1
|
Guo Y, Wang H, Zhu Q, Mao Y, Wen X, Zhang X, Mao S, Yuan H, Guan J. Exploration of enalapril-lacidipine co-amorphous system with superior dissolution, in vivo absorption and physical stability via incorporated into mesoporous silica. Eur J Pharm Sci 2025; 207:107033. [PMID: 39921148 DOI: 10.1016/j.ejps.2025.107033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/17/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
In the present study, enalapril (ENP) was taking as a potential co-former to fabricate co-amorphous system with lacidipine (LCDP). The ENP/LCDP co-amorphous system was firstly prepared with or without mesoporous SiO2 and characterized by DSC, XRD and SEM technologies. The potential molecular interactions were evaluated by FTIR spectrums. Furthermore, the dissolution and pharmacokinetics behavior of various formulations were also carried out. It was demonstrated that the completely co-amorphization was obtained at ENP/LCDP 2:1 molar ratio by the intermolecular interactions between ENP and LCDP. The ENP/LCDP co-amorphous system significantly improve the dissolution rate of LCDP and ENP respectively. Compared to the naked ENP/LCDP co-amorphous system, remarkable enhancement of dissolution rate and bioavailability of model drugs was observed by incorporated the co-amorphous system into mesoporous SiO2, and a superior physical stability was also observed after accelerated study. Raman mapping revealed that the less microstructure phase separation could be the main reason for the better stability in presence of mesoporous SiO2. In conclusion, ENP could be successfully used as a potential co-former to fabricate co-amorphous system with poorly water-soluble drugs and collaborates the co-amorphous with mesoporous SiO2 become a promising strategy to achieve stable amorphous formulation for further enhancement of dissolution rate and bioavailability.
Collapse
Affiliation(s)
- Yuhan Guo
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hanyu Wang
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiang Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Ying Mao
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiangce Wen
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Huiya Yuan
- Department of Forensic Analytical Toxicology, China Medical University School of Forensic Medicine, Shenyang 110112, China; Liaoning Province Key Laboratory of Forensic Bio-evidence Science, Shenyang 110112, China; China Medical University Center of Forensic Investigation, Shenyang 110112, China.
| | - Jian Guan
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
2
|
Han J, Yue Z, Sun W, Fang W, Zhang Y, Liu X, Wang J, Chen J. Design of indomethacin novel small molecule hydrogels for concomitant release and permeability increases. Int J Pharm 2025; 672:125286. [PMID: 39892673 DOI: 10.1016/j.ijpharm.2025.125286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/06/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
With the expansion of gel research, organic small molecule gels are beginning to gain attention. Whether the small-molecule gel approach can be a new formulation strategy of solubilization and permeation promotion for poorly soluble drugs needs to be explored in this study. The model ingredient indomethacin (IND) as a nonsteroidal anti-flammatory drug shows limited therapeutic application mainly due to its low water solubility. Herein, the IND small molecule hydrogel was design to co-formed with a small molecule ligand by integrating theory-model-experiment techniques. Then, the formed IND small molecule hydrogels (i.e., IND-MEG hydrogel and IND-ARG hydrogel) with meglumine (MEG) or arginine (ARG) appeared typical 3-D network with good rheology. In comparison to crystalline IND, the solubilities of IND-MEG hydrogel and IND-ARG hydrogel exhibited 506.71-fold and 479.63-fold improvements, respectively. Meanwhile, both IND hydrogels performed significantly enhanced release rate and degree, and maintained supersaturation for a long time arising from the complexation reaction of IND and ligand, which was revealed by phase solubility and fluorescence quenching studies. Furthermore, the designed IND hydrogels significantly promoted IND membrane permeability compared to the commercial IND hydrogel, and enhanced the development potential of novel IND hydrogels for oral and transdermal applications. Therefore, this study provides a new formulation technique to increase the solubility/release and permeability of poorly water-soluble drugs by designing their small molecule hydrogel systems.
Collapse
Affiliation(s)
- Jiawei Han
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China; Changzhou Pharmaceutical Factory Co., LTD, Changzhou 213018, PR China; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Zhimin Yue
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Wen Sun
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Weitao Fang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Yunran Zhang
- Changzhou Pharmaceutical Factory Co., LTD, Changzhou 213018, PR China
| | - Xiaoqian Liu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China.
| | - Jue Wang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Jiaxin Chen
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China.
| |
Collapse
|
3
|
Zhang K, Miao Y, Liu H, Hu L, Tang M, Duan Y, Gao Y, Qian S, Zhang J, Wei Y. Deaggregation of micronized insoluble drugs by incorporating mannitol form α. Int J Pharm 2025; 671:125161. [PMID: 39761708 DOI: 10.1016/j.ijpharm.2024.125161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/06/2024] [Accepted: 12/31/2024] [Indexed: 01/19/2025]
Abstract
Micronization is frequently employed to increase the dissolution of poorly soluble drugs, but it easily led to powder aggregation and difficult to mix well on the micro level with poor content uniformity and erratic dissolution behavior. Mannitol is the most commonly used pharmaceutical excipient, and its β form (β-mannitol) is commercially available and extensively investigated, whereas form α (α-mannitol) remain poorly understood. Here, this study demonstrated that α-mannitol could significantly eliminate aggregation phenomena of micronized drugs (i.e., lurasidone hydrochloride, indomethacin and ibuprofen) after general mixing, while β-mannitol could not. In addition, the drug dissolutions after mixing with α-mannitol were also significantly higher than that with β one. This stemmed from the different molecular orientation on their dominant crystal facets, resulting in greater number of unsaturated hydrogen bonds site (0.050 Å-2vs 0.042 Å-2) on α-mannitol's crystal facet {013}, leading to more positive charge and negative charge site and higher surface energy (64.42 mJ/m2vs 50.26mJ/m2). Subsequently, this increased the interaction between drug and α-mannitol, which is higher than interaction between drug itself, also higher than interaction between drug and β-mannitol, resulting in adhesion of drug powder on α-mannitol rather than cohesion into aggregates. Moreover, after 30 days of storage at 60 °C or 92.5 % relative humidity, the polymorphic purity of α-mannitol remained above 99 %, indicating good polymorphic stability during transportation and storage. This work illustrates that α-mannitol exhibited great potential to serve as a new pharmaceutical excipient in solid dosage forms. We believe that utilizing the benefits of polymorphism and mitigating their limitations will exert great potential for the development of functional pharmaceutical excipients.
Collapse
Affiliation(s)
- Ke Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009 PR China
| | - Yan Miao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 PR China
| | - Huina Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 PR China
| | - Liqin Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009 PR China
| | - Mi Tang
- Jiangsu Litaier Pharma Ltd. Company, Nanjing 211100 PR China
| | - Yingran Duan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 PR China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 PR China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 PR China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009 PR China.
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 PR China.
| |
Collapse
|
4
|
Rai M, Feitosa CM, Ingle AP, Golinska P. Harnessing bioactive nanocurcumin and curcumin nanocomposites to combat microbial pathogens: a comprehensive review. Crit Rev Biotechnol 2025:1-23. [PMID: 39978957 DOI: 10.1080/07388551.2025.2458006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/18/2024] [Accepted: 12/29/2024] [Indexed: 02/22/2025]
Abstract
The alarming rise in bacterial infections including those caused by multidrug-resistant pathogens has garnered the attention of the scientific community, compelling them to explore as novel and effective alternatives to combat these infections. Moreover, the emerging viruses such as Influenza A virus subtype H1N1 (A/H1N1), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), Ebolavirus, recent coronavirus (SARS-CoV-2), etc. also has a significant impact all over the world. Therefore, the management of all such infections without any side effects is one of the most important challenges for the scientific community. Hence, the development of novel and effective antimicrobial agents is a need of the hour. In this context, Curcuma longa, commonly known as turmeric, has been used as traditional medicine for centuries to manage and treat such infections. Its bioactive constituent, curcumin has garnered significant attention in medicine due to its multifunctional bioactivities. Apart from antimicrobial properties, it also possesses potent antioxidant and anti-inflammatory activities. However, available reports suggest that its low solubility, stability, and biocompatibility limit its use. Moreover, on the other hand, it has been reported that these limitations associated with the use of curcumin can be resolved by transforming it into its nano-form, specifically curcumin nanoparticles. Recent advancements have brought curcumin nanoparticles into the spotlight, showcasing superior properties and a broad spectrum of antimicrobial applications. In this review, we have mainly focused on antimicrobial potential of curcumin and nanocurcumin, mechanisms underpinning their antimicrobial actions. Moreover, other aspects of toxicity and safety guidelines for nano-based products have been also discussed.
Collapse
Affiliation(s)
- Mahendra Rai
- Department of Biotechnology, SGB Amravati University, Amravati, Maharashtra, India
- Department of Chemistry, Federal University of Piaui, Teresina, Brazil
| | | | - Avinash P Ingle
- Biotechnology Centre, Department of Agricultural Botany, Dr. PDKV, Akola, Maharashtra, India
| | - Patrycja Golinska
- Department of Microbiology, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
5
|
Garbiec E, Rosiak N, Sip S, Zalewski P, Cielecka-Piontek J. Curcumin Solubility and Bioactivity Enhancement Through Amorphization with Tryptophan via Supercritical Fluid Technology. Int J Mol Sci 2025; 26:855. [PMID: 39859569 PMCID: PMC11766122 DOI: 10.3390/ijms26020855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Curcumin, a compound known for its antioxidant and neuroprotective properties, faces challenges due to its low water solubility, which can limit its effectiveness. One effective method to address this issue is through amorphization. Incorporating curcumin into a polymeric matrix to form amorphous solid dispersions is a common approach. Another strategy involves co-amorphous systems, where low-molecular-weight components act as co-formers. A recent innovative approach combines these strategies. This study used tryptophan as a co-former and prepared systems using supercritical fluid technology. The amorphous nature of two systems was confirmed through X-ray powder diffraction: one with 10% curcumin and a polymer, and another with 10% curcumin, a polymer, and tryptophan. Fourier-transform infrared analysis demonstrated molecular interactions among all components in the systems. Scanning electron microscopy revealed that the amorphization process significantly modified the morphology of the powder particles. The ternary system with tryptophan notably increased curcumin solubility by over 300-fold. The amorphous form of curcumin in both systems exhibited significantly higher dissolution rates compared to its crystalline form. The system with tryptophan showed more than a threefold improvement in permeability according to the PAMPA test. The enhanced solubility led to over a sixfold increase in antioxidant activity and a 25-fold improvement in the inhibition of the enzyme butyrylcholinesterase.
Collapse
Affiliation(s)
| | | | | | | | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznan, Poland; (E.G.); (N.R.); (S.S.); (P.Z.)
| |
Collapse
|
6
|
Dong Z, Jin W, Wang J, Yin H, Ma Y, Hu X, Wang J, Liu C, Wang W. A drug-drug co-amorphous system for highly improved solubility of breviscapine: an experimental and computational study. Sci Rep 2024; 14:31183. [PMID: 39732994 PMCID: PMC11682056 DOI: 10.1038/s41598-024-82524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Drug-drug co-amorphous systems are a promising approach to improve the aqueous solubility of poorly water-soluble drugs. This study explores the combination of breviscapine (BRE) and matrine (MAT) form an amorphous salt, aiming to synergistically enhance the solubility and dissolution of BRE. In silico analysis of electrostatic potential and local ionization energy were conducted on BRE-MAT complex to predict the intermolecular interactions, and solvent-free energies were calculated using thermodynamic integration and density functional theory. The co-amorphous mixture, prepared by solvent evaporation, was characterized using various analytical techniques, including polarized microscopy, differential scanning calorimetry, and powder X-ray diffraction, confirming its amorphous nature. Fourier transform infrared spectroscopy and molecular dynamic simulations revealed strong hydrogen bonding, with a proton transfer from the carboxyl group of BRE to the tertiary amine nitrogen of MAT. The resulting co-amorphous salt demonstrated substantial solubility improvement (> 8000-fold in water) and enhanced in vitro dissolution of BRE. The study also confirmed that the co-amorphous salt maintained physical stability at 40 °C and 75% relative humidity over 6 months. These findings provide a viable strategy for developing drug-drug co-amorphous formulations to enhance solubility and stability, with significant potential for pharmaceutical applications.
Collapse
Affiliation(s)
- Zhi Dong
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Wenbin Jin
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
- Yunnan Key Laboratory of Southern Medicinal Utilization, Kunming, 650500, China
| | - Jiao Wang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Huiyun Yin
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yan Ma
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xixi Hu
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Jiali Wang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Chen Liu
- General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
| | - Wenping Wang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China.
- Yunnan Key Laboratory of Southern Medicinal Utilization, Kunming, 650500, China.
| |
Collapse
|
7
|
Song Y, Chen Y, Heng W, Hu E, Shi Y, Gao Y, Zhang J, Wei Y, Qian S. The potential of supramolecular synthon to develop coamorphous systems with tailored physical stability: Mechanistic insights integrating kinetics and thermodynamics. Int J Pharm 2024; 667:124857. [PMID: 39442766 DOI: 10.1016/j.ijpharm.2024.124857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/08/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Coamorphous drug delivery systems have received increasing interest owing to their potential to improve the solubility, dissolution and bioavailability of poorly water-soluble drugs. However, the crystallization risk is one of major limitations in their application. It has been widely recognized that the coformer plays a vital role in physical stability of coamorphous formulation. Unfortunately, the screen of optimal coformer still adopts a trial-and-error method, which is time-consuming and expensive. Herein, a supramolecular synthon approach based on the interaction between functional groups, was exploited to design coamorphous systems (CMs) consisting of lurasidone hydrochloride (LH) and three coformers, saccharin (SAC), L-tryptophan (TRP), and L-cysteine hydrochloride (CYS). X-ray powder diffraction suggested the order of physical stability of the coamorphous systems was ranked as LH-CYS CM > LH-TRP CM > LH-SAC CM. The charge-assisted hydrogen bond between LH and coformer was confirmed by infrared spectroscopy and solid-state 13C NMR. Moreover, structural, electronic, and molecular interaction information, especially hydrogen bonding interactions, were quantified by theoretical calculations, including miscibility calculations, molecular dynamics simulations and quantum chemical calculations. It was revealed that LH-CYS CM exhibited the best miscibility, strongest binding energy and strongest H-bond with partially covalent character, demonstrating the significant role of supramolecular synthon in stabilizing coamorphous formulations. Interestingly, LH-TRP CM, not LH-CYS CM, exhibited the lowest molecular mobility among three coamorphous systems, which was inconsistent with their physical stability. But from thermodynamic perspective, the order of configurational entropy and physical stability of coamorphous systems was completely consistent. We shed light on the comprehensive effects of molecular mobility and configurational entropy on physical stability of coamorphous systems. Importantly, the relationship between supramolecular synthon and kinetic/thermodynamic mechanisms was also discussed, and the positive correlation between configurational entropy and intermolecular interactions was proposed in this paper. Our findings demonstrated the great potential of supramolecular synthon in designing coamorphous systems with tailored physical stability, and further provided a deeper insight into the mechanisms of physical stability of coamorphous systems.
Collapse
Affiliation(s)
- Yutong Song
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yu Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Weili Heng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Enshi Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yunyi Shi
- Department of Biology, Emory University, Atlanta, GA 30332, United States
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
8
|
Yang Y, Ke Y, Xie W, Li Z, Tao L, Shen W, Chen Y, Cheng H, Chen J, Yan G, Li W, Li M, Li J. Amphiphilic disodium glycyrrhizin as a co-former for ketoconazole co-amorphous systems: Biopharmaceutical properties and underlying molecular mechanisms. Int J Pharm 2024; 665:124673. [PMID: 39245085 DOI: 10.1016/j.ijpharm.2024.124673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Co-amorphous systems (CAMs) have been extensively investigated to improve the dissolution of hydrophobic drugs. However, drug precipitation during the storage or dissolution of CAMs has still been a major challenge. Here, disodium glycyrrhizin (Na2GA) was first used as a co-former in CAMs based on its multiple hydroxyl groups and amphiphilic structure. Ketoconazole (KTZ), a BCS class II drug, was selected as a model drug. KTZ-Na2GA CAMs at mass ratios of 1:1, 1:2.5, 1:5 and 1:10 were prepared by the spray drying method and further characterised by PXRD and DSC. The 1:2.5, 1:5 and 1:10 groups exhibited significantly enhanced Cmax (all approximately 26.67-fold) and stable maintenance of supersaturation compared to the crystalline KTZ and the corresponding physical mixtures in non-sink dissolution tests, while the 1:1 group exhibited an unstable medium Cmax (all approximately 14.67-fold). The permeability tests revealed that the permeation rate of KTZ in KTZ-Na2GA CAMs under the concentration of Na2GA in solution above the critical micelle concentration (CMC) showed a significant downwards trend compared to that below CMC. The underlying molecular mechanisms were involved in molecular miscibility, hydrogen bond interactions, solubilisation and crystallisation inhibition by Na2GA. Pharmacokinetic studies demonstrated that the AUC0-∞ of KTZ in 1:1, 1:2.5, 1:5 and 1:10 groups were significantly higher than those of the crystalline KTZ group with 2.13-, 2.30-, 2.16- and 1.86-fold, respectively (p < 0.01). In conclusion, Na2GA has proven to be a promising co-former in CAMs to enhance hydrophobic drug dissolution and bioavailability. Its effect on intestinal permeation rate of drugs also deserves attention.
Collapse
Affiliation(s)
- Yujie Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China; Beichen Institute for Drug Control, Tianjin Institute for Drug Control, Tianjin 300400, China
| | - Yixin Ke
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Wei Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Zhuoyuan Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China; Department of Pharmacy, The Affiliated Hospital of Nanjing University of Chinese Medicine, 157 Daming Avenue, Nanjing 210001, China
| | - Lin Tao
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China; Department of Pharmacy, The Affiliated Hospital of Nanjing University of Chinese Medicine, 157 Daming Avenue, Nanjing 210001, China
| | - Wen Shen
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Yaxi Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Hongqing Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Jinfeng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Guojun Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Wen Li
- Department of Pharmacy, The Affiliated Hospital of Nanjing University of Chinese Medicine, 157 Daming Avenue, Nanjing 210001, China
| | - Mengyuan Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China.
| | - Junsong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
9
|
Niederquell A, Herzig S, Schönenberger M, Stoyanov E, Kuentz M. Computational Support to Explore Ternary Solid Dispersions of Challenging Drugs Using Coformer and Hydroxypropyl Cellulose. Mol Pharm 2024; 21:5619-5631. [PMID: 39388157 PMCID: PMC11539070 DOI: 10.1021/acs.molpharmaceut.4c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
A majority of drugs marketed in amorphous formulations have a good glass-forming ability, while compounds less stable in the amorphous state still pose a formulation challenge. This work explores ternary solid dispersions of two model drugs with a polymer (i.e., hydroxypropyl cellulose) and a coformer as stabilizing excipients. The aim was to introduce a computational approach by preselecting additives using solubility parameter intervals (i.e., overlap range of solubility parameter, ORSP) followed by more advanced COSMO-RS theory modeling. Thus, a mapping of calculated mixing enthalpy and melting points is proposed for in silico evaluation prior to hot melt extrusion. Following experimental testing of process feasibility, the selected formulations were tested for their physical stability using conventional bulk analytics and by confocal laser scanning and atomic force microscopy imaging. In line with the in silico screening, dl-malic and l-tartaric acid (20%, w/w) in HPC formulations showed no signs of early drug crystallization after 3 months. However, l-tartaric acid formulations displayed few crystals on the surface, which was likely a humidity-induced surface phenomenon. Although more research is needed, the conclusion is that the proposed computational small-scale extrusion approach of ternary solid dispersion has great potential in the formulation development of challenging drugs.
Collapse
Affiliation(s)
- Andreas Niederquell
- Institute
for Pharma Technology, University of Applied
Sciences and Arts Northwestern Switzerland, School of Life Sciences
FHNW, Hofackerstr. 30, 4132 Muttenz, Switzerland
| | - Susanne Herzig
- Institute
for Pharma Technology, University of Applied
Sciences and Arts Northwestern Switzerland, School of Life Sciences
FHNW, Hofackerstr. 30, 4132 Muttenz, Switzerland
| | - Monica Schönenberger
- Nano
Imaging Lab, Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Edmont Stoyanov
- Nisso
Chemical Europe, Berliner
Allee 42, 40212 Düsseldorf, Germany
| | - Martin Kuentz
- Institute
for Pharma Technology, University of Applied
Sciences and Arts Northwestern Switzerland, School of Life Sciences
FHNW, Hofackerstr. 30, 4132 Muttenz, Switzerland
| |
Collapse
|
10
|
Zhang C, Li B, Bai Y, Liu Y, Zhang Y, Zhang J. Polymers Enhance Chlortetracycline Hydrochloride Solubility. Int J Mol Sci 2024; 25:10591. [PMID: 39408919 PMCID: PMC11477051 DOI: 10.3390/ijms251910591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Chlortetracycline hydrochloride (CTC) is a broad-spectrum tetracycline antibiotic with a wide range of antibacterial activities. Due to low solubility, poor stability, and low bioavailability, clinical preparation development is limited. We sought to improve these solubility and dissolution rates by preparing solid dispersions. A hydrophilic polymer was selected as the carrier, and a solid dispersion was prepared using a medium grinding method, with samples characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), powder X-ray diffraction (PXRD), Fourier-transform infrared spectroscopy (FT-IR), and particle size distribution (PSD). To maximize CTC solubility and stability, different polymer types and optimal drug-to-polymer ratios were screened. The solubility of optimized povidone K30 (PVPK30) (1/0.75, w/w)-, hydroxypropyl-β-cyclodextrin (HP-β-CD) (1/2, w/w)-, and gelatin (1/1, w/w)-based solid dispersions was 6.25-, 7.7-, and 3.75-fold higher than that of pure CTC powder, respectively. Additionally, in vitro dissolution studies showed that the gelatin-based solid dispersion had a higher initial dissolution rate. SEM and PS analyses confirmed that this dispersion had smaller and more uniform particles than PVPK30 and HP-β-CD dispersions. Therefore, successful solid polymer dispersion preparations improved the CTC solubility, dissolution rates, and stability, which may have potential as drug delivery systems.
Collapse
Affiliation(s)
- Chao Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Anning District, Lanzhou 730070, China; (C.Z.); (Y.L.)
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Qilihe District, Lanzhou 730050, China; (B.L.); (Y.B.)
| | - Bing Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Qilihe District, Lanzhou 730050, China; (B.L.); (Y.B.)
| | - Yubin Bai
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Qilihe District, Lanzhou 730050, China; (B.L.); (Y.B.)
| | - Yangling Liu
- College of Veterinary Medicine, Gansu Agricultural University, Anning District, Lanzhou 730070, China; (C.Z.); (Y.L.)
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Qilihe District, Lanzhou 730050, China; (B.L.); (Y.B.)
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Anning District, Lanzhou 730070, China; (C.Z.); (Y.L.)
| | - Jiyu Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Anning District, Lanzhou 730070, China; (C.Z.); (Y.L.)
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Qilihe District, Lanzhou 730050, China; (B.L.); (Y.B.)
| |
Collapse
|
11
|
Han J, Yang Y, Hou Y, Tang M, Zhang Y, Zhu Y, Liu X, Wang J, Gao Y. Insight into Formation, Synchronized Release and Stability of Co-Amorphous Curcumin-Piperine by Integrating Experimental-Modeling Techniques. J Pharm Sci 2024; 113:1874-1884. [PMID: 38354909 DOI: 10.1016/j.xphs.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Intermolecular interactions between drug and co-former are crucial in the formation, release and physical stability of co-amorphous system. However, the interactions remain difficult to investigate with only experimental tools. In this study, intermolecular interactions of co-amorphous curcumin-piperine (i.e., CUR-PIP CM) during formation, dissolution and storage were explored by integrating experimental and modeling techniques. The formed CUR-PIP CM exhibited the strong hydrogen bond interaction between the phenolic OH group of CUR and the CO group of PIP as confirmed by FTIR, ss 13C NMR and molecular dynamics (MD) simulation. In comparison to crystalline CUR, crystalline PIP and their physical mixture, CUR-PIP CM performed significantly increased dissolution accompanied by the synchronized release of CUR and PIP, which arose from the greater interaction energy of H2O-CUR molecules and H2O-PIP molecules than CUR-PIP molecules, breaking the hydrogen bond between CUR and PIP molecules, and then causing a pair-wise solvation of CUR-PIP CM at the molecular level. Furthermore, the stronger intermolecular interaction between CUR and PIP was revealed by higher binding energy of CUR-PIP molecules, which contributed to the excellent physical stability of CUR-PIP CM over amorphous CUR or PIP. The study provides a unique insight into the formation, release and stability of co-amorphous system from MD perspective. Meanwhile, this integrated technique can be used as a practical methodology for the future design of co-amorphous formulations.
Collapse
Affiliation(s)
- Jiawei Han
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; Changzhou Pharmaceutical Factory Co., LTD, Changzhou 213018, PR China
| | - Yang Yang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Yunjuan Hou
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Mengyuan Tang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Yunran Zhang
- Changzhou Pharmaceutical Factory Co., LTD, Changzhou 213018, PR China
| | - Yijun Zhu
- Changzhou Pharmaceutical Factory Co., LTD, Changzhou 213018, PR China
| | - Xiaoqian Liu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China.
| | - Jue Wang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China.
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
12
|
Song X, Luo Y, Zhao W, Liu S, Wang Y, Zhang H. Preparation and Characterization of Lutein Co-Amorphous Formulation with Enhanced Solubility and Dissolution. Foods 2024; 13:2029. [PMID: 38998535 PMCID: PMC11241110 DOI: 10.3390/foods13132029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Lutein is an oxygenated fat-soluble carotenoid and a functional compound with proven health benefits for the human body. Nevertheless, the poor water solubility and low oral bioavailability of lutein greatly limit its application. To address this, we developed an effective approach to enhance the water solubility of lutein through co-amorphous formulation. Specifically, the lutein-sucralose co-amorphous mixture was prepared at a molar ratio of 1:1 using ethanol and water as solvents by employing the solvent evaporation method, followed by solid-state characterization and dissolution testing conducted to assess the properties of the formulation. The X-ray diffraction pattern with an amorphous halo and the differential scanning calorimetry thermogram with no sharp melting peaks confirmed the formation of a binary co-amorphous system. Changes in peak shape, position, and intensity observed in the Fourier transform infrared spectroscopy spectrum revealed intermolecular interactions between lutein and sucralose molecules, while molecular dynamics simulations identified interaction sites between their hydroxyl groups. Additionally, dissolution testing demonstrated better dissolution performance of lutein in the co-amorphous form compared to pure lutein and physical mixture counterparts. Our findings present a novel strategy for improving the water solubility of lutein to make better use of it.
Collapse
Affiliation(s)
- Xuening Song
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.S.); (Y.L.); (W.Z.); (S.L.); (Y.W.)
| | - Yingting Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.S.); (Y.L.); (W.Z.); (S.L.); (Y.W.)
| | - Wenduo Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.S.); (Y.L.); (W.Z.); (S.L.); (Y.W.)
| | - Simiao Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.S.); (Y.L.); (W.Z.); (S.L.); (Y.W.)
| | - Yuzhuo Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.S.); (Y.L.); (W.Z.); (S.L.); (Y.W.)
| | - Hao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.S.); (Y.L.); (W.Z.); (S.L.); (Y.W.)
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100091, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
13
|
Zhang X, Su M, Meng W, Zhao J, Huang M, Zhang J, Qian S, Gao Y, Wei Y. Trace polymer coated clarithromycin spherulites: Formation mechanism, improvement in pharmaceutical properties and development of high-drug-loading direct compression tablets. Int J Pharm 2024; 654:123944. [PMID: 38403089 DOI: 10.1016/j.ijpharm.2024.123944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Clarithromycin (CLA) is a high dose antibiotic drug exhibiting poor flowability and tabletability, making the tablet development challenging. This study aims to develop spherulitic CLA by introducing trace amount of polymer in crystallization solution. Its formation mechanism, physicochemical properties and potential for the direct compression (DC) tablets development were also investigated. Morphological analyses and the in situ observation on crystallization process revealed that the CLA spherulites are formed by fractal branching growth from both sides of the threadlike precursor fibers. 1H NMR analysis and nucleation time monitoring indicated that the existence of hydroxypropyl cellulose in solution slowed down the crystal nucleation and growth rate by forming hydrogen bonding interactions with CLA molecules, making the system maintain high supersaturation, providing high driving forces for CLA spherulitic growth. In comparison to commercial CLA, the CLA spherulites exhibit profoundly improved flowability, tabletability and dissolution behaviors. XPS, contact angle and Raman mapping analysis confirmed the presence of a thin HPC layer on the surfaces and interior of CLA spherulitic particles, resulting in increasing powder plasticity, interparticulate bonding strength and powder wettability, thus better tabletability and dissolution performances. The improved flowability and tabletability of CLA spherulites also enabled the successful development of DC tablet formulation with a high CLA loading (82.8 wt%) and similar dissolution profiles to reference listed drug. This study provides a novel solid form of CLA with superior manufacturability for further development.
Collapse
Affiliation(s)
- Xiaohua Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; Nanjing Chia-Tai Tianqing Pharmaceutical Company, Nanjing 210046, PR China
| | - Meiling Su
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Wenhui Meng
- Nanjing Chia-Tai Tianqing Pharmaceutical Company, Nanjing 210046, PR China; School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jiyun Zhao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Maoli Huang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
14
|
Wang H, Zhao P, Ma R, Jia J, Fu Q. Drug-drug co-amorphous systems: An emerging formulation strategy for poorly water-soluble drugs. Drug Discov Today 2024; 29:103883. [PMID: 38219970 DOI: 10.1016/j.drudis.2024.103883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Overcoming the poor water solubility of small-molecule drugs is a major challenge in the development of clinical pharmaceuticals. Amorphization of crystalline drugs is a highly effective strategy to improve their aqueous solubility. However, amorphous drugs are thermodynamically unstable and likely to crystallize during manufacturing and storage. Recently, drug-drug co-amorphous systems have emerged as a novel strategy to not only enable enhanced dissolution and physical stability of the individual drugs within the system but also to provide a strategy for combination therapy of the same or different clinical indications. This review serves to highlight advances in the methods used to manufacture and characterize drug-drug co-amorphous systems, summarize drug-drug co-amorphous applications reported in recent decades, and provide an outlook on future possibilities and perspectives.
Collapse
Affiliation(s)
- Hongge Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Peixu Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Ruilong Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jirun Jia
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
15
|
Li J, Wang X, Yu D, Zhoujin Y, Wang K. Molecular complexes of drug combinations: A review of cocrystals, salts, coamorphous systems and amorphous solid dispersions. Int J Pharm 2023; 648:123555. [PMID: 37890646 DOI: 10.1016/j.ijpharm.2023.123555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
As the advancements in the medical technology and healthcare develop through the years, combinational therapy has evolved to be an important treatment modality in many disease settings, including cancer, cardiovascular disease and infectious diseases. In an effort to alleviate "pill burden" and improve patient compliance, fixed dose combinations (FDCs) have been developed to be used as effective therapeutics. Among all FDCs, the category of drug-drug molecular complexes has been proven an efficient methodology in designing and treating diseases, with many drugs being approved. Among all drug-drug molecular complexes, drug-drug cocrystals, salts, coamorphous systems and solid dispersions have been successfully developed and many have been approved by the FDA. In this review, we dwell deeply into the molecular mechanisms behind the different types of drug-drug molecular complexes, including the key functional groups involved in the intermolecular interactions, the applications of each category of molecular complexes, as well as the advantages and challenges thereof. This comprehensive review provides useful insights into the practical design and manufacture of drug-drug molecular complexes and points out the future direction for the development of new advantageous combinational therapies that benefit more patients.
Collapse
Affiliation(s)
- Jinghan Li
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Xiyan Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Dongyue Yu
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, NJ 08540, United States
| | - Yunping Zhoujin
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Kunlin Wang
- BeBetter Med Inc., Guangzhou, 510663, PR China; College of Pharmacy, Jinan University, Guangzhou, 510006, PR China.
| |
Collapse
|
16
|
Han J, Tang M, Yang Y, Sun W, Yue Z, Zhang Y, Zhu Y, Liu X, Wang J. Amorphous solid dispersions: Stability mechanism, design strategy and key production technique of hot melt extrusion. Int J Pharm 2023; 646:123490. [PMID: 37805146 DOI: 10.1016/j.ijpharm.2023.123490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Solid dispersion (SD) system has been used as an effective formulation strategy to increase in vitro and in vivo performances of poorly water-soluble drugs, such as solubility/dissolution, stability and bioavailability. This review provides a comprehensive SD classification and identifies the most popular amorphous solid dispersions (ASDs). Meanwhile, this review further puts forward the systematic design strategy of satisfactory ASDs in terms of drug properties, carrier selection, preparation methods and stabilization mechanisms. In addition, hot melt extrusion (HME) as the continuous manufacturing technique is described including the principle and structure of HME instrument, key process parameters and production application, in order to guide the scale-up of ASDs and develop more ASD products to the market in pharmaceutical industry.
Collapse
Affiliation(s)
- Jiawei Han
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China; Changzhou Pharmaceutical Factory Co., LTD, Changzhou 213018, PR China; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Mengyuan Tang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Yang Yang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Wen Sun
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Zhimin Yue
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Yunran Zhang
- Changzhou Pharmaceutical Factory Co., LTD, Changzhou 213018, PR China
| | - Yijun Zhu
- Changzhou Pharmaceutical Factory Co., LTD, Changzhou 213018, PR China
| | - Xiaoqian Liu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China.
| | - Jue Wang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
17
|
Zou Z, Huang Q, Li X, Liu X, Yin L, Zhao Y, Liang G, Wu W. Dissolution changes in drug-amino acid/biotin co-amorphous systems: Decreased/increased dissolution during storage without recrystallization. Eur J Pharm Sci 2023; 188:106526. [PMID: 37442486 DOI: 10.1016/j.ejps.2023.106526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Co-amorphous systems have been proven to be a promising strategy to address the poor water solubility of poorly water-soluble drugs. Generally, the initial dissolution behaviors after co-amorphous system preparation and the potential recrystallization during storage are used to evaluate the performance of co-amorphous systems. However, this study reveals that decreased dissolution and unexpected increased dissolution were observed during storage though the co-amorphous systems maintained amorphous form. Three drugs (valsartan, tadalafil, mebendazole) and three co-formers (arginine, tryptophan, biotin) were used to prepare co-amorphous systems and the samples were stored for different times. After stored for 80 d, most of the co-amorphous systems maintained amorphous form, however, decreased and increased intrinsic dissolution rates (IDRs) were both observed in these non-recrystallized co-amorphous systems. The moisture changes of the systems during storage and the possible drug-co-former molecular interactions showed no effect on the dissolution changes, while phase separation might play a role in it. In conclusion, more attention should be paid to the dissolution changes of co-amorphous systems during storage. Focusing on the initial dissolution behaviors after sample preparation and the physical recrystallization during storage is not enough for the development of co-amorphous systems in future.
Collapse
Affiliation(s)
- Zhiren Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Science, Wenzhou 325024, Zhejiang, China
| | - Qiang Huang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Science, Wenzhou 325024, Zhejiang, China
| | - Xiaobo Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Science, Wenzhou 325024, Zhejiang, China
| | - Xianzhi Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Science, Wenzhou 325024, Zhejiang, China
| | - Lina Yin
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310012, China
| | - Yunjie Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Science, Wenzhou 325024, Zhejiang, China; Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.
| | - Wenqi Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Science, Wenzhou 325024, Zhejiang, China.
| |
Collapse
|
18
|
Su M, Huang M, Pang Z, Wei Y, Gao Y, Zhang J, Qian S, Heng W. Functional in situ formed deep eutectic solvents improving mechanical properties of powders by enhancing interfacial interactions. Int J Pharm 2023:123181. [PMID: 37364786 DOI: 10.1016/j.ijpharm.2023.123181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 06/28/2023]
Abstract
As novel green solvents, deep eutectic solvent (DES) with distinct liquid properties has gained increasing interest in pharmaceutical fields. In this study, DES was firstly utilized for improving powder mechanical properties and tabletability of drugs, and the interfacial interaction mechanism was explored. Honokiol (HON), a natural bioactive compound, was used as model drug, and two novel HON-based DESs were synthesized with choline chloride (ChCl) and l-menthol (Men), respectively. The extensive non-covalent interactions were account for DES formation according to FTIR, 1H NMR and DFT calculation. PLM, DSC and solid-liquid phase diagram revealed that DES successfully in situ formed in HON powders, and the introduction of trace amount DES (99:1 w/w for HON-ChCl, 98:2 w/w for HON-Men) significantly improve mechanical properties of HON. Surface energy analysis and molecular simulation revealed that the introduced DES promoted the formation of solid-liquid interfaces and generation of polar interactions, which increase interparticulate interactions, thus better tabletability. Compared to nonionic HON-Men DES, ionic HON-ChCl DES exhibited better improvement effect, since their more hydrogen-bonding interactions and higher viscosity promote stronger interfacial interactions and adhesion effect. The current study provides a brand-new green strategy for improving powder mechanical properties and fills in the blank of DES application in pharmaceutical industry.
Collapse
Affiliation(s)
- Meiling Su
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Maoli Huang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zunting Pang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
19
|
Cao J, Zhang S, Hao Y, Fan K, Wang L, Zhao X, He X. Amorphous solid dispersion preparation via co-precipitation improves the dissolution, oral bioavailability and intestinal health enhancement properties of magnolol. Poult Sci 2023; 102:102676. [PMID: 37104903 PMCID: PMC10160586 DOI: 10.1016/j.psj.2023.102676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/04/2023] Open
Abstract
Magnolol (MAG) is a multifunctional plant polyphenol with anti-inflammatory, antibacterial, antioxidant and antitumor properties. In poultry, it has been shown to improve growth performance, antioxidant, immune functions and intestinal health. However, its applications are limited by poor solubility and low oral bioavailability. This study aimed at improving the water solubility of MAG through solid dispersion and investigating its effects in Arbor Acre (AA) broilers. Hydroxypropyl methylcellulose succinic acid (HPMCAS) was used as a carrier to prepare magnolol solid dispersions (MAG-HPMCAS SD) via antisolvent coprecipitation, which were characterized thereafter. Optimal formulation proportions for SD were screened by in vitro dissolution assays, while its effects on improving absorption were investigated via in vivo pharmacokinetic assays. In addition, we evaluated the effects of MAG-HPMCAS SD on growth performance, antioxidant status, and gut microbiota in AA broilers. The powder samples prepared via antisolvent coprecipitation did not exhibit a crystal diffraction peak of MAG in powder X-ray diffractions or melting point peak in differential scanning calorimetry, proving the successful preparation of an amorphous solid dispersion system. The in vitro dissolution assay showed that the cumulative dissolution rate of MAG-HPMCAS(LF) SD (2:8, w/w) was 100%. Pharmacokinetic analyses revealed that the peak concentration (Cmax) of MAG-HPMCAS SD was 5.07 ± 0.73 μg/mL, which was 1.76 times greater than that of MAG. In addition, AUC0-48 and t1/2 of MAG-HPMCAS SD were 40.49 ± 6.29 g·h/mL and 9.15 ± 3.23 h, respectively, which were 2.17 and 2.56 times higher than those of MAG. Supplementation of MAG-HPMCAS SD in AA broilers significantly increased ADG (7-14 d and 15-21 d) and reduced feed conversion ratio (15-21 d) (P < 0.05). Bacterial diversity in the MAG-HPMCAS SD-supplemented group was greater than in the Control and MAG-supplemented group. Supplementation of MAG-HPMCAS SD stimulated the proliferation of beneficial bacteria, such as Lactobacillaceae and Bifidobacteriaceae. In conclusion, the MAG-HPMCAS SD prepared by coprecipitation improved the dissolution rate, the bioavailability of MAG, growth promotion, antioxidant effects and gut health in broilers.
Collapse
|
20
|
Tranilast-matrine co-amorphous system: Strong intermolecular interactions, improved solubility, and physiochemical stability. Int J Pharm 2023; 635:122707. [PMID: 36764418 DOI: 10.1016/j.ijpharm.2023.122707] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
There is a great interest to develop co-amorphous drug delivery systems to enhance the solubility of biopharmaceutics classification system (BCS) class II and IV drugs. However, most reported systems only resulted in severalfold solubility improvement. Tranilast (TRA) is an anti-allergic drug used to treat bronchial asthma and allergic rhinitis. It is a BCS class II drug and its poor aqueous solubility affects its absorption in vivo. To address this issue, a natural alkaloid matrine (MAR) with interesting biological activities was chosen to form a co-amorphous system with TRA, based on the solubility parameter and phase solubility experiment. The TRA-MAR drug-drug co-amorphous system was prepared by the solvent evaporation method, and further characterized by powder X-ray diffraction and modulated temperature differential scanning calorimetry. Fourier transform infrared spectroscopy, FT-Raman, and X-ray photoelectron spectroscopy revealed the formation of salt and the presence of strong intermolecular interactions in the TRA-MAR co-amorphous system, which are also supported by molecular dynamics simulations, showing ionic and hydrogen bonding interactions. This co-amorphous system exhibited excellent physical stability at both 25 °C and 40 °C under anhydrous silica gel condition. Finally, co-amorphous TRA-MAR showed greatly enhanced solubility (greater than 100-fold) and rapid release behavior in the vitro release experiments. NMR spectroscopy revealed the strong intermolecular interactions between TRA and MAR in both DMSO‑d6 and D2O. Our study resulted in a TRA-MAR co-amorphous drug system with significant solubility improvement and showcased the great potential to improve the dissolution behaviors of BCS class II and IV drugs through the co-amorphization approach.
Collapse
|
21
|
Han J, Zhang C, Zhang Y, Liu X, Wang J. Mechanistic insight into gel formation of co-amorphous resveratrol and piperine during dissolution process. Int J Pharm 2023; 634:122644. [PMID: 36716831 DOI: 10.1016/j.ijpharm.2023.122644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/02/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023]
Abstract
Different from previous co-amorphous systems, co-amorphous resveratrol and piperine (namely RES-PIP CM) showed much lower dissolution in comparison to the original two crystalline drugs owing to its gel formation during dissolution. The purpose of this study is to investigate the mechanism of gel formation and seek strategies to eliminate such gelation. It was found that the dissolution performance of RES-PIP CM and the properties of formed gels were significantly affected by the medium temperature and stoichiometric ratio of components. Multiple characterization results confirmed that the gelation process underwent the decrease of Tg caused by water plasticization, and then entered into its supercooled liquid state with high viscosity, accompanied by self-assembly of molecules. Furthermore, the study answered the question that whether such gelation of RES-PIP CM could be eliminated by porous carrier materials. The materials, mesoporous silica (MES) and attapulgite (ATT), provided barrier and well separation between molecules and particles of RES-PIP CM by the pore steric hindrance, and impeded the self-assembly and aggregation, hence achieving the degelation and dissolution improvement. The present study highlights the importance of recognizing gelation potential of some co-amorphous formulations, and provides an effective strategy to eliminate gelation in developing high quality co-amorphous drug products.
Collapse
Affiliation(s)
- Jiawei Han
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, P.R., China
| | - Chuchu Zhang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, P.R., China
| | - Yanpei Zhang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, P.R., China
| | - Xiaoqian Liu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, P.R., China.
| | - Jue Wang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, P.R., China.
| |
Collapse
|
22
|
Wang S, Xie Y, Su H, Luo Y, Wang M, Li T, Fu Y. Delivery of curcumin in a carboxymethyl cellulose and hydroxypropyl methyl cellulose carrier: Physicochemical properties and biological activity. Int J Biol Macromol 2023; 239:124203. [PMID: 37001776 DOI: 10.1016/j.ijbiomac.2023.124203] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
Curcumin solid dispersions (Cur SDs) were prepared using hydroxypropyl methyl cellulose (HPMC) and sodium carboxymethyl cellulose (CMC) at different dosages. The results of Fourier transform infrared spectroscopy and Raman spectroscopy showed that the characteristic peak of curcumin shifted, and the addition of CMC enhanced this phenomenon. The addition of CMC reduced the contact angle, increased the surface free energy, and improved the solubility of Cur SDs. These changes were positively correlated with the amount of CMC. The surface morphology of Cur SDs changed from needle-like to sheet-like as observed by scanning electron microscopy. Cur SDs prepared by CMC and HPMC retained good biological activity. HT-29 human colon cancer cell analysis showed that the addition of CMC significantly improved the anti-proliferation effect of Cur SDs, thus enhancing the bioavailability of curcumin. Solid dispersions made with CMC and HPMC will be a promising hydrocolloid carrier to improve oral bioavailability and efficacy of curcumin.
Collapse
Affiliation(s)
- Shumin Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yingxuan Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huanhuan Su
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yanran Luo
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Mengting Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Teng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuying Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
23
|
Considerations on the Kinetic Processes in the Preparation of Ternary Co-Amorphous Systems by Milling. Pharmaceutics 2023; 15:pharmaceutics15010172. [PMID: 36678800 PMCID: PMC9866880 DOI: 10.3390/pharmaceutics15010172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
In non-strongly interacting co-amorphous systems, addition of a polymer, to further stabilize the co-amorphous systems, may influence the phase behavior between the components. In this study, the evolution of the composition of the amorphous phase in the ternary system carvedilol (CAR)-tryptophan (TRP)-hydroxypropylmethyl cellulose (HPMC) was investigated, based upon previously formed and characterized binary systems to which the third component was added (CAR - TRP + HPMC, CAR - HPMC + TRP and TRP - HPMC + CAR). Ball milling was used as the preparation method for all binary and ternary systems. The influence of the milling time on the co-amorphous systems was monitored by DSC and XRPD. Addition of HPMC reduced the miscibility of CAR with TRP due to hydrogen bond formation between CAR and polymer. These bonds became dominant for the interaction pattern. In addition, when CAR or TRP exceeded the miscibility limit in HPMC, phase separation and eventually crystallization of CAR and TRP was observed. All ternary co-amorphous systems eventually reached the same composition, albeit following different paths depending on the initially used binary system.
Collapse
|
24
|
Han J, Wei Y, Li L, Song Y, Pang Z, Qian S, Zhang J, Gao Y, Heng W. Gelation Elimination and Crystallization Inhibition by Co-Amorphous Strategy for Amorphous Curcumin. J Pharm Sci 2023; 112:182-194. [PMID: 35901945 DOI: 10.1016/j.xphs.2022.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022]
Abstract
In the previous study, the development of amorphous curcumin (CUR) aimed to enhance the solubility/dissolution of CUR by disrupting its crystal lattice, but it unexpectedly showed a decreased dissolution than its crystalline counterpart on account of gel formation in its dissolution process. Whether such gelation could be eliminated by co-amorphous strategy was answered in this study. Herein, CUR by co-amorphization with chlorogenic acid (CHA) was successfully prepared using quench cooling. The formed co-amorphous material (namely CUR-CHA CM) eliminated the gelation and hence performed superior dissolution performance than crystalline/amorphous CUR. Meanwhile, it exhibited higher physical stability than amorphous CUR during dissolution as well as under long-term/accelerated conditions. To further study the such enhancement mechanism, the internal molecular interactions were investigated for CUR-CHA CM in the solid state as well as in aqueous solution. FTIR and solid-state 13C NMR spectra confirmed that intermolecular hydrogen bonds formed between CUR and CHA after co-amorphization. Furthermore, the nucleation of CUR was significantly inhibited by CHA in an aqueous solution, thus maintaining the supersaturated dissolution for a long time. The present study offers a feasible strategy to eliminate gelation and enhance stability of amorphous solids by co-amorphization and crystallization inhibition.
Collapse
Affiliation(s)
- Jiawei Han
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; School of Pharmacy, Changzhou University, Changzhou, 213164, PR China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Luyuan Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yutong Song
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zunting Pang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
25
|
Co-amorphous delivery systems based on curcumin and hydroxycinnamic acids: Stabilization, solubilization, and controlled release. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Chen X, Li D, Zhang H, Duan Y, Huang Y. Co-amorphous Systems of Sinomenine with Platensimycin or Sulfasalazine: Physical Stability and Excipient-Adjusted Release Behavior. Mol Pharm 2022; 19:4370-4381. [PMID: 36251509 DOI: 10.1021/acs.molpharmaceut.2c00785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is strong interest to develop affordable treatments for the infection-associated rheumatoid arthritis (RA). Here, we present a drug-drug co-amorphous strategy against RA and the associated bacterial infection by the preparation and characterization of two co-amorphous systems of sinomenine (SIN) with platensimycin (PTM) or sulfasalazine (SULF), two potent antibiotics. Both of them were comprehensively characterized using powder X-ray diffraction, temperature-modulated differential scanning calorimetry, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The co-amorphous forms of SIN-PTM and SIN-SULF exhibited high Tgs at 139.10 ± 1.0 and 153.3 ± 0.2 °C, respectively. After 6 months of accelerated tests and 1 month of drug-excipient compatibility experiments, two co-amorphous systems displayed satisfactory physical stability. The formation of salt and strong intermolecular interactions between SIN and PTM or SULF, as well as the decreased molecular mobility in co-amorphous systems, may be the intrinsic mechanisms underlying the excellent physical stability of both co-amorphous systems. In dissolution tests, two co-amorphous systems displayed distinct reduced SIN-accumulative releases (below 20% after 6 h of release experiments), which may lead to its poor therapeutic effect. Hence, we demonstrated a controlled release strategy for SIN by the addition of a small percentage of polymers and a small-molecule surfactant to these two co-amorphous samples as convenient drug excipients, which may also be used to improve the unsatisfactory dissolution behaviors of the previously reported SIN co-amorphous systems. Several hydrogen bonding interactions between SIN and PTM or SULF could be identified in NMR experiments in DMSO-d6, which may be underlying reasons of decreased dissolution behaviors of both co-amorphous forms. These drug-drug co-amorphous systems could be a potential strategy for the treatment of infection-associated RA.
Collapse
Affiliation(s)
- Xin Chen
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan410013, PR China
| | - Duanxiu Li
- Laboratory of Magnetic Resonance Spectroscopy and Imaging, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, PR China.,Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Foshan528200, PR China
| | - Hailu Zhang
- Laboratory of Magnetic Resonance Spectroscopy and Imaging, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, PR China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan410013, PR China.,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha410011, PR China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan410011, PR China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan410013, PR China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan410011, PR China
| |
Collapse
|
27
|
Kolev I, Ivanova N, Topouzova-Hristova T, Dimova T, Koseva P, Vasileva I, Ivanova S, Apostolov A, Alexieva G, Tzonev A, Strashilov V. Ammonio Methacrylate Copolymer (Type B)-Diltiazem Interactions in Solid Dispersions and Microsponge Drug-Delivery Systems. Polymers (Basel) 2022; 14:polym14102125. [PMID: 35632008 PMCID: PMC9144411 DOI: 10.3390/polym14102125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/23/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
This paper presents a complex analytical study on the distribution, solubility, amorphization, and compatibility of diltiazem within the composition of Eudragit RS 100-based particles of microspongeous type. For this purpose, a methodology combining attenuated total reflectance Fourier transform infrared (ATR-FTIR) absorption spectroscopy, differential scanning calorimetry (DSC), scanning electron microscopy with energy-dispersive X-ray microanalysis (SEM-EDX), and in vitro dissolution study is proposed. The correct interpretation of the FTIR and drug-dissolution results was guaranteed by the implementation of two contrasting reference models: physical drug–polymer mixtures and casting-obtained, molecularly dispersed drug–polymer composites (solid dispersions). The spectral behavior of the drug–polymer composites in the carbonyl frequency (νCO) region was used as a quality marker for the degree of their interaction/mutual solubility. A spectral-pattern similarity between the microsponge particles and the solid dispersions indicated the molecular-type dispersion of the former. The comparative drug-desorption study and the qualitative observations over the DSC and SEM-EDX results confirmed the successful synthesis of a homogeneous coamorphous microsponge-type formulation with excellent drug-loading capacity and “controlled” dissolution profile. Among them, the drug-delivery particles with 25% diltiazem content (M-25) were recognized as the most promising, with the highest population of drug molecules in the polymer bulk and the most suitable desorption profile. Furthermore, an economical and effective analytical algorithm was developed for the comprehensive physicochemical characterization of complex delivery systems of this kind.
Collapse
Affiliation(s)
- Iliyan Kolev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
- Correspondence: (I.K.); (N.I.)
| | - Nadezhda Ivanova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria
- Correspondence: (I.K.); (N.I.)
| | - Tanya Topouzova-Hristova
- Department of Cytology, Histology and Embryology, Faculty of Biology, Sofia University “St. Kl. Ohridski”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria;
| | - Tanya Dimova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
| | - Pavlina Koseva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
| | - Ivalina Vasileva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
| | - Sonya Ivanova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
| | - Anton Apostolov
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1 J. Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Gergana Alexieva
- Department of General Physics, Faculty of Physics, Sofia University “St. Kl. Ohridski”, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Atanas Tzonev
- Department of Condensed Matter Physics and Microelectronics, Faculty of Physics, Sofia University “St. Kl. Ohridski”, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria; (A.T.); (V.S.)
| | - Vesselin Strashilov
- Department of Condensed Matter Physics and Microelectronics, Faculty of Physics, Sofia University “St. Kl. Ohridski”, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria; (A.T.); (V.S.)
| |
Collapse
|
28
|
Lim LM, Park JW, Hadinoto K. Benchmarking the Solubility Enhancement and Storage Stability of Amorphous Drug–Polyelectrolyte Nanoplex against Co-Amorphous Formulation of the Same Drug. Pharmaceutics 2022; 14:pharmaceutics14050979. [PMID: 35631565 PMCID: PMC9144283 DOI: 10.3390/pharmaceutics14050979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 01/03/2023] Open
Abstract
Amorphization, typically in the form of amorphous solid dispersion (ASD), represents a well-established solubility enhancement strategy for poorly soluble drugs. Recently, two amorphous drug formulations, i.e., the amorphous drug–polyelectrolyte nanoparticle complex (nanoplex) and co-amorphous system, have emerged as promising alternatives to circumvent the issues faced by ASD (i.e., large dosage requirement, high hygroscopicity). In the present work, the nanoplex was benchmarked against the co-amorphous system in terms of the preparation efficiency, drug payload, thermal stability, dissolution rate, supersaturation generation, and accelerated storage stability. Weakly acidic curcumin (CUR) and weakly basic ciprofloxacin (CIP) were used as the model poorly soluble drugs. The CUR and CIP nanoplexes were prepared using chitosan and sodium dextran sulfate as the polyelectrolytes, respectively. The co-amorphous CUR and CIP were prepared using tannic acid and tryptophan as the co-formers, respectively. The benchmarking results showed that the amorphous drug nanoplex performed as well as, if not better than, the co-amorphous system depending on the drug in question and the aspects being compared. The present work successfully established the nanoplex as an equally viable amorphous drug formulation as the more widely studied co-amorphous system to potentially serve as an alternative to ASD.
Collapse
Affiliation(s)
- Li Ming Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore;
| | - Jin-Won Park
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea;
| | - Kunn Hadinoto
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore;
- Correspondence: ; Tel.: +65-6514-8381
| |
Collapse
|
29
|
Han J, Li L, Yu Q, Zheng D, Song Y, Zhang J, Gao Y, Heng W, Qian S, Pang Z. Self-gelation involved in the transformation of resveratrol and piperine from a co-amorphous system into a co-crystal system. CrystEngComm 2022. [DOI: 10.1039/d2ce00671e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-gelation of co-amorphous system promotes the transformation into its co-crystal system during dissolution.
Collapse
Affiliation(s)
- Jiawei Han
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
- School of Pharmacy, Changzhou University, Changzhou, 213164, P.R. China
| | - Luyuan Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Qian Yu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Daoyi Zheng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Yutong Song
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Zunting Pang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| |
Collapse
|