1
|
Burdzinska A, Szopa IM, Majchrzak-Kuligowska K, Roszczyk A, Zielniok K, Zep P, Dąbrowski FA, Bhale T, Galanty M, Paczek L. The Comparison of Immunomodulatory Properties of Canine and Human Wharton Jelly-Derived Mesenchymal Stromal Cells. Int J Mol Sci 2024; 25:8926. [PMID: 39201612 PMCID: PMC11354339 DOI: 10.3390/ijms25168926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Although therapies based on mesenchymal stromal cells (MSCs) are being implemented in clinical settings, many aspects regarding these procedures require further optimization. Domestic dogs suffer from numerous immune-mediated diseases similar to those found in humans. This study aimed to assess the immunomodulatory activity of canine (c) Wharton jelly (WJ)-derived MSCs and refer them to human (h) MSCs isolated from the same tissue. Canine MSC(WJ)s appeared to be more prone to in vitro aging than their human counterparts. Both canine and human MSC(WJ)s significantly inhibited the activation as well as proliferation of CD4+ and CD8+ T cells. The treatment with IFNγ significantly upregulated indoleamine-2,3-dioxygenase 1 (IDO1) synthesis in human and canine MSC(WJ)s, and the addition of poly(I:C), TLR3 ligand, synergized this effect in cells from both species. Unstimulated human and canine MSC(WJ)s released TGFβ at the same level (p > 0.05). IFNγ significantly increased the secretion of TGFβ in cells from both species (p < 0.05); however, this response was significantly stronger in human cells than in canine cells. Although the properties of canine and human MSC(WJ)s differ in detail, cells from both species inhibit the proliferation of activated T cells to a very similar degree and respond to pro-inflammatory stimulation by enhancing their anti-inflammatory activity. These results suggest that testing MSC transplantation in naturally occurring immune-mediated diseases in dogs may have high translational value for human clinical trials.
Collapse
Affiliation(s)
- Anna Burdzinska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska Str. 159, 02-776 Warsaw, Poland; (I.M.S.); (K.M.-K.); (T.B.)
| | - Iwona Monika Szopa
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska Str. 159, 02-776 Warsaw, Poland; (I.M.S.); (K.M.-K.); (T.B.)
| | - Kinga Majchrzak-Kuligowska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska Str. 159, 02-776 Warsaw, Poland; (I.M.S.); (K.M.-K.); (T.B.)
| | - Aleksander Roszczyk
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka Str. 59, 02-006 Warsaw, Poland (L.P.)
| | - Katarzyna Zielniok
- Laboratory of Cellular and Genetic Therapies, Center for Preclinical Research, Medical University of Warsaw, Banacha Str. 1B, 02-097 Warsaw, Poland;
| | - Paweł Zep
- Veterinary Clinic “ochWET”, Pruszkowska Str. 19/21, 02-119 Warsaw, Poland
| | - Filip Andrzej Dąbrowski
- Department of Gynecology and Gynecological Oncology, Medical Centre of Postgraduate Education CMKP, Marymoncka Str. 99/103, 00-416 Warsaw, Poland;
| | - Tanushree Bhale
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska Str. 159, 02-776 Warsaw, Poland; (I.M.S.); (K.M.-K.); (T.B.)
| | - Marek Galanty
- Department of Small Animal Diseases and Clinic, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Leszek Paczek
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka Str. 59, 02-006 Warsaw, Poland (L.P.)
| |
Collapse
|
2
|
Majrashi M, Kotowska A, Scurr D, Hicks JM, Ghaemmaghami A, Yang J. Sustained Release of Dexamethasone from 3D-Printed Scaffolds Modulates Macrophage Activation and Enhances Osteogenic Differentiation. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 38016086 PMCID: PMC10726309 DOI: 10.1021/acsami.3c09774] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
Enhancing osteogenesis via modulating immune cells is emerging as a new approach to address the current challenges in repairing bone defects and fractures. However, much remains unknown about the crosstalk between immune cells and osteolineage cells during bone formation. Moreover, biomaterial scaffold-based approaches to effectively modulate this crosstalk to favor bone healing are also lacking. This study is the first to investigate the interactions between macrophages and mesenchymal stem cells (MSCs) in co-cultures with the sustained release of an anti-inflammatory and pro-osteogenesis drug (dexamethasone) from three-dimensional (3D)-printed scaffolds. We successfully achieved the sustained release of dexamethasone from polycaprolactone (PCL) by adding the excipient-sucrose acetate isobutyrate (SAIB). Dexamethasone was released over 35 days in the 17-163 nM range. The osteogenic differentiation of MSCs was enhanced by M1 macrophages at early time points. The late-stage mineralization was dominated by dexamethasone, with little contribution from the macrophages. Besides confirming BMP-2 whose secretion was promoted by both dexamethasone and M1 macrophages as a soluble mediator for enhanced osteogenesis, IL-6 was found to be a possible new soluble factor that mediated osteogenesis in macrophage-MSC co-cultures. The phenotype switching from M1 to M2 was drastically enhanced by the scaffold-released dexamethasone but only marginally by the co-cultured MSCs. Our results offer new insight into macrophage-MSC crosstalk and demonstrate the potential of using drug-release scaffolds to both modulate inflammation and enhance bone regeneration.
Collapse
Affiliation(s)
- Majed Majrashi
- School
of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
- Biodiscovery
Institute, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Anna Kotowska
- School
of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - David Scurr
- School
of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Jacqueline M. Hicks
- Nanoscale
and Microscale Research Centre, University
of Nottingham, Nottingham NG7 2RD, U.K.
| | - Amir Ghaemmaghami
- School
of Life Sciences, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Jing Yang
- School
of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
- Biodiscovery
Institute, University of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
3
|
Huang W, Xia D, Bi W, Lai X, Yu B, Chen W. Advances in stem cell therapy for peritoneal fibrosis: from mechanisms to therapeutics. Stem Cell Res Ther 2023; 14:293. [PMID: 37817212 PMCID: PMC10566108 DOI: 10.1186/s13287-023-03520-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 09/26/2023] [Indexed: 10/12/2023] Open
Abstract
Peritoneal fibrosis (PF) is a pathophysiological condition caused by a variety of pathogenic factors. The most important features of PF are mesothelial-mesenchymal transition and accumulation of activated (myo-)fibroblasts, which hinder effective treatment; thus, it is critical to identify other practical approaches. Recently, stem cell (SC) therapy has been indicated to be a potential strategy for this disease. Increasing evidence suggests that many kinds of SCs alleviate PF mainly by differentiating into mesothelial cells; secreting cytokines and extracellular vesicles; or modulating immune cells, particularly macrophages. However, there are relatively few articles summarizing research in this direction. In this review, we summarize the risk factors for PF and discuss the therapeutic roles of SCs from different sources. In addition, we outline effective approaches and potential mechanisms of SC therapy for PF. We hope that our review of articles in this area will provide further inspiration for research on the use of SCs in PF treatment.
Collapse
Affiliation(s)
- Weiyan Huang
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Demeng Xia
- Department of Pharmacy, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wendi Bi
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xueli Lai
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Bing Yu
- Department of Cell Biology, Center for Stem Cell and Medicine, Naval Medical University (Second Military Medical University), Shanghai, China.
| | - Wei Chen
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
4
|
Mi B, Xiong Y, Zha K, Cao F, Zhou W, Abbaszadeh S, Ouyang L, Liao Y, Hu W, Dai G, Zhao Z, Feng Q, Shahbazi MA, Liu G. Immune homeostasis modulation by hydrogel-guided delivery systems: a tool for accelerated bone regeneration. Biomater Sci 2023; 11:6035-6059. [PMID: 37522328 DOI: 10.1039/d3bm00544e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Immune homeostasis is delicately mediated by the dynamic balance between effector immune cells and regulatory immune cells. Local deviations from immune homeostasis in the microenvironment of bone fractures, caused by an increased ratio of effector to regulatory cues, can lead to excessive inflammatory conditions and hinder bone regeneration. Therefore, achieving effective and localized immunomodulation of bone fractures is crucial for successful bone regeneration. Recent research has focused on developing localized and specific immunomodulatory strategies using local hydrogel-based delivery systems. In this review, we aim to emphasize the significant role of immune homeostasis in bone regeneration, explore local hydrogel-based delivery systems, discuss emerging trends in immunomodulation for enhancing bone regeneration, and address the limitations of current delivery strategies along with the challenges of clinical translation.
Collapse
Affiliation(s)
- Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Kangkang Zha
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Faqi Cao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Wu Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Samin Abbaszadeh
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lizhi Ouyang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yuheng Liao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Weixian Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Guandong Dai
- Department of Orthopedic Surgery, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen 518118, China
| | - Zhiming Zhao
- Department of Orthopedics, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
5
|
Liu Y, Zhong Y, Zheng B, Liu Y. Extracellular vesicles derived from M1 macrophages enhance rat midpalatal suture expansion by promoting initial bone turnover and inflammation. Prog Orthod 2023; 24:34. [PMID: 37661233 PMCID: PMC10475451 DOI: 10.1186/s40510-023-00477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/18/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Midpalatal suture (MPS) expansion can be affected by many factors, and researchers have attempted to regulate the initial inflammatory stage of expansion to optimize clinical outcomes and their underlying mechanisms. This study aimed to investigate the potential effects and mechanisms of M1 macrophage small extracellular vesicles during rat MPS expansion. MATERIALS AND METHODS RAW264.7 cells were induced to M1 or M2 polarization and, small extracellular vesicles were isolated from the polarized macrophages. Male Sprague-Dawley rats (6-7 weeks) were administered 70 ± 5 g expansion force devices for 7 days. Rats with expanders without force served as controls. M1/M2 small extracellular vesicles were injected into the MPS region (50 µg/day) in the M1 and M2 small extracellular vesicle-assisted groups, while 0.9% saline was injected into the expansion-only group. Suture width, bone mass, and morphological changes in the region of interest (ROI) were examined. RESULTS The M1 small extracellular vesicle-assisted group showed a significantly increased MPS suture width in vivo (P < 0.001), and less bone mass was observed in the ROI (P < 0.05). Histological examination showed that the M1 small extracellular vesicle-assisted group exhibited a wider palatal area and obvious fibrous tissue rearrangement. The expression of RANKL and the number of osteoclasts were increased (P < 0.01) in the bony edges, and the p65 protein expression was significantly higher (P < 0.001). CONCLUSIONS M1 macrophage-derived small extracellular vesicles have a positive effect in MPS expansion and increase p65 protein content and RANKL expression, thus promoting bone turnover. This study may contribute to the clinical application of small extracellular vesicles in the expansion of the palatal suture.
Collapse
Affiliation(s)
- Yi Liu
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, 110002, China
| | - Yuan Zhong
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, 110002, China
| | - Bowen Zheng
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, 110002, China.
| | - Yi Liu
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, 110002, China.
| |
Collapse
|
6
|
Drobiova H, Sindhu S, Ahmad R, Haddad D, Al-Mulla F, Al Madhoun A. Wharton's jelly mesenchymal stem cells: a concise review of their secretome and prospective clinical applications. Front Cell Dev Biol 2023; 11:1211217. [PMID: 37440921 PMCID: PMC10333601 DOI: 10.3389/fcell.2023.1211217] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Accumulating evidence indicates that most primary Wharton's jelly mesenchymal stem cells (WJ-MSCs) therapeutic potential is due to their paracrine activity, i.e., their ability to modulate their microenvironment by releasing bioactive molecules and factors collectively known as secretome. These bioactive molecules and factors can either be released directly into the surrounding microenvironment or can be embedded within the membrane-bound extracellular bioactive nano-sized (usually 30-150 nm) messenger particles or vesicles of endosomal origin with specific route of biogenesis, known as exosomes or carried by relatively larger particles (100 nm-1 μm) formed by outward blebbing of plasma membrane called microvesicles (MVs); exosomes and MVs are collectively known as extracellular vesicles (EVs). The bioactive molecules and factors found in secretome are of various types, including cytokines, chemokines, cytoskeletal proteins, integrins, growth factors, angiogenic mediators, hormones, metabolites, and regulatory nucleic acid molecules. As expected, the secretome performs different biological functions, such as immunomodulation, tissue replenishment, cellular homeostasis, besides possessing anti-inflammatory and anti-fibrotic effects. This review highlights the current advances in research on the WJ-MSCs' secretome and its prospective clinical applications.
Collapse
Affiliation(s)
- Hana Drobiova
- Human Genetics Unit, Department of Pathology, College of Medicine, Kuwait University, Jabriya, Kuwait
| | - Sardar Sindhu
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Ashraf Al Madhoun
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
7
|
The Role of COX-2 and PGE2 in the Regulation of Immunomodulation and Other Functions of Mesenchymal Stromal Cells. Biomedicines 2023; 11:biomedicines11020445. [PMID: 36830980 PMCID: PMC9952951 DOI: 10.3390/biomedicines11020445] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
The ability of MSCs to modulate the inflammatory environment is well recognized, but understanding the molecular mechanisms responsible for these properties is still far from complete. Prostaglandin E2 (PGE2), a product of the cyclooxygenase 2 (COX-2) pathway, is indicated as one of the key mediators in the immunomodulatory effect of MSCs. Due to the pleiotropic effect of this molecule, determining its role in particular intercellular interactions and aspects of cell functioning is very difficult. In this article, the authors attempt to summarize the previous observations regarding the role of PGE2 and COX-2 in the immunomodulatory properties and other vital functions of MSCs. So far, the most consistent results relate to the inhibitory effect of MSC-derived PGE2 on the early maturation of dendritic cells, suppressive effect on the proliferation of activated lymphocytes, and stimulatory effect on the differentiation of macrophages into M2 phenotype. Additionally, COX-2/PGE2 plays an important role in maintaining the basic life functions of MSCs, such as the ability to proliferate, migrate and differentiate, and it also positively affects the formation of niches that are conducive to both hematopoiesis and carcinogenesis.
Collapse
|
8
|
Secretome of Mesenchymal Stromal Cells as a Possible Innovative Therapeutic Tool in Facial Nerve Injury Treatment. BIOMED RESEARCH INTERNATIONAL 2023; 2023:8427200. [PMID: 36691473 PMCID: PMC9867597 DOI: 10.1155/2023/8427200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Facial nerve palsy is a serious neurological condition that strongly affects patient everyday life. Standard treatments provide insufficient improvement and are burdened with the risk of severe complications, e.g., facial synkinesis. Mesenchymal stromal cell-based therapies are a novel and extensively developed field which offers new treatment approaches with promising results in regards to the nervous tissue regeneration. The potential of mesenchymal stromal cells (MSCs) to aid the regeneration of damaged nerves has been demonstrated in several preclinical models, as well as in several clinical trials. However, therapies based on cell transplantation are difficult to standardize in the manner similar to that of routine clinical practices. On the other hand, treatments based on mesenchymal stromal cell secretome harness the proregenerative features of mesenchymal stromal cells but relay on a product with measurable parameters that can be put through standardization procedures and deliver a fully controllable end-product. Utilization of mesenchymal stromal cell secretome allows the controlled dosage and standardization of the components to maximize the therapeutic potential and ensure safety of the end-product.
Collapse
|
9
|
Perinatal Stem Cell Therapy to Treat Type 1 Diabetes Mellitus: A Never-Say-Die Story of Differentiation and Immunomodulation. Int J Mol Sci 2022; 23:ijms232314597. [PMID: 36498923 PMCID: PMC9738084 DOI: 10.3390/ijms232314597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Human term placenta and other postpartum-derived biological tissues are promising sources of perinatal cells with unique stem cell properties. Among the massive current research on stem cells, one medical focus on easily available stem cells is to exploit them in the design of immunotherapy protocols, in particular for the treatment of chronic non-curable human diseases. Type 1 diabetes is characterized by autoimmune destruction of pancreatic beta cells and perinatal cells can be harnessed both to generate insulin-producing cells for beta cell replenishment and to regulate autoimmune mechanisms via immunomodulation capacity. In this study, the strong points of cells derived from amniotic epithelial cells and from umbilical cord matrix are outlined and their potential for supporting cell therapy development. From a basic research and expert stem cell point of view, the aim of this review is to summarize information regarding the regenerative medicine field, as well as describe the state of the art on possible cell therapy approaches for diabetes.
Collapse
|
10
|
The Intersection of Human and Veterinary Medicine-A Possible Direction towards the Improvement of Cell Therapy Protocols in the Treatment of Perianal Fistulas. Int J Mol Sci 2022; 23:ijms232213917. [PMID: 36430390 PMCID: PMC9696944 DOI: 10.3390/ijms232213917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The effective treatment of perianal fistulizing Crohn's disease is still a challenge. Local administration of mesenchymal stromal cells (MSCs) is becoming a part of accepted treatment options. However, as a fledgling technique, it still can be optimized. A new trend in translational research, which is in line with "One Health" approach, bases on exploiting parallels between naturally occurring diseases affecting humans and companion animals. Canine anal furunculosis (AF) has been indicated as condition analogous to human perianal Crohn's disease (pCD). This narrative review provides the first comprehensive comparative analysis of these two diseases based on the published data. The paper also outlines the molecular mechanisms of action of MSCs which are likely to have a role in modulating the perianal fistula niche in humans, and refers them to the current knowledge on the immunomodulatory properties of canine MSCs. Generally, the pathogenesis of both diseases shares main determinants such as the presence of genetic predispositions, dysregulation of immune response and the relation to intestine microbiota. However, we also identified many aspects which should be further specified, such as determining the frequency of true fistulas formation in AF patients, elucidating the role of TNF and Th17 pathway in the pathogenesis of AF, or clarifying the role of epithelial-to-mesenchymal transition phenomenon in the formation of canine fistulae. Nevertheless, the available data support the hypothesis that the results from testing cell therapies in dogs with anal furunculosis have a significant translational value in optimizing MSC transplants procedures in pCD patients.
Collapse
|
11
|
Kulesza A, Zielniok K, Hawryluk J, Paczek L, Burdzinska A. Ibuprofen in Therapeutic Concentrations Affects the Secretion of Human Bone Marrow Mesenchymal Stromal Cells, but Not Their Proliferative and Migratory Capacity. Biomolecules 2022; 12:biom12020287. [PMID: 35204788 PMCID: PMC8961564 DOI: 10.3390/biom12020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 11/29/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are able to modulate the immune system activity and the regeneration processes mainly through the secretion of multiple soluble factors, including prostaglandin E2 (PGE2). PGE2 is produced as a result of cyclooxygenases (COX) activity. In the present study, we investigated how ibuprofen, a nonselective COX inhibitor, affects the proliferation, migration and secretion of human bone marrow MSCs (hBM-MSCs). For this purpose, six hBM-MSCs populations were treated with ibuprofen at doses which do not differ from maximum serum concentrations during standard pharmacotherapy. Ibuprofen treatment (25 or 50 µg/mL) substantially reduced the secretion of PGE2 in all tested populations. Following ibuprofen administration, MSCs were subjected to proliferation (BrdU), transwell migration, and scratch assays, while its effect on MSCs secretome was evaluated by Proteome Profiler and Luminex immunoassays. Ibuprofen did not cause statistically significant changes in the proliferation rate and migration ability of MSCs (p > 0.05). However, ibuprofen (25 µg/mL for 3 days) significantly decreased mean secretion of: CCL2 (by 44%), HGF (by 31%), IL-6 (by 22%), VEGF (by 20%) and IL-4 (by 8%) compared to secretion of control MSCs (p < 0.05). Our results indicate that ibuprofen at therapeutic concentrations may impair the pro-regenerative properties of hBM-MSCs.
Collapse
Affiliation(s)
- Agnieszka Kulesza
- Department of Immunology, Transplantology and Internal Diseases, Faculty of Medicine, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (A.K.); (J.H.); (L.P.)
| | - Katarzyna Zielniok
- Department of Clinical Immunology, Faculty of Medicine, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland;
| | - Jakub Hawryluk
- Department of Immunology, Transplantology and Internal Diseases, Faculty of Medicine, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (A.K.); (J.H.); (L.P.)
| | - Leszek Paczek
- Department of Immunology, Transplantology and Internal Diseases, Faculty of Medicine, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (A.K.); (J.H.); (L.P.)
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Anna Burdzinska
- Department of Immunology, Transplantology and Internal Diseases, Faculty of Medicine, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (A.K.); (J.H.); (L.P.)
- Correspondence:
| |
Collapse
|