1
|
Feng X, Zhang J, Liu J, Su J, Liu X, Yang M, Peng Y, Yan H, Chen Z. A stable thymidine kinase 1 tetramer for improved quality control of serum level quantification. Clin Chim Acta 2025; 565:119967. [PMID: 39304108 DOI: 10.1016/j.cca.2024.119967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/30/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
DNA synthesis is a critical process for cell growth and division. In cancer patients, an enzyme called thymidine kinase 1 (TK1) is often elevated in the blood, making it a valuable biomarker for cancer diagnosis and treatment. However, previous studies have shown that recombinant TK1 can exist in unstable mixtures of tetramers and dimers, leading to inconsistent results and potentially affecting accuracy. To address this issue, we hypothesized that incorporating tetrameric coiled-coil peptides could enhance TK1 self-assembly into stable tetramers without requiring additional adenosine triphosphate. In this study, we successfully expressed a recombinant TK1 tetramer protein in the Escherichia coli system. We optimized the induction conditions, significantly increasing protein expression levels, functionality, and solubility. Size exclusion chromatography confirmed the formation of a tetrameric structure in the expressed TK1 protein, with a molecular weight of 127.2 KDa, consistent with our expectations. We also found that the TK1 tetramer exhibited higher affinity with anti-TK1 IgY than wild-type TK1, as shown by enzyme-linked immunosorbent assay experiments. Moreover, the TK1 tetramer demonstrated good stability against heating, freeze-thawing and lyophilization with almost no immunoactivity lost. These findings suggest that recombinant TK1 tetramers have the potential to serve as calibrators in diagnostic assay kits, becoming promising candidates for quality control of clinical laboratory and in vitro diagnostic reagents.
Collapse
Affiliation(s)
- Xiangning Feng
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, 1 Sun Yat-Sen University, Guangzhou 510080, China; One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Jinsong Zhang
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, 1 Sun Yat-Sen University, Guangzhou 510080, China; One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Jinsong Liu
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, 1 Sun Yat-Sen University, Guangzhou 510080, China; One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Jiayue Su
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, 1 Sun Yat-Sen University, Guangzhou 510080, China; One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Xinrui Liu
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, 1 Sun Yat-Sen University, Guangzhou 510080, China; One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Mingwei Yang
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, 1 Sun Yat-Sen University, Guangzhou 510080, China; One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Yuanli Peng
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, 1 Sun Yat-Sen University, Guangzhou 510080, China; One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Haozhen Yan
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, 1 Sun Yat-Sen University, Guangzhou 510080, China; One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Zeliang Chen
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, 1 Sun Yat-Sen University, Guangzhou 510080, China; One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China; Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao 028000, China; Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
2
|
Zhang J, Yang J, Li Q, Peng R, Fan S, Yi H, Lu Y, Peng Y, Yan H, Sun L, Lu J, Chen Z. T Cell Activating Thermostable Self-Assembly Nanoscaffold Tailored for Cellular Immunity Antigen Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303049. [PMID: 37395451 PMCID: PMC10502629 DOI: 10.1002/advs.202303049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Indexed: 07/04/2023]
Abstract
Antigen delivery based on non-virus-like particle self-associating protein nanoscffolds, such as Aquifex aeolicus lumazine synthase (AaLS), is limited due to the immunotoxicity and/or premature clearance of antigen-scaffold complex resulted from triggering unregulated innate immune responses. Here, using rational immunoinformatics prediction and computational modeling, we screen the T epitope peptides from thermophilic nanoproteins with the same spatial structure as hyperthermophilic icosahedral AaLS, and reassemble them into a novel thermostable self-assembling nanoscaffold RPT that can specifically activate T cell-mediated immunity. Tumor model antigen ovalbumin T epitopes and the severe acute respiratory syndrome coronavirus 2 receptor-binding domain are loaded onto the scaffold surface through the SpyCather/SpyTag system to construct nanovaccines. Compared to AaLS, RPT -constructed nanovaccines elicit more potent cytotoxic T cell and CD4+ T helper 1 (Th1)-biased immune responses, and generate less anti-scaffold antibody. Moreover, RPT significantly upregulate the expression of transcription factors and cytokines related to the differentiation of type-1 conventional dendritic cells, promoting the cross-presentation of antigens to CD8+ T cells and Th1 polarization of CD4+ T cells. RPT confers antigens with increased stability against heating, freeze-thawing, and lyophilization with almost no antigenicity loss. This novel nanoscaffold offers a simple, safe, and robust strategy for boosting T-cell immunity-dependent vaccine development.
Collapse
Affiliation(s)
- Jinsong Zhang
- One Health Center of Excellence for Research and TrainingSchool of Public HealthSun Yat‐sen UniversityGuangzhou510080China
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological ProductsGuangzhou510080China
- Key Laboratory of Tropical Diseases ControlSun Yat‐sen UniversityMinistry of EducationGuangzhou510080China
| | - Jianghua Yang
- Key Laboratory of Livestock Infectious DiseasesMinistry of EducationShenyang Agricultural UniversityShenyang110866China
| | - Qianlin Li
- One Health Center of Excellence for Research and TrainingSchool of Public HealthSun Yat‐sen UniversityGuangzhou510080China
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological ProductsGuangzhou510080China
- Key Laboratory of Tropical Diseases ControlSun Yat‐sen UniversityMinistry of EducationGuangzhou510080China
| | - Ruihao Peng
- One Health Center of Excellence for Research and TrainingSchool of Public HealthSun Yat‐sen UniversityGuangzhou510080China
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological ProductsGuangzhou510080China
- Key Laboratory of Tropical Diseases ControlSun Yat‐sen UniversityMinistry of EducationGuangzhou510080China
| | - Shoudong Fan
- Liaoning Technology Innovation Center of Nanomaterials for Antibiotics Reduction and ReplacementFengcheng118199China
| | - Huaimin Yi
- One Health Center of Excellence for Research and TrainingSchool of Public HealthSun Yat‐sen UniversityGuangzhou510080China
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological ProductsGuangzhou510080China
- Key Laboratory of Tropical Diseases ControlSun Yat‐sen UniversityMinistry of EducationGuangzhou510080China
| | - Yuying Lu
- One Health Center of Excellence for Research and TrainingSchool of Public HealthSun Yat‐sen UniversityGuangzhou510080China
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological ProductsGuangzhou510080China
- Key Laboratory of Tropical Diseases ControlSun Yat‐sen UniversityMinistry of EducationGuangzhou510080China
| | - Yuanli Peng
- One Health Center of Excellence for Research and TrainingSchool of Public HealthSun Yat‐sen UniversityGuangzhou510080China
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological ProductsGuangzhou510080China
- Key Laboratory of Tropical Diseases ControlSun Yat‐sen UniversityMinistry of EducationGuangzhou510080China
| | - Haozhen Yan
- One Health Center of Excellence for Research and TrainingSchool of Public HealthSun Yat‐sen UniversityGuangzhou510080China
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological ProductsGuangzhou510080China
- Key Laboratory of Tropical Diseases ControlSun Yat‐sen UniversityMinistry of EducationGuangzhou510080China
| | - Lidan Sun
- Key Laboratory of Livestock Infectious DiseasesMinistry of EducationShenyang Agricultural UniversityShenyang110866China
| | - Jiahai Lu
- One Health Center of Excellence for Research and TrainingSchool of Public HealthSun Yat‐sen UniversityGuangzhou510080China
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological ProductsGuangzhou510080China
- Key Laboratory of Tropical Diseases ControlSun Yat‐sen UniversityMinistry of EducationGuangzhou510080China
- Research Institute of Sun Yat‐sen University in ShenzhenShenzhen518057China
- Hainan Key Novel Thinktank “Hainan Medical University ‘One Health’ Research Center”Haikou571199China
| | - Zeliang Chen
- One Health Center of Excellence for Research and TrainingSchool of Public HealthSun Yat‐sen UniversityGuangzhou510080China
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological ProductsGuangzhou510080China
- Key Laboratory of Tropical Diseases ControlSun Yat‐sen UniversityMinistry of EducationGuangzhou510080China
- Key Laboratory of Livestock Infectious DiseasesMinistry of EducationShenyang Agricultural UniversityShenyang110866China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous RegionMedical CollegeInner Mongolia Minzu UniversityTongliao028000China
| |
Collapse
|
3
|
Pisano R, Fissore D. New Trends in Freeze-Drying of Pharmaceutical Products. Pharmaceutics 2023; 15:1975. [PMID: 37514161 PMCID: PMC10383798 DOI: 10.3390/pharmaceutics15071975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Freeze-drying, also known as lyophilization, is a process that facilitates the removal of water through sublimation from a frozen product (primary drying) [...].
Collapse
Affiliation(s)
- Roberto Pisano
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Davide Fissore
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
4
|
Vallerinteavide Mavelli G, Sadeghi S, Drum CL. Laboratory Scale Production of Complex Proteins Using Charge Complimentary Nanoenvironments. Methods Mol Biol 2023; 2671:403-418. [PMID: 37308658 DOI: 10.1007/978-1-0716-3222-2_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein refolding is a crucial procedure in bacterial recombinant expression. Aggregation and misfolding are the two challenges that can affect the overall yield and specific activity of the folded proteins. We demonstrated the in vitro use of nanoscale "thermostable exoshells" (tES) to encapsulate, fold and release diverse protein substrates. With tES, the soluble yield, functional yield, and specific activity increased from 2-fold to >100-fold when compared to folding in its absence. On average, the soluble yield was determined to be 6.5 mg/100 mg of tES for a set of 12 diverse substrates evaluated. The electrostatic charge complementation between the tES interior and the protein substrate was considered as the primary determinant for functional folding. We thus describe a useful and simple method for in vitro folding that has been evaluated and implemented in our laboratory.
Collapse
Affiliation(s)
| | - Samira Sadeghi
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chester Lee Drum
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Gastrointestinal Tract Stabilized Protein Delivery Using Disulfide Thermostable Exoshell System. Int J Mol Sci 2022; 23:ijms23179856. [PMID: 36077259 PMCID: PMC9456531 DOI: 10.3390/ijms23179856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Thermostable exoshells (tES) are engineered proteinaceous nanoparticles used for the rapid encapsulation of therapeutic proteins/enzymes, whereby the nanoplatform protects the payload from proteases and other denaturants. Given the significance of oral delivery as the preferred model for drug administration, we structurally improved the stability of tES through multiple inter-subunit disulfide linkages that were initially absent in the parent molecule. The disulfide-linked tES, as compared to tES, significantly stabilized the activity of encapsulated horseradish peroxidase (HRP) at acidic pH and against the primary human digestive enzymes, pepsin, and trypsin. Furthermore, the disulfide-linked tES (DS-tES) exhibited significant intestinal permeability as evaluated using Caco2 cells. In vivo bioluminescence assay showed that encapsulated Renilla luciferase (rluc) was ~3 times more stable in mice compared to the free enzyme. DS-tES collected mice feces had ~100 times more active enzyme in comparison to the control (free enzyme) after 24 h of oral administration, demonstrating strong intestinal stability. Taken together, the in vitro and in vivo results demonstrate the potential of DS-tES for intraluminal and systemic oral drug delivery applications.
Collapse
|
6
|
Sadeghi S, Masurkar ND, Vallerinteavide Mavelli G, Deshpande S, Kok Yong Tan W, Yee S, Kang SA, Lim YP, Kai-Hua Chow E, Drum CL. Bioorthogonal Catalysis for Treatment of Solid Tumors Using Thermostable, Self-Assembling, Single Enzyme Nanoparticles and Natural Product Conversion with Indole-3-acetic Acid. ACS NANO 2022; 16:10292-10301. [PMID: 35653306 PMCID: PMC9333347 DOI: 10.1021/acsnano.1c11560] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bioorthogonal catalysis (BC) generates chemical reactions not present in normal physiology for the purpose of disease treatment. Because BC catalytically produces the desired therapy only at the site of disease, it holds the promise of site-specific treatment with little or no systemic exposure or side effects. Transition metals are typically used as catalytic centers in BC; however, solubility and substrate specificity typically necessitate a coordinating enzyme and/or stabilizing superstructure for in vivo application. We report the use of self-assembling, porous exoshells (tESs) to encapsulate and deliver an iron-containing reaction center for the treatment of breast cancer. The catalytic center is paired with indole-3-acetic acid (IAA), a natural product found in edible plants, which undergoes oxidative decarboxylation, via reduction of iron(III) to iron(II), to produce free radicals and bioactive metabolites. The tES encapsulation is critical for endocytic uptake of BC reaction centers and, when followed by administration of IAA, results in apoptosis of MDA-MB-231 triple negative cancer cells and complete regression of in vivo orthotopic xenograft tumors (p < 0.001, n = 8 per group). When Renilla luciferase (rLuc) is substituted for horseradish peroxidase (HRP), whole animal luminometry can be used to monitor in vivo activity.
Collapse
Affiliation(s)
- Samira Sadeghi
- Cardiovascular
Research Institute, Department of Medicine, Yong Loo Lin School of
Medicine, National University of Singapore, 1E Kent Ridge Road,
NUHS Tower Block,
Level 9, NUHCS, Singapore 119228, Singapore
- Department
of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Genome
Institute of Singapore (GIS), Agency for
Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Nihar D. Masurkar
- Cardiovascular
Research Institute, Department of Medicine, Yong Loo Lin School of
Medicine, National University of Singapore, 1E Kent Ridge Road,
NUHS Tower Block,
Level 9, NUHCS, Singapore 119228, Singapore
- Department
of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Girish Vallerinteavide Mavelli
- Cardiovascular
Research Institute, Department of Medicine, Yong Loo Lin School of
Medicine, National University of Singapore, 1E Kent Ridge Road,
NUHS Tower Block,
Level 9, NUHCS, Singapore 119228, Singapore
- Department
of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Siddharth Deshpande
- Cardiovascular
Research Institute, Department of Medicine, Yong Loo Lin School of
Medicine, National University of Singapore, 1E Kent Ridge Road,
NUHS Tower Block,
Level 9, NUHCS, Singapore 119228, Singapore
- Department
of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- NUS
Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
| | - Warren Kok Yong Tan
- Cardiovascular
Research Institute, Department of Medicine, Yong Loo Lin School of
Medicine, National University of Singapore, 1E Kent Ridge Road,
NUHS Tower Block,
Level 9, NUHCS, Singapore 119228, Singapore
- Department
of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- NUS
Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
| | - Sherman Yee
- Cardiovascular
Research Institute, Department of Medicine, Yong Loo Lin School of
Medicine, National University of Singapore, 1E Kent Ridge Road,
NUHS Tower Block,
Level 9, NUHCS, Singapore 119228, Singapore
- Department
of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Shin-Ae Kang
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore 117596, Singapore
| | - Yoon-Pin Lim
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore 117596, Singapore
| | - Edward Kai-Hua Chow
- Cancer Science
Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Department
of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Chester L. Drum
- Cardiovascular
Research Institute, Department of Medicine, Yong Loo Lin School of
Medicine, National University of Singapore, 1E Kent Ridge Road,
NUHS Tower Block,
Level 9, NUHCS, Singapore 119228, Singapore
- Department
of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore 117596, Singapore
- Department
of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| |
Collapse
|