a significant reduction of rat paw edema for F7 (p < 0.05) compared with unprocessed DEF with a normal epidermal and dermal skin structure comparable to the healthy negative control. Immunohistochemical and morphometric data displayed similarities between the immune reaction of F7 and the negative healthy control. The finding of this work emphasized that DEF loaded in PVP/PX NFs could be considered a useful strategy for enhancing the therapeutic performance of DEF.
Collapse
Affiliation(s)
- Dalia H Abdelkader
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Abeer M Belal
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Eman A Elkordy
- Anatomy Department, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Naglaa I Sarhan
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ebtessam A Essa
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
7
|
Yehia RM, Teaima MH, Ragaie MH, Elmazar MM, Attia DA, El-Nabarawi MA. Resolving acne with optimized adapalene microspongeal gel, in vivo and clinical evaluations. Sci Rep 2024; 14:1359. [PMID: 38228631 DOI: 10.1038/s41598-024-51392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
In our pursuit of enhancing acne treatment while minimizing side effects, we developed tailored Adapalene microsponges (MS) optimized using a Box-Behnken design 33. The independent variables, Eudragit RS100 percentage in the polymer mixture, organic phase volume, and drug to polymer percentage, were explored. The optimized formulation exhibited remarkable characteristics, with a 98.3% ± 1.6 production yield, 97.3% ± 1.64 entrapment efficiency, and a particle size of 31.8 ± 1.1 µm. Notably, it achieved a 24 h cumulative drug release of 75.1% ± 1.4. To delve deeper into its efficacy, we evaluated the optimized microspongeal-gel in vitro, in vivo, and clinically. It demonstrated impressive retention in the pilosebaceous unit, a target for acne treatment. Comparative studies between our optimized Adapalene microspongeal gel and marketed Adapalene revealed superior performance. In vivo studies on Propionibacterium acnes-infected mice ears showed a remarkable 97% reduction in ear thickness, accompanied by a significant decrease in inflammatory signs and NF-κB levels, as confirmed by histopathological and histochemical examination. Moreover, in preliminary clinical evaluation, it demonstrated outstanding effectiveness in reducing comedonal lesions while causing fewer irritations. This not only indicates its potential for clinical application but also underscores its ability to enhance patient satisfaction, paving the way for future commercialization.
Collapse
Affiliation(s)
- Rania M Yehia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE), Suez Desert Road, El Sherouk City, Cairo, 1183, Egypt.
| | - Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Maha H Ragaie
- Department of Dermatology, STDs and Andrology, Faculty of Medicine, Minia University, Al Minya, Egypt
| | - Mohamed M Elmazar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Dalia A Attia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE), Suez Desert Road, El Sherouk City, Cairo, 1183, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Kamal RM, Sabry MM, El-Halawany AM, Rabie MA, El Sayed NS, Hifnawy MS, Younis IY. GC-MS analysis and the effect of topical application of essential oils of Pinus canariensis C.Sm., Cupressus lusitanica Mill. and Cupressus arizonica Greene aerial parts in Imiquimod-Induced Psoriasis in Mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116947. [PMID: 37482262 DOI: 10.1016/j.jep.2023.116947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditionally, Coniferous plants, in particular Pinus and Cupressus species, have been used in the treatment of burns, skin infections, and immune-mediated inflammatory diseases such as psoriasis. AIM OF THE STUDY A comparative study between essential oils (EOs) extracted from aerial parts of three coniferous plants: Pinus canariensis C.Sm. (PC), Cupressus lusitanica Mill. (CL) and Cupressus arizonica Greene (CA), cultivated in Egypt, was designed to investigate their composition and their anti-psoriasis mechanism. MATERIALS AND METHODS The phytochemical profiles were confirmed using Gas Chromatography-Mass Spectrometry (GC-MS) method. In-vivo Imiquimod (IMQ)-induced psoriasis model was performed and EOs were applied topically and compared to mometasone cream as a standard subsequently histopathological analysis and inflammatory biomarkers were measured. RESULTS In GC-MS analysis, Monoterpene hydrocarbons, sesquiterpene hydrocarbons and oxygenated monoterpenes were the major detected classes in the three plants, except in Pinus canariensis essential oil, oxygenated monoterpenes were absent. A significant attenuation of imiquimod-induced psoriasis symptoms after topical application of P. canariensis C.Sm., and C. lusitanica Mill. essential oils were observed by reducing the psoriasis area severity index (PASI) score, alleviating histopathological alteration, restoring the spleen index, and decreasing serum levels of interleukins 23 and 17A. Indeed, the results of Pinus canariensis essential oil is comparable to mometasone and showed no significant difference from standard treatment. On the other hand, the topical application of C. arizonica essential oil failed to alleviate imiquimod-induced psoriasis symptoms as observed in the PSAI score, the histopathological investigation, and the spleen index. CONCLUSION The essential oils of P. canariensis C.Sm., and C. lusitanica Mill aerial parts could be promising candidates for psoriasis treatment and for further studies on inflammation-related skin diseases.
Collapse
Affiliation(s)
- Rania M Kamal
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Manal M Sabry
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Ali M El-Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mostafa A Rabie
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Nesrine S El Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mohamed S Hifnawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Inas Y Younis
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
9
|
Saleh A, Abdelkader DH, El-Masry TA, Eliwa D, Alotaibi B, Negm WA, Elekhnawy E. Antiviral and antibacterial potential of electrosprayed PVA/PLGA nanoparticles loaded with chlorogenic acid for the management of coronavirus and Pseudomonas aeruginosa lung infection. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:255-267. [PMID: 37154794 DOI: 10.1080/21691401.2023.2207606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Respiratory tract infections are a common cause of morbidity and mortality globally. The current paper aims to treat this respiratory disorder. Therefore, we elucidated the phytochemical profile of Euphorbia milii flowers and isolated chlorogenic acid (CGA) for the first time. The electrospraying technique was utilized to prepare CGA nanoparticles in polyvinyl alcohol (PVA)/PLGA polymeric matrix. Complete in vitro characterizations were performed to determine particle size, polydispersity index (PDI), zeta potential, loading efficiency (LE), scanning electron microscopy and in vitro release study. The optimum formula (F2) with a particle size (454.36 ± 36.74 nm), a surface charge (-4.56 ± 0.84 mV), % of LE (80.23 ± 5.74), an initial burst (29.46 ± 4.79) and % cumulative release (97.42 ± 4.72) were chosen for further activities. In the murine lung infection model, PVA/PLGA NPs loaded with CGA (F2) demonstrated in vivo antibacterial activity against Pseudomonas aeruginosa. Using a plaque assay, the in vitro antiviral activity was investigated. The F2 exhibited antiviral activity against coronavirus (HCoV-229E) and (Middle East respiratory syndrome coronavirus (MERS-CoV), NRCEHKU270). The IC50 of F2 against HCoV-229E and MERS-CoV was 170 ± 1.1 and 223 ± 0.88 µg/mL, respectively. The values of IC50 of F2 were significantly lower (p < .05) than that of free CGA. Therefore, the encapsulation of CGA into electrospray PVA/PLGA NPs would be a promising tool as an antimicrobial agent.
Collapse
Affiliation(s)
- Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Dalia H Abdelkader
- Department of Pharmaceutical Technology, College of Pharmacy, Tanta University, Tanta, Egypt
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Duaa Eliwa
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Badriyah Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
10
|
Alotaibi B, Elekhnawy E, El-Masry TA, Saleh A, El-Bouseary MM, Alosaimi ME, Alotaibi KN, Abdelkader DH, Negm WA. Green synthetized Cu-Oxide Nanoparticles: Properties and applications for enhancing healing of wounds infected with Staphylococcus aureus. Int J Pharm 2023; 645:123415. [PMID: 37714313 DOI: 10.1016/j.ijpharm.2023.123415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Treating wound infections is a challenging concern in various clinical settings in Egypt, especially in the increasing global problem of resistance to antimicrobials. Here, we aimed to fabricate CuO NPs via green synthesis using aqueous Yucca gigantea extract. Then, the effect of green synthesized CuO NPs on Staphylococcus aureus clinical isolates has been studied in vivo and in vitro. The aqueous extract of Yucca gigantea has been employed in our study as a scale-up approach to safely, affordably, sustainably, and practically fabricate copper oxide nanoparticles (CuO NPs). Fourier transforms infrared (FT-IR), X-ray Diffraction (XRD), and UV-vis spectroscopy were utilized in vitro to describe the bonding features of CuO NPs.Scanning Electron microscopy (SEM), Transmission electron microscopy (TEM), Energy dispersive X-ray (EDX), and dynamic light scattering (DLS) were used to detect the morphological and elemental composition of the resulting CuO NPs. The fabrication of CuO NPs was confirmed by the IR spectral band at 515 cm-1, ensuring the metal-oxygen bondCu-O with two strong bands at 229 and 305 nm. SEM and TEM show CuO NPs with a size range from 30 to 50 nm. Cu and O comprised most of the particles produced through green synthesis, with weight percentages of 57.82 and 42.18 %, respectively. CuO NPs were observed to have a Zeta-potential value of -15.7 mV, demonstrating their great stability. CuO NPs revealed antibacterial potential toward the tested isolates with minimum inhibitory concentration values of 128 to 512 µg/mL. CuO NPs had antibiofilm potential by crystal violet assay, downregulating the expression of icaA and icaD genes in 23.07 % and 19.32 of the S. aureus isolates. The wound-healing potential of CuO NPs was investigated in vivo. It significantly decreased the bacterial burden and increased wound healing percentage compared to the positive control group. Moreover, CuO NPs caused an upregulation of the genes encoding platelet-derived growth factor (PDGF) and fibronectin in tissue repair. Thus, we can use CuO NPs as a future source for wound healing materials, especially in infected wounds.
Collapse
Affiliation(s)
- Badriyah Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia.
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia.
| | - Maisra M El-Bouseary
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Manal E Alosaimi
- Department of Basic Health Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | | | - Dalia H Abdelkader
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
11
|
Aslam B, Hussain A, Faisal MN, Sindhu ZUD, Khan RU, Alhidary IA, Naz S, Tufarelli V. Curcumin Co-Encapsulation Potentiates Anti-Arthritic Efficacy of Meloxicam Biodegradable Nanoparticles in Adjuvant-Induced Arthritis Animal Model. Biomedicines 2023; 11:2662. [PMID: 37893036 PMCID: PMC10604063 DOI: 10.3390/biomedicines11102662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed to evaluate the anti-arthritic activity of curcumin and meloxicam co-loaded PLGA nanoparticles in adjuvant-induced arthritic rats. PLGA nanoparticles encapsulating curcumin (nCur) and meloxicam (nMlx) alone and in combination (nCur/Mlx) were used to characterize zeta size and potential, polydispersity index, encapsulation efficiency (%), compound-polymer interactions (FT-IR analysis), and surface morphology (SEM imaging). In vivo, Complete Freund's adjuvant-induced arthritic rats were intraperitoneally (i.p.) administered with curcumin, meloxicam, curcumin plus meloxicam, nCur, nMlx, and nCur/Mlx for 28 consecutive days. Results showed that nCur, nMlx, and nCur/Mlx significantly (p ≤ 0.05) reduced paw swelling and arthritic score, restored body weight and the immune organ index (thymus and spleen), as well as attenuated serum inflammatory markers (RF, CRP, and PGE2) and oxidative stress parameters (MDA, SOD, and CAT) in adjuvant-induced arthritic rats compared to free compounds. In addition, mono- and dual-compound-loaded nanoparticles significantly (p ≤ 0.05) down-regulated pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), up-regulated anti-inflammatory cytokines (IL-4, IL-10, and IFN-γ), and modulated OPG and RANKL expressions in paw tissue. The aforementioned results were further confirmed through radiological and histopathological examinations. Furthermore, the anti-arthritic effect of nCur/Mlx was notably (p ≤ 0.05) enhanced compared to nCur or nMlx alone. In conclusion, the co-nanoencapsulation of curcumin could potentiate the anti-arthritic activity of meloxicam and could provide a novel therapeutic approach for the formulation of nanocarrier pharmaceutical products for the management of arthritis.
Collapse
Affiliation(s)
- Bilal Aslam
- Institute of Physiology and Pharmacology, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (A.H.); (M.N.F.)
| | - Asif Hussain
- Institute of Physiology and Pharmacology, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (A.H.); (M.N.F.)
- Department of Pharmacy, Riphah International University, Faisalabad 38000, Pakistan
| | - Muhammad Naeem Faisal
- Institute of Physiology and Pharmacology, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (A.H.); (M.N.F.)
| | - Zia-ud-Din Sindhu
- Department of Parasitology, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Rifat Ullah Khan
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar 25130, Pakistan
| | - Ibrahim A. Alhidary
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11421, Saudi Arabia;
| | - Shabana Naz
- Department of Zoology, Government College University, Faisalabad 54000, Pakistan;
| | - Vincenzo Tufarelli
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari ‘Aldo Moro’, s.p. Casamassima km 3, 70010 Valenzano, Italy;
| |
Collapse
|
12
|
Abdelfattah A, Samir R, Amin HM. Production of highly immunogenic and safe Triton X-100 produced bacterial ghost vaccine against Shigella flexneri 2b serotype. Gut Pathog 2023; 15:41. [PMID: 37679798 PMCID: PMC10483756 DOI: 10.1186/s13099-023-00568-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Bacterial ghost cells (BGCs) are cells were drained of their genetic and cytoplasmic components. This work aimed to develop vaccine candidates against the Shigella flexneri (S. flexneri) 2b serotype using the BGCs approach. For the first time, (S. flexneri) 2b serotype BGCs vaccine was prepared by incubation with Triton X-100 (TX100) for only 12 h. Its safety and immunogenicity were compared to another vaccine produced using a previously used surfactant, namely Tween 80 (TW80). Scanning electron microscopy (SEM), cellular DNA, protein contents measurements, and ghost cell re-cultivation were used to confirm the successful generation of the BGCs. Immunogenicity was assessed through mice's intraperitoneal (IP) immunization followed by infection with S. flexneri ATCC 12022. Finally, histopathological examination was carried out. RESULTS Viable colony forming units (CFUs) of S. flexneri were counted from stool samples as well as homogenized colon tissues of the non-immunized challenged group. Immunized mice sera showed a significant increase in serum bactericidal activity of both preparations (TX100 = 40% and TW80 = 56%) compared to the non-immunized challenged group (positive control). The IgG levels of the bacterial ghost-vaccinated groups were four and three times greater for the TX100 and TW80 ghost vaccines, respectively, compared to that of the positive control; both bacterial ghost vaccines (BGVs) were safe and effective, according to the results of the safety check tests and histopathological analysis. CONCLUSIONS When comparing the BGVs prepared using TX100 and TW80 methods, the use of TX100 as a new chemical treating agent for BGC production attained robust results in terms of shorter incubation time with the targeted cells and a strong immune response against S. flexneri 2b serotype ATCC 12022 in the IP challenge test. However, a clinical study is needed to confirm the efficacy and total safety of this novel vaccine.
Collapse
Affiliation(s)
- Amany Abdelfattah
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 26 July Mehwar Road Intersection With Wahat Road, 6Th of October, 12451 Giza Egypt
| | - Reham Samir
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Nile Corniche, El Sayeda Zeinab, Cairo, 11562 Egypt
| | - Heba M. Amin
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 26 July Mehwar Road Intersection With Wahat Road, 6Th of October, 12451 Giza Egypt
| |
Collapse
|
13
|
Almurshedi AS, El-Masry TA, Selim H, El-Sheekh MM, Makhlof MEM, Aldosari BN, Alfagih IM, AlQuadeib BT, Almarshidy SS, El-Bouseary MM. New investigation of anti-inflammatory activity of Polycladia crinita and biosynthesized selenium nanoparticles: isolation and characterization. Microb Cell Fact 2023; 22:173. [PMID: 37670273 PMCID: PMC10478239 DOI: 10.1186/s12934-023-02168-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Marine macroalgae have gained interest recently, mostly due to their bioactive components. Polycladia crinita is an example of marine macroalgae from the Phaeophyceae class, also known as brown algae. They are characterized by a variety of bioactive compounds with valuable medical applications. The prevalence of such naturally active marine resources has made macroalgae-mediated manufacturing of nanoparticles an appealing strategy. In the present study, we aimed to evaluate the antioxidant and anti-inflammatory features of an aqueous extract of Polycladia crinita and biosynthesized P. crinita selenium nanoparticles (PCSeNPs) via a carrageenan-induced rat paw edema model. The synthesized PCSeNPs were fully characterized by UV-visible spectroscopy, FTIR, XRD, and EDX analyses. RESULTS FTIR analysis of Polycladia crinita extract showed several sharp absorption peaks at 3435.2, 1423.5, and 876.4 cm-1 which represent O-H, C=O and C=C groups. Moreover, the most frequent functional groups identified in P. crinita aqueous extract that are responsible for producing SeNPs are the -NH2-, -C=O-, and -SH- groups. The EDX spectrum analysis revealed that the high percentages of Se and O, 1.09 ± 0.13 and 36.62 ± 0.60%, respectively, confirmed the formation of SeNPs. The percentages of inhibition of the edema in pretreated groups with doses of 25 and 50 mg/kg, i.p., of PCSeNPs were 62.78% and 77.24%, respectively. Furthermore, the pretreated groups with 25, 50 mg/kg of P. crinita extract displayed a substantial decrease in the MDA levels (P < 0.00, 26.9%, and 51.68% decrease, respectively), indicating potent antioxidant effect. Additionally, the pretreated groups with PCSeNPs significantly suppressed the MDA levels (P < 0.00, 54.77%, and 65.08% decreases, respectively). The results of immune-histochemical staining revealed moderate COX-2 and Il-1β expressions with scores 2 and 1 in rats pre-treated with 25 and 50 mg/kg of free extract, respectively. Additionally, the rats pre-treated with different doses of PCSeNPs demonstrated weak COX-2 and Il-1β expressions with score 1 (25 mg/kg) and negative expression with score 0 (50 mg/kg). Both antioxidant and anti-inflammatory effects were dose-dependent. CONCLUSIONS These distinguishing features imply that this unique alga is a promising anti-inflammatory agent. Further studies are required to investigate its main active ingredients and possible side effects.
Collapse
Affiliation(s)
- Alanood S Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hend Selim
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | | | - Mofida E M Makhlof
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Basmah N Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Iman M Alfagih
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bushra T AlQuadeib
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Salma S Almarshidy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Maisra M El-Bouseary
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| |
Collapse
|
14
|
Almukainzi M, El-Masry TA, Selim H, Saleh A, El-Sheekh M, Makhlof MEM, El-Bouseary MM. New Insight on the Cytoprotective/Antioxidant Pathway Keap1/Nrf2/HO-1 Modulation by Ulva intestinalis Extract and Its Selenium Nanoparticles in Rats with Carrageenan-Induced Paw Edema. Mar Drugs 2023; 21:459. [PMID: 37755072 PMCID: PMC10533125 DOI: 10.3390/md21090459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/09/2023] [Accepted: 08/19/2023] [Indexed: 09/28/2023] Open
Abstract
Currently, there is growing interest in exploring natural bioactive compounds with anti-inflammatory potential to overcome the side effects associated with the well-known synthetic chemicals. Algae are a rich source of bioactive molecules with numerous applications in medicine. Herein, the anti-inflammatory effect of Ulva intestinalis alone or selenium nanoparticles loaded with U. intestinalis (UISeNPs), after being fully characterized analytically, was investigated by a carrageenan-induced inflammation model. The pretreated groups with free U. intestinalis extract (III and IV) and the rats pretreated with UISeNPs (groups V and VI) showed significant increases in the gene expression of Keap1, with fold increases of 1.9, 2.27, 2.4, and 3.32, respectively. Similarly, a remarkable increase in the Nrf2 gene expression, with 2.09-, 2.36-, 2.59-, and 3.7-fold increases, was shown in the same groups, respectively. Additionally, the groups III, IV, V, and VI revealed a significantly increased HO-1 gene expression with a fold increase of 1.48, 1.61, 1.87, and 2.84, respectively. Thus, both U. intestinalis extract and the UISeNPs boost the expression of the cytoprotective/antioxidant pathway Keap1/Nrf2/HO-1, with the UISeNPs having the upper hand over the free extract. In conclusion, U. intestinalis and UISeNPs have proven promising anti-inflammatory activity through mediating different underlying mechanisms.
Collapse
Affiliation(s)
- May Almukainzi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (M.A.); (A.S.)
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Hend Selim
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (M.A.); (A.S.)
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Mofida E. M. Makhlof
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour 22511, Egypt;
| | - Maisra M. El-Bouseary
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
15
|
Kovalenko VL, Kolesnikova OA, Nikitin MP, Shipunova VO, Komedchikova EN. Surface Characteristics Affect the Properties of PLGA Nanoparticles as Photothermal Agents. MICROMACHINES 2023; 14:1647. [PMID: 37630183 PMCID: PMC10458446 DOI: 10.3390/mi14081647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Photothermal therapy is one of the most promising and rapidly developing fields in modern oncology due to its high efficiency, localized action, and minimal invasiveness. Polymeric nanoparticles (NPs) incorporating low molecular-weight photothermal dyes are capable of delivering therapeutic agents to the tumor site, releasing them in a controlled manner, and providing tumor treatment under external light irradiation. The nanoparticle synthesis components are critically important factors that influence the therapeutically significant characteristics of polymeric NPs. Here, we show the impact of stabilizers and solvents used for synthesis on the properties of PLGA NPs for photothermal therapy. We synthesized PLGA nanocarriers using the microemulsion method and varied the nature of the solvent and the concentration of the stabilizer-namely, chitosan oligosaccharide lactate. A phthalocyanine-based photosensitizer, which absorbs light in the NIR window, was encapsulated in the PLGA NPs. When mQ water was used as a solvent and chitosan oligosaccharide lactate was used at a concentration of 1 g/L, the PLGA NPs exhibited highly promising photothermal properties. The final composite of the nanocarriers demonstrated photoinduced cytotoxicity against EMT6/P cells under NIR laser irradiation in vitro and was suitable for bioimaging.
Collapse
Affiliation(s)
- Vera L. Kovalenko
- Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Dolgoprudny, Russia; (V.L.K.); (O.A.K.); (M.P.N.); (E.N.K.)
| | - Olga A. Kolesnikova
- Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Dolgoprudny, Russia; (V.L.K.); (O.A.K.); (M.P.N.); (E.N.K.)
| | - Maxim P. Nikitin
- Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Dolgoprudny, Russia; (V.L.K.); (O.A.K.); (M.P.N.); (E.N.K.)
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| | - Victoria O. Shipunova
- Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Dolgoprudny, Russia; (V.L.K.); (O.A.K.); (M.P.N.); (E.N.K.)
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| | - Elena N. Komedchikova
- Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Dolgoprudny, Russia; (V.L.K.); (O.A.K.); (M.P.N.); (E.N.K.)
| |
Collapse
|
16
|
PLGA-Based Micro/Nanoparticles: An Overview of Their Applications in Respiratory Diseases. Int J Mol Sci 2023; 24:ijms24054333. [PMID: 36901762 PMCID: PMC10002081 DOI: 10.3390/ijms24054333] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), are critical areas of medical research, as millions of people are affected worldwide. In fact, more than 9 million deaths worldwide were associated with respiratory diseases in 2016, equivalent to 15% of global deaths, and the prevalence is increasing every year as the population ages. Due to inadequate treatment options, the treatments for many respiratory diseases are limited to relieving symptoms rather than curing the disease. Therefore, new therapeutic strategies for respiratory diseases are urgently needed. Poly (lactic-co-glycolic acid) micro/nanoparticles (PLGA M/NPs) have good biocompatibility, biodegradability and unique physical and chemical properties, making them one of the most popular and effective drug delivery polymers. In this review, we summarized the synthesis and modification methods of PLGA M/NPs and their applications in the treatment of respiratory diseases (asthma, COPD, cystic fibrosis (CF), etc.) and also discussed the research progress and current research status of PLGA M/NPs in respiratory diseases. It was concluded that PLGA M/NPs are the promising drug delivery vehicles for the treatment of respiratory diseases due to their advantages of low toxicity, high bioavailability, high drug loading capacity, plasticity and modifiability. And at the end, we presented an outlook on future research directions, aiming to provide some new ideas for future research directions and hopefully to promote their widespread application in clinical treatment.
Collapse
|
17
|
Alshawwa SZ, El-Masry TA, Elekhnawy E, Alotaibi HF, Sallam AS, Abdelkader DH. Fabrication of Celecoxib PVP Microparticles Stabilized by Gelucire 48/16 via Electrospraying for Enhanced Anti-Inflammatory Action. Pharmaceuticals (Basel) 2023; 16:258. [PMID: 37259403 PMCID: PMC9960083 DOI: 10.3390/ph16020258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 01/13/2025] Open
Abstract
Electrospraying (ES) technology is considered an efficient micro/nanoparticle fabrication technique with controlled dimensions and diverse morphology. Gelurice® 48/16 (GLR) has been employed to stabilize the aqueous dispersion of Celecoxib (CXB) for enhancing its solubility and oral bioavailability. Our formula is composed of CXB loaded in polyvinylpyllodine (PVP) stabilized with GLR to formulate microparticles (MPs) (CXB-GLR-PVP MPs). CXB-GLR-PVP MPs display excellent in vitro properties regarding particle size (548 ± 10.23 nm), zeta potential (-20.21 ± 2.45 mV), and drug loading (DL, 1.98 ± 0.059 mg per 10 mg MPs). CXB-GLR-PVP MPs showed a significant (p < 0.05) higher % cumulative release after ten minutes (50.31 ± 4.36) compared to free CXB (10.63 ± 2.89). CXB exhibited good dispersibility, proved by X-ray diffractometry (XRD), adequate compatibility of all components, confirmed by Fourier-Transform Infrared Spectroscopy (FTIR), and spherical geometry as revealed in scanning electron microscopy (SEM). Concerning our anti-inflammatory study, there was a significant decrease in the scores of the inflammatory markers' immunostaining in the CXB-GLR-PVP MPs treated group. Also, the amounts of the oxidative stress biomarkers, as well as mRNA expression of interleukins (IL-1β and IL-6), considerably declined (p < 0.05) in CXB-GLR-PVP MPs treated group alongside an enhancement in the histological features was revealed. CXB-GLR-PVP MPs is an up-and-coming delivery system that could be elucidated in future clinical investigations.
Collapse
Affiliation(s)
- Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Thanaa A. El-Masry
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | - Dalia H. Abdelkader
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
18
|
Abosalha AK, Ahmad W, Boyajian J, Islam P, Ghebretatios M, Schaly S, Thareja R, Arora K, Prakash S. A comprehensive update of siRNA delivery design strategies for targeted and effective gene silencing in gene therapy and other applications. Expert Opin Drug Discov 2023; 18:149-161. [PMID: 36514963 DOI: 10.1080/17460441.2022.2155630] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION RNA interference (RNAi) using small interfering RNA (siRNA) is a promising strategy to control many genetic disorders by targeting the mRNA of underlying genes and degrade it. However, the delivery of siRNA to targeted organs is highly restricted by several intracellular and extracellular barriers. AREAS COVERED This review discusses various design strategies developed to overcome siRNA delivery obstacles. The applied techniques involve chemical modification, bioconjugation to specific ligands, and carrier-mediated strategies. Nanotechnology-based systems like liposomes, niosomes, solid lipid nanoparticles (SLNs), dendrimers, and polymeric nanoparticles (PNs) are also discussed. EXPERT OPINION Although the mechanism of siRNA as a gene silencer is well-established, only a few products are available as therapeutics. There is a great need to develop and establish siRNA delivery systems that protects siRNAs and delivers them efficiently to the desired sitesare efficient and capable of targeted delivery. Several diseases are reported to be controlled by siRNA at their early stages. However, their targeted delivery is a daunting challenge.
Collapse
Affiliation(s)
- Ahmed Khaled Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada.,Pharmaceutical Technology department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Waqar Ahmad
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Jacqueline Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Merry Ghebretatios
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Rahul Thareja
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Karan Arora
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Alotaibi B, El-Masry TA, Elekhnawy E, El-Kadem AH, Saleh A, Negm WA, Abdelkader DH. Aqueous core epigallocatechin gallate PLGA nanocapsules: characterization, antibacterial activity against uropathogens, and in vivo reno-protective effect in cisplatin induced nephrotoxicity. Drug Deliv 2022; 29:1848-1862. [PMID: 35708451 PMCID: PMC9225707 DOI: 10.1080/10717544.2022.2083725] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 12/17/2022] Open
Abstract
Epigallocatechin-3-gallate (EGCG) was isolated from Cycas thouarsii leaves for the first time and encapsulated in aqueous core poly(lactide-co-glycolide) (PLGA) nanocapsules (NCs). This work investigates antimicrobial activity and in vivo reno-protective effects of EGCG-PLGA NCs in cisplatin-induced nephrotoxicity. A double emulsion solvent evaporation process was adopted to prepare PLGA NCs loaded with EGCG. Particle size, polydispersity index (PDI), zeta potential, percent entrapment efficiency (%EE), structural morphology, and in vitro release platform were all studied in vitro. The optimum formula (F2) with particle size (61.37 ± 5.90 nm), PDI (0.125 ± 0.027), zeta potential (-11.83 ± 3.22 mV), %EE (85.79 ± 5.89%w/w), initial burst (36.85 ± 4.79), and percent cumulative release (87.79 ± 9.84) was selected for further in vitro/in vivo studies. F2 exhibited an enhanced antimicrobial activity against uropathogens as it had lower minimum inhibitory concentration (MIC) values and a more significant impact on bacterial growth than free EGCG. Forty male adult mice were randomly allocated into five groups: control vehicle, untreated methotrexate, MTX groups treated with a daily oral dose of free EGCG, placebo PLGA NCs, and EGCG PLGA NCs (F2) for 10 days. Results showed that EGCG PLGA NCs (F2) exerted promising renoprotective effects compared to free EGCG. EGCG PLGA NCs group induced a significant decrease in kidney index, serum creatinine, kidney injury molecule-1 (KIM-1), NGAL serum levels, and pronounced inhibition of NLPR-3/caspase-1/IL/1β inflammasome pathway. It also significantly ameliorated oxidative stress and decreased NFκB, Bax expression levels. Aqueous core PLGA NCs are a promising formulation strategy that provides high polymeric protection and sustained release pattern for hydrophilic therapeutic agents.
Collapse
Affiliation(s)
- Badriyah Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Thanaa A. El-Masry
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Aya H. El-Kadem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Al Azhar University, Cairo, Egypt
| | - Walaa A. Negm
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Dalia H. Abdelkader
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
20
|
Abdelkader DH, Elekhnawy E, Negm WA, El-Masry TA, Almukainzi M, Zayed A, Ulber R. Insight into Fucoidan-Based PEGylated PLGA Nanoparticles Encapsulating Methyl Anthranilic Acid: In Vitro Evaluation and In Vivo Anti-Inflammatory Study. Mar Drugs 2022; 20:694. [PMID: 36355017 PMCID: PMC9693061 DOI: 10.3390/md20110694] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 08/13/2023] Open
Abstract
A potential fucoidan-based PEGylated PLGA nanoparticles (NPs) offering a proper delivery of N-methyl anthranilic acid (MA, a model of hydrophobic anti-inflammatory drug) have been developed via the formation of fucoidan aqueous coating surrounding PEGylated PLGA NPs. The optimum formulation (FuP2) composed of fucoidan:m-PEG-PLGA (1:0.5 w/w) with particle size (365 ± 20.76 nm), zeta potential (-22.30 ± 2.56 mV), % entrapment efficiency (85.45 ± 7.41), drug loading (51.36 ± 4.75 µg/mg of NPs), % initial burst (47.91 ± 5.89), and % cumulative release (102.79 ± 6.89) has been further investigated for the anti-inflammatory in vivo study. This effect of FuP2 was assessed in rats' carrageenan-induced acute inflammation model. The average weight of the paw edema was significantly lowered (p ≤ 0.05) by treatment with FuP2. Moreover, cyclooxygenase-2 and tumor necrosis factor-alpha immunostaining were decreased in FuP2 treated group compared to the other groups. The levels of prostaglandin E2, nitric oxide, and malondialdehyde were significantly reduced (p ≤ 0.05) in the FuP2-treated group. A significant reduction (p ≤ 0.05) in the expression of interleukins (IL-1β and IL-6) with an improvement of the histological findings of the paw tissues was observed in the FuP2-treated group. Thus, fucoidan-based PEGylated PLGA-MA NPs are a promising anti-inflammatory delivery system that can be applied for other similar drugs potentiating their pharmacological and pharmacokinetic properties.
Collapse
Affiliation(s)
- Dalia H. Abdelkader
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - May Almukainzi
- Department of Pharmaceutical Science, College Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed Zayed
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
| | - Roland Ulber
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
| |
Collapse
|
21
|
Abosalha AK, Boyajian J, Ahmad W, Islam P, Ghebretatios M, Schaly S, Thareja R, Arora K, Prakash S. Clinical pharmacology of siRNA therapeutics: current status and future prospects. Expert Rev Clin Pharmacol 2022; 15:1327-1341. [PMID: 36251525 DOI: 10.1080/17512433.2022.2136166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Small interfering RNA (siRNA) has emerged as a powerful tool for post-transcriptional downregulation of multiple genes for various therapies. Naked siRNA molecules are surrounded by several barriers that tackle their optimum delivery to target tissues such as limited cellular uptake, short circulation time, degradation by endonucleases, glomerular filtration, and capturing by the reticuloendothelial system (RES). AREAS COVERED This review provides insights into studies that investigate various siRNA-based therapies, focusing on the mechanism, delivery strategies, bioavailability, pharmacokinetic, and pharmacodynamics of naked and modified siRNA molecules. The clinical pharmacology of currently approved siRNA products is also discussed. EXPERT OPINION Few siRNA-based products have been approved recently by the Food and Drug Administration (FDA) and other regulatory agencies after approximately twenty years following its discovery due to the associated limitations. The absorption, distribution, metabolism, and excretion of siRNA therapeutics are highly restricted by several obstacles, resulting in rapid clearance of siRNA-based therapeutic products from systemic circulation before reaching the cytosol of targeted cells. The siRNA therapeutics however are very promising in many diseases, including gene therapy and SARS-COV-2 viral infection. The design of suitable delivery vehicles and developing strategies toward better pharmacokinetic parameters may solve the challenges of siRNA therapies.
Collapse
Affiliation(s)
- Ahmed Khaled Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada.,Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Jacqueline Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Waqar Ahmad
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Merry Ghebretatios
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Rahul Thareja
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Karan Arora
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| |
Collapse
|
22
|
Mohamed MZ, Abed El Baky MF, Ali ME, Hafez HM. Aprepitant exerts anti-fibrotic effect via inhibition of TGF-β/Smad3 pathway in bleomycin-induced pulmonary fibrosis in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103940. [PMID: 35931359 DOI: 10.1016/j.etap.2022.103940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Bleomycin is a well-recognized antineoplastic drug. However, pulmonary fibrosis (PF) is considered to be the principal drawback that greatly limits its use. Here, we sought to investigate ability of the neurokinin receptor 1 blocker, aprepitant, to prevent PF caused by bleomycin. Male adult Wistar rat groups were given a single intratracheal injection of bleomycin, either alone or in combination with aprepitant therapy for 3 or 14 days. Collagen deposition and a rise in transforming growth factor beta (TGF-β) immunoreactivity in lung tissue serve as evidence of bleomycin-induced PF. The serum levels of lactate dehydrogenase, alkaline phosphatase, and total antioxidant improved after aprepitant therapy.Additionally, it reduced the protein expressions of interferon alpha, tumor necrosis factor alpha, and lung lipid peroxidation. Moreover, aprepitant treatment led to an increase in the antioxidant indices glutathione, glutathione peroxidase, and catalase. Aprepitant is postulated to protect against bleomycin-induced PF by decreasing TGF-β, phosphorylating Smad3, and increasing interleukin 37, an anti-fibrotic cytokine, and G Protein-coupled Receptor Kinase 2. Aprepitant for 14 days considerably exceeded aprepitant for 3 days in terms of improving lung damage and having an anti-fibrotic impact. In conclusion, aprepitant treatment for 14 days may be used as an adjuvant to bleomycin therapy to prevent PF, mostly through inhibiting the TGF-/p-Smad3 fibrotic pathway.
Collapse
Affiliation(s)
- Mervat Z Mohamed
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511 Minia, Egypt.
| | | | - Merhan E Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Heba M Hafez
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511 Minia, Egypt
| |
Collapse
|
23
|
Haider T, Soni V. “Response surface methodology and artificial neural network-based modeling and optimization of phosphatidylserine targeted nanocarriers for effective treatment of cancer: In vitro and in silico studies”. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
24
|
Zinc Oxide Nanoparticles as Potential Delivery Carrier: Green Synthesis by Aspergillus niger Endophytic Fungus, Characterization, and In Vitro/In Vivo Antibacterial Activity. Pharmaceuticals (Basel) 2022; 15:ph15091057. [PMID: 36145278 PMCID: PMC9500724 DOI: 10.3390/ph15091057] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 12/17/2022] Open
Abstract
We aimed to synthesize zinc oxide nanoparticles (ZnO NPs) using the endophytic fungal extract of Aspergillus niger. The prepared ZnO NPs were characterized, and their in vitro and in vivo antibacterial activity was investigated. Isolated endophytic fungus identification was carried out using 18S rRNA. A. niger endophytic fungal extract was employed for the green synthesis of ZnO NPs. The in vitro antibacterial activity of the prepared ZnO NPs was elucidated against Staphylococcus aureus using the broth microdilution method and quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the in vivo antibacterial activity was elucidated using a systemic infection model in mice. The biosynthesized ZnO NPs showed a maximum optical density at 380 nm with characteristic peaks on the Fourier-transform infrared spectrum. The X-ray diffraction pattern was highly matched with a standard platform of zinc oxide crystals. Energy-dispersive X-ray analysis confirmed that the main composition of nanoparticles was zinc and oxygen atoms. Scanning and transmission electron microscopies showed spherical geometry with a smooth surface. Zeta potential measurements (26.6 ± 0.56 mV) verified the adequate stability of ZnO NPs. Minimum inhibitory concentrations of ZnO NPs against S. aureus isolates ranged from 8 to 128 µg/mL. Additionally, ZnO NPs revealed antibiofilm activity, resulting in the downregulation of the tested biofilm genes in 29.17% of S. aureus isolates. Regarding the in vivo experiment, ZnO NPs reduced congestion and fibrosis in liver and spleen tissues. They also improved liver function, increased the survival rate, and significantly decreased inflammatory markers (p < 0.05). ZnO NPs synthesized by A. niger endophytic fungus revealed a promising in vivo and in vitro antibacterial action against S. aureus isolates.
Collapse
|
25
|
Co-delivery of gentiopicroside and thymoquinone using electrospun m-PEG/PVP nanofibers: In-vitro and In vivo studies for antibacterial wound dressing in diabetic rats. Int J Pharm 2022; 625:122106. [PMID: 36029993 DOI: 10.1016/j.ijpharm.2022.122106] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/24/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022]
Abstract
Nanofibers (NFs) provide several delivery advantages like their great flexibility and similarity with extracellular matrix (ECM) which qualify them to be the unique model of a wound dressing. NFs could create mats of polymeric matrix loaded with an active agent enhancing its solubility and stability. In our study, Gentiopicroside (GPS) and Thymoquinone (TQ) loaded in NFs polymeric mats composed of coblended polyvinyl pyrrolidine (PVP) and methyl ether Polyethylene glycol (m-PEG) were fabricated via electrospinning technique. A morphological study using Scanning Electron Microscopy (SEM) was performed for all formulae as well as in vitro release study using High-performance Liquid chromatography (HPLC) for sample analysis. The optimized formula (F3) was chosen for further assays using Fourier-Transform Infrared Spectroscopy (FTIR), and Differential Scanning Calorimetry (DSC). Study of the antibacterial effect, and in vivo healing action for diabetic infected wounds to quantify Tumor necrosis factor-alpha and Cyclooxygenase-2 were also investigated. F3 achieved the highest % cumulative release (99.79 ± 6.47 for GPS and 96.89 ± 6.87 for TQ) at 60 min, and a smaller diameter (200 nm) showing significant anti-bacterial effects with well-organized skin architecture demonstrating great healing signs. Our results revealed that m-PEG/PVP NFs mats loaded with GPS and TQ could be considered an optimal wound care dressing.
Collapse
|
26
|
Saxena J, Bisen M, Misra A, Srivastava VK, Kaushik S, Siddiqui AJ, Mishra N, Singh A, Jyoti A. Targeting COPD with PLGA-Based Nanoparticles: Current Status and Prospects. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5058121. [PMID: 35309178 PMCID: PMC8933108 DOI: 10.1155/2022/5058121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/01/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is pulmonary emphysema characterized by blockage in the airflow resulting in the long-term breathing problem, hence a major cause of mortality worldwide. Excessive generation of free radicals and the development of chronic inflammation are the major two episodes underlying the pathogenesis of COPD. Currently used drugs targeting these episodes including anti-inflammatory, antioxidants, and corticosteroids are unsafe, require high doses, and pose serious side effects. Nanomaterial-conjugated drugs have shown promising therapeutic potential against different respiratory diseases as they are required in small quantities which lower overall treatment costs and can be effectively targeted to diseased tissue microenvironment hence having minimal side effects. Poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) are safe as their breakdown products are easily metabolized in the body. Drugs loaded on the PLGA NPs have been shown to be promising agents as anticancer, antimicrobial, antioxidants, and anti-inflammatory. Surface modification of PLGA NPs can further improve their mechanical properties, drug loading potential, and pharmacological activities. In the present review, we have presented a brief insight into the pathophysiological mechanism underlying COPD and highlighted the role, potential, and current status of PLGA NPs loaded with drugs in the therapy of COPD.
Collapse
Affiliation(s)
- Juhi Saxena
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab 140413, India
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Monish Bisen
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Aditya Misra
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Vijay Kumar Srivastava
- Amity Institute of Biotechnology, Amity University Rajasthan, Amity Education Valley, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Amity Education Valley, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Neetu Mishra
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra 412115, India
| | - Abhijeet Singh
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India
| | - Anupam Jyoti
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab 140413, India
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| |
Collapse
|
27
|
Almukainzi M, A El-Masry T, A Negm W, Elekhnawy E, Saleh A, E Sayed A, A Khattab M, H Abdelkader D. Gentiopicroside PLGA Nanospheres: Fabrication, in vitro Characterization, Antimicrobial Action, and in vivo Effect for Enhancing Wound Healing in Diabetic Rats. Int J Nanomedicine 2022; 17:1203-1225. [PMID: 35330694 PMCID: PMC8938172 DOI: 10.2147/ijn.s358606] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/09/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose Gentiopicroside (GPS), an adequate bioactive candidate, has a promising approach for enhancing wound healing due to its antioxidant and antimicrobial properties. Its poor aqueous solubility negatively affects oral absorption accompanied by low bioavailability due to intestinal/hepatic first-pass metabolism. Our aim in this study is to fabricate GPS into appropriate nanocarriers (PLGA nanospheres, NSs) to enhance its solubility and hence its oral absorption would be improved. Methods Normal and ODS silica gel together with Sephadex LH20 column used for isolation of GPS from Gentiana lutea roots. Crude GPS would be further processed for nanospheres fabrication using a single o/w emulsion solvent evaporation technique followed by in vitro optimization study to examine the effect of two formulation variables: polymer (PLGA) and stabilizer (PVA) concentrations on the physical characterizations of prepared NSs. Possible GPS-PLGA chemical and physical interactions have been analyzed using Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The optimum GPS-PLGA NSs have been chosen for antimicrobial study to investigate its inhibitory action on Staphylococcus aureus compared with unloaded GPS NSs. Also, a well-designed in vivo study on streptozotocin-induced diabetic rats has been performed to examine the wound healing effect of GPS-PLGA NSs followed by histological examination of wound incisions at different day intervals throughout the study. Results The optimum GPS PLGA NSs (F5) with well-controlled particle size (250.10±07.86 nm), relative high entrapment efficiency (83.35±5.71), and the highest % cumulative release (85.79±8.74) have increased the antimicrobial activity as it exhibited a higher inhibitory effect on bacterial growth than free GPS. F5 showed a greater enhancing impact on wound healing and a significant stimulating effect on the synthesis of collagen fibers compared with free GPS. Conclusion These findings demonstrate that loading GPS into PLGA NSs is considered a promising strategy ensuring optimum GPS delivery for potential management of wounds.
Collapse
Affiliation(s)
- May Almukainzi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Thanaa A El-Masry
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Walaa A Negm
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Al Azhar University, Cairo, Egypt
| | | | - Mohamed A Khattab
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Dalia H Abdelkader
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
- Correspondence: Dalia H Abdelkader, Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt, Tel +20 40 3336007, Fax +20 40 3335466, Email ;
| |
Collapse
|
28
|
Targeting Cancer Cell Tight Junctions Enhances PLGA-Based Photothermal Sensitizers' Performance In Vitro and In Vivo. Pharmaceutics 2021; 14:pharmaceutics14010043. [PMID: 35056939 PMCID: PMC8778343 DOI: 10.3390/pharmaceutics14010043] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/11/2021] [Accepted: 12/22/2021] [Indexed: 12/16/2022] Open
Abstract
The development of non-invasive photothermal therapy (PTT) methods utilizing nanoparticles as sensitizers is one of the most promising directions in modern oncology. Nanoparticles loaded with photothermal dyes are capable of delivering a sufficient amount of a therapeutic substance and releasing it with the desired kinetics in vivo. However, the effectiveness of oncotherapy methods, including PTT, is often limited due to poor penetration of sensitizers into the tumor, especially into solid tumors of epithelial origin characterized by tight cellular junctions. In this work, we synthesized 200 nm nanoparticles from the biocompatible copolymer of lactic and glycolic acid, PLGA, loaded with magnesium phthalocyanine, PLGA/Pht-Mg. The PLGA/Pht-Mg particles under the irradiation with NIR light (808 nm), heat the surrounding solution by 40 °C. The effectiveness of using such particles for cancer cells elimination was demonstrated in 2D culture in vitro and in our original 3D model with multicellular spheroids possessing tight cell contacts. It was shown that the mean inhibitory concentration of such nanoparticles upon light irradiation for 15 min worsens by more than an order of magnitude: IC50 increases from 3 µg/mL for 2D culture vs. 117 µg/mL for 3D culture. However, when using the JO-4 intercellular junction opener protein, which causes a short epithelial–mesenchymal transition and transiently opens intercellular junctions in epithelial cells, the efficiency of nanoparticles in 3D culture was comparable or even outperforming that for 2D (IC50 = 1.9 µg/mL with JO-4). Synergy in the co-administration of PTT nanosensitizers and JO-4 protein was found to retain in vivo using orthotopic tumors of BALB/c mice: we demonstrated that the efficiency in the delivery of such nanoparticles to the tumor is 2.5 times increased when PLGA/Pht-Mg nanoparticles are administered together with JO-4. Thus the targeting the tumor cell junctions can significantly increase the performance of PTT nanosensitizers.
Collapse
|