1
|
Paranthaman P, Karuppasamy R, Veerappapillai S. Drug repurposing through Biophysical Insights: Focus on Indoleamine 2,3-Dioxygenase and Tryptophan 2,3-Dioxygenase Dual Inhibitors. Cell Biochem Biophys 2025:10.1007/s12013-025-01725-2. [PMID: 40133710 DOI: 10.1007/s12013-025-01725-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
The kynurenine pathway (KP) plays a pivotal role in dampening the immune response in many types of cancer, including TNBC. The intricate involvement of tryptophan degradation via KP serves as a critical regulator in mediating immunosuppression in the tumor microenvironment. The key enzymes that facilitate this mechanism and contribute to tumor progression are indoleamine 2,3-dioxygenase (IDO1) and tryptophan 2,3-dioxygenase (TDO). Despite attempts to use navoximod as a dual-specific inhibitor, its poor bioavailability and lack of clinical efficacy have hampered its utility. To date, no FDA-approved drugs have advanced for dual targeting of these enzymes. Therefore, this study aimed to repurpose the approved drugs from the DrugBank database as novel IDO1/TDO inhibitors. Initially, 2588 FDA-approved compounds were screened by employing molecular docking and pharmacokinetic profiling. Subsequently, methods such as MM-GBSA calculations and machine learning based analysis precisely identified 20 potential lead compounds. The resultant compounds were then assessed for various toxicity endpoints and anticancer activity. The PaccMann server revealed potent anticancer activity, with sensitivities ranging from 0.203 to 24.119 μM against MDA-MB-231 TNBC cell lines. Alongside, the interaction profile with critical residues, strongly reinforced DB06292 (Dapagliflozin) as a compelling hit candidate. Finally, the reliability of the result was corroborated through a rigorous 200 ns molecular dynamics simulation, ensuring the stable binding of the hit against the target proteins. Considering the promising outcomes, we speculate that the proposed hit compound holds strong potential for the management of TNBC.
Collapse
Affiliation(s)
- Priyanga Paranthaman
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ramanathan Karuppasamy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Shanthi Veerappapillai
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
2
|
Paranthaman P, Veerappapillai S. Identification of putative Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) dual inhibitors for triple-negative breast cancer therapy. J Biomol Struct Dyn 2025:1-19. [PMID: 39861977 DOI: 10.1080/07391102.2024.2332509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/13/2024] [Indexed: 01/27/2025]
Abstract
Tryptophan catabolism is a central pathway in many cancers, serving to sustain an immunosuppressive microenvironment. The key enzymes involved in this tryptophan metabolism such as indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are reported as promising novel targets in cancer immunotherapy. IDO1 and TDO overexpression in TNBC cells promote resistance to cell death, proliferation, invasion, and metastasis. To date, there are no clinically available small-molecule inhibitors that target these enzymes. Navoximod, a reliable dual-specific inhibitor, resulted in poor bioavailability and modest efficacy in clinical trials restricts its utility. This situation urges the development of a potent drug-like candidate against these key enzymes. A total of 1574 natural compounds were proclaimed and subjected to ADME screening. Subsequently, the resultant compounds were attributed to hierarchical molecular docking and MM-GBSA validation. Ultimately, re-scoring with the aid of combined machine learning algorithms resulted six lead compounds. Captivatingly, NPACT00380 exhibited maximum interaction among the lead compounds. In addition, the scaffold analysis also highlighted that the chromanone moiety of the hit compound boasts anti-cancer activity against breast cancer cell lines. The reliability of the results was corroborated through a rigorous 100 ns molecular dynamics simulation using the parameters including RMSD, PCA and FEL analysis. In light of these findings, it is presumed that the proposed compound exhibits significant inhibitory activity. As a result, we speculate that further optimisation of NPACT00380 could be beneficial for the treatment and management of TNBC.
Collapse
Affiliation(s)
- Priyanga Paranthaman
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Shanthi Veerappapillai
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
Krishnamoorthy HR, Karuppasamy R. A multitier virtual screening of antagonists targeting PD-1/PD-L1 interface for the management of triple-negative breast cancer. Med Oncol 2023; 40:312. [PMID: 37777635 DOI: 10.1007/s12032-023-02183-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/04/2023] [Indexed: 10/02/2023]
Abstract
Immunotherapies are promising therapeutic options for the management of triple-negative breast cancer because of its high mutation rate and genomic instability. Of note, the blockade of the immune checkpoint protein PD-1 and its ligand PD-L1 has been proven to be an efficient and potent strategy to combat triple-negative breast cancer. To date, various anti-PD-1/anti-PD-L1 antibodies have been approved. However, the intrinsic constraints of these therapeutic antibodies significantly limit their application, making small molecules a potentially significant option for PD-1/PD-L1 inhibition. In light of this, the current study aims to use a high-throughput virtual screening technique to identify potential repurposed candidates as PD-L1 inhibitors. Thus, the present study explored binding efficiency of 2509 FDA-approved compounds retrieved from the drug bank database against PD-L1 protein. The binding affinity of the compounds was determined using the glide XP docking programme. Furthermore, prime-MM/GBSA, DFT calculations, and RF score were used to precisely re-score the binding free energy of the docked complexes. In addition, the ADME and toxicity profiles for the lead compounds were also examined to address PK/PD characteristics. Altogether, the screening process identified three molecules, namely DB01238, DB06016 and DB01167 as potential therapeutics for the PD-L1 protein. To conclude, a molecular dynamic simulation of 100 ns was run to characterise the stability and inhibitory action of the three lead compounds. The results from the simulation study confirm the robust structural and thermodynamic stability of DB01238 than other investigated molecules. Thus, our findings hypothesize that DB01238 could serve as potential PD-L1 inhibitor in the near future for triple-negative breast cancer patients.
Collapse
Affiliation(s)
| | - Ramanathan Karuppasamy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
4
|
Philo JE, Caudle JD, Moussa RN, Kampmeyer PM, Hasin TR, Seo DK, Sheaff RJ, Lamar AA. Synthesis and Biological Evaluation of a Library of Sulfonamide Analogs of Memantine to Target Glioblastoma. ChemMedChem 2023; 18:e202300134. [PMID: 37248422 DOI: 10.1002/cmdc.202300134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 05/31/2023]
Abstract
A library of 34 lipophilic sulfonamides based upon the memantine core has been synthesized to identify potential drug candidates to cross the blood-brain barrier and target glioblastoma. The library was screened for in vitro activity against 4 mammalian cell lines, including U-87 (glioblastoma). Additional synthetic variation of the active compounds has validated the importance of specific regions of the pharmacophore, with the sulfonamide functionality and S-aryl unit displaying the most significant impact. In silico investigations suggest the active compounds might target DDR1 or RET proteins. The investigation has resulted in several compounds that warrant further development for lead optimization.
Collapse
Affiliation(s)
- John E Philo
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA
| | - Jenna D Caudle
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA
| | - Reema N Moussa
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA
| | - Patrick M Kampmeyer
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA
| | - Tasfia R Hasin
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA
| | - David K Seo
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA
| | - Robert J Sheaff
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA
| | - Angus A Lamar
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA
| |
Collapse
|
5
|
Ramesh P, Karuppasamy R, Veerappapillai S. Machine learning driven drug repurposing strategy for identification of potential RET inhibitors against non-small cell lung cancer. Med Oncol 2023; 40:56. [PMID: 36542155 PMCID: PMC9769489 DOI: 10.1007/s12032-022-01924-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) remains the leading cause of mortality and morbidity worldwide accounting about 85% of total lung cancer cases. The receptor REarranged during Transfection (RET) plays an important role by ligand independent activation of kinase domain resulting in carcinogenesis. Presently, the treatment for RET driven NSCLC is limited to multiple kinase inhibitors. This situation necessitates the discovery of novel and potent RET specific inhibitors. Thus, we employed high throughput screening strategy to repurpose FDA approved compounds from DrugBank comprising of 2509 molecules. It is worth noting that the initial screening is accomplished with the aid of in-house machine learning model built using IC50 values corresponding to 2854 compounds obtained from BindingDB repository. A total of 497 compounds (19%) were predicted as actives by our generated model. Subsequent in silico validation process such as molecular docking, MMGBSA and density function theory analysis resulted in identification of two lead compounds named DB09313 and DB00471. The simulation study highlights the potency of DB00471 (Montelukast) as potential RET inhibitor among the investigated compounds. In the end, the half-minimal inhibitory activity of montelukast was also predicted against RET protein expressing LC-2/ad cell lines demonstrated significant anticancer activity. Collective analysis from our study highlights that montelukast could be a promising candidate for the management of RET specific NSCLC.
Collapse
Affiliation(s)
- Priyanka Ramesh
- grid.412813.d0000 0001 0687 4946Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Ramanathan Karuppasamy
- grid.412813.d0000 0001 0687 4946Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Shanthi Veerappapillai
- grid.412813.d0000 0001 0687 4946Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| |
Collapse
|
6
|
Li X, Zhao B, Luo L, Zhou Y, Lai D, Luan T. In vitro immunotoxicity detection for environmental pollutants: Current techniques and future perspectives. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Ji M, Chai Z, Chen J, Li G, Li Q, Li M, Ding Y, Lu S, Ju G, Hou J. Insights into the Allosteric Effect of SENP1 Q597A Mutation on the Hydrolytic Reaction of SUMO1 via an Integrated Computational Study. Molecules 2022; 27:4149. [PMID: 35807394 PMCID: PMC9268427 DOI: 10.3390/molecules27134149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 11/26/2022] Open
Abstract
Small ubiquitin-related modifier (SUMO)-specific protease 1 (SENP1) is a cysteine protease that catalyzes the cleavage of the C-terminus of SUMO1 for the processing of SUMO precursors and deSUMOylation of target proteins. SENP1 is considered to be a promising target for the treatment of hepatocellular carcinoma (HCC) and prostate cancer. SENP1 Gln597 is located at the unstructured loop connecting the helices α4 to α5. The Q597A mutation of SENP1 allosterically disrupts the hydrolytic reaction of SUMO1 through an unknown mechanism. Here, extensive multiple replicates of microsecond molecular dynamics (MD) simulations, coupled with principal component analysis, dynamic cross-correlation analysis, community network analysis, and binding free energy calculations, were performed to elucidate the detailed mechanism. Our MD simulations showed that the Q597A mutation induced marked dynamic conformational changes in SENP1, especially in the unstructured loop connecting the helices α4 to α5 which the mutation site occupies. Moreover, the Q597A mutation caused conformational changes to catalytic Cys603 and His533 at the active site, which might impair the catalytic activity of SENP1 in processing SUMO1. Moreover, binding free energy calculations revealed that the Q597A mutation had a minor effect on the binding affinity of SUMO1 to SENP1. Together, these results may broaden our understanding of the allosteric modulation of the SENP1-SUMO1 complex.
Collapse
Affiliation(s)
- Mingfei Ji
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (M.J.); (G.L.); (Q.L.); (M.L.)
- Department of Urology, Second Affiliated Hospital of Navy Medical University, Shanghai 200433, China; (J.C.); (Y.D.)
| | - Zongtao Chai
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai 200433, China;
| | - Jie Chen
- Department of Urology, Second Affiliated Hospital of Navy Medical University, Shanghai 200433, China; (J.C.); (Y.D.)
| | - Gang Li
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (M.J.); (G.L.); (Q.L.); (M.L.)
| | - Qiang Li
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (M.J.); (G.L.); (Q.L.); (M.L.)
| | - Miao Li
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (M.J.); (G.L.); (Q.L.); (M.L.)
| | - Yelei Ding
- Department of Urology, Second Affiliated Hospital of Navy Medical University, Shanghai 200433, China; (J.C.); (Y.D.)
| | - Shaoyong Lu
- Department of Bioinformatics and Medicinal Chemistry Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Guanqun Ju
- Department of Urology, Second Affiliated Hospital of Navy Medical University, Shanghai 200433, China; (J.C.); (Y.D.)
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (M.J.); (G.L.); (Q.L.); (M.L.)
- Department of Urology, Dushuhu Public Hospital Affiliated to Soochow University, Suzhou 215000, China
| |
Collapse
|