1
|
Alogna A, Berboth L, Faragli A, Ötvös J, Lo Muzio FP, di Mauro V, Modica J, Quarta E, Semmler L, Deißler PM, Berger YW, Tran KL, de Marchi B, Longinotti-Buitoni G, Degli Esposti L, Guillot E, Bazile D, Iafisco M, Dotti A, Bang ML, de Luca C, Brandenberger C, Benazzi L, di Silvestre D, de Palma A, Primeßnig U, Hohendanner F, Perna S, Buttini F, Colombo P, Mühlfeld C, Steendijk P, Mauri P, Tschöpe C, Borlaug B, Pieske BM, Attanasio P, Post H, Heinzel FR, Catalucci D. Lung-to-Heart Nano-in-Micro Peptide Promotes Cardiac Recovery in a Pig Model of Chronic Heart Failure. J Am Coll Cardiol 2024; 83:47-59. [PMID: 38171710 DOI: 10.1016/j.jacc.2023.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The lack of disease-modifying drugs is one of the major unmet needs in patients with heart failure (HF). Peptides are highly selective molecules with the potential to act directly on cardiomyocytes. However, a strategy for effective delivery of therapeutics to the heart is lacking. OBJECTIVES In this study, the authors sought to assess tolerability and efficacy of an inhalable lung-to-heart nano-in-micro technology (LungToHeartNIM) for cardiac-specific targeting of a mimetic peptide (MP), a first-in-class for modulating impaired L-type calcium channel (LTCC) trafficking, in a clinically relevant porcine model of HF. METHODS Heart failure with reduced ejection fraction (HFrEF) was induced in Göttingen minipigs by means of tachypacing over 6 weeks. In a setting of overt HFrEF (left ventricular ejection fraction [LVEF] 30% ± 8%), animals were randomized and treatment was started after 4 weeks of tachypacing. HFrEF animals inhaled either a dry powder composed of mannitol-based microparticles embedding biocompatible MP-loaded calcium phosphate nanoparticles (dpCaP-MP) or the LungToHeartNIM only (dpCaP without MP). Efficacy was evaluated with the use of echocardiography, invasive hemodynamics, and biomarker assessment. RESULTS DpCaP-MP inhalation restored systolic function, as shown by an absolute LVEF increase over the treatment period of 17% ± 6%, while reversing cardiac remodeling and reducing pulmonary congestion. The effect was recapitulated ex vivo in cardiac myofibrils from treated HF animals. The treatment was well tolerated, and no adverse events occurred. CONCLUSIONS The overall tolerability of LungToHeartNIM along with the beneficial effects of the LTCC modulator point toward a game-changing treatment for HFrEF patients, also demonstrating the effective delivery of a therapeutic peptide to the diseased heart.
Collapse
Affiliation(s)
- Alessio Alogna
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Campus Virchow-Klinikum, Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany; German Centre for Cardiovascular Research, Berlin, Germany.
| | - Leonhard Berboth
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Campus Virchow-Klinikum, Berlin, Germany
| | - Alessandro Faragli
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Campus Virchow-Klinikum, Berlin, Germany
| | - Jens Ötvös
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Campus Virchow-Klinikum, Berlin, Germany
| | - Francesco Paolo Lo Muzio
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Campus Virchow-Klinikum, Berlin, Germany
| | - Vittoria di Mauro
- Institute of Genetic and Biomedical Research, National Research Council of Italy, Milan Unit, Milan, Italy; Humanitas Cardio Center, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Jessica Modica
- Institute of Genetic and Biomedical Research, National Research Council of Italy, Milan Unit, Milan, Italy; Humanitas Cardio Center, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Eride Quarta
- Department of Food and Drugs, University of Parma, Parma, Italy; PlumeStars, Parma, Italy
| | - Lukas Semmler
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Campus Virchow-Klinikum, Berlin, Germany
| | - Peter Maximilian Deißler
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Campus Virchow-Klinikum, Berlin, Germany
| | - Yannic Wanja Berger
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Campus Virchow-Klinikum, Berlin, Germany
| | - Khai Liem Tran
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Campus Virchow-Klinikum, Berlin, Germany
| | | | | | - Lorenzo Degli Esposti
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council, Faenza, Italy
| | | | | | - Michele Iafisco
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council, Faenza, Italy
| | | | - Marie-Louise Bang
- Institute of Genetic and Biomedical Research, National Research Council of Italy, Milan Unit, Milan, Italy; Humanitas Cardio Center, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | | | - Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Charité-Universitätsmedizin Berlin, Institute of Functional Anatomy, Campus Charité Mitte, Berlin, Germany
| | - Louise Benazzi
- Proteomics and Metabolomic Lab, Institute for Biomedical Technologies, National Research Council, Segrate (Milan), Italy
| | - Dario di Silvestre
- Proteomics and Metabolomic Lab, Institute for Biomedical Technologies, National Research Council, Segrate (Milan), Italy
| | - Antonella de Palma
- Proteomics and Metabolomic Lab, Institute for Biomedical Technologies, National Research Council, Segrate (Milan), Italy
| | - Uwe Primeßnig
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Campus Virchow-Klinikum, Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany; German Centre for Cardiovascular Research, Berlin, Germany
| | - Felix Hohendanner
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Campus Virchow-Klinikum, Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany; German Centre for Cardiovascular Research, Berlin, Germany
| | - Simone Perna
- Department of Biology, College of Science, Sakhir Campus, University of Bahrain, Zallaq, Bahrain
| | | | - Paolo Colombo
- Department of Food and Drugs, University of Parma, Parma, Italy; PlumeStars, Parma, Italy
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, Hannover, Germany
| | - Paul Steendijk
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Pierluigi Mauri
- Proteomics and Metabolomic Lab, Institute for Biomedical Technologies, National Research Council, Segrate (Milan), Italy
| | - Carsten Tschöpe
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Campus Virchow-Klinikum, Berlin, Germany
| | - Barry Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Burkert M Pieske
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Campus Virchow-Klinikum, Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany; German Centre for Cardiovascular Research, Berlin, Germany
| | - Philipp Attanasio
- Department of Cardiology, Campus Benjamin Franklin, Charité-Universitätsmedizin, Berlin, Germany
| | - Heiner Post
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Campus Virchow-Klinikum, Berlin, Germany
| | - Frank R Heinzel
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Campus Virchow-Klinikum, Berlin, Germany; German Centre for Cardiovascular Research, Berlin, Germany
| | - Daniele Catalucci
- Institute of Genetic and Biomedical Research, National Research Council of Italy, Milan Unit, Milan, Italy; Humanitas Cardio Center, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy. https://twitter.com/CNRsocial_
| |
Collapse
|
2
|
Zhang C, D'Angelo D, Buttini F, Yang M. Long-acting inhaled medicines: Present and future. Adv Drug Deliv Rev 2024; 204:115146. [PMID: 38040120 DOI: 10.1016/j.addr.2023.115146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Inhaled medicines continue to be an essential part of treatment for respiratory diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis. In addition, inhalation technology, which is an active area of research and innovation to deliver medications via the lung to the bloodstream, offers potential advantages such as rapid onset of action, enhanced bioavailability, and reduced side effects for local treatments. Certain inhaled macromolecules and particles can also end up in different organs via lymphatic transport from the respiratory epithelium. While the majority of research on inhaled medicines is focused on the delivery technology, particle engineering, combination therapies, innovations in inhaler devices, and digital health technologies, researchers are also exploring new pharmaceutical technologies and strategies to prolong the duration of action of inhaled drugs. This is because, in contrast to most inhaled medicines that exert a rapid onset and short duration of action, long-acting inhaled medicines (LAIM) improve not only the patient compliance by reducing the dosing frequency, but also the effectiveness and convenience of inhaled therapies to better manage patients' conditions. This paper reviews the advances in LAIM, the pharmaceutical technologies and strategies for developing LAIM, and emerging new inhaled modalities that possess a long-acting nature and potential in the treatment and prevention of various diseases. The challenges in the development of the future LAIM are also discussed where active research and innovations are taking place.
Collapse
Affiliation(s)
- Chengqian Zhang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Davide D'Angelo
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Mingshi Yang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016, Shenyang, China.
| |
Collapse
|
3
|
Jadhav K, Jhilta A, Singh R, Ray E, Sharma N, Shukla R, Singh AK, Verma RK. Clofazimine nanoclusters show high efficacy in experimental TB with amelioration in paradoxical lung inflammation. BIOMATERIALS ADVANCES 2023; 154:213594. [PMID: 37657277 DOI: 10.1016/j.bioadv.2023.213594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023]
Abstract
The rise of tuberculosis (TB) superbugs has impeded efforts to control this infectious ailment, and new treatment options are few. Paradoxical Inflammation (PI) is another major problem associated with current anti-TB therapy, which can complicate the treatment and leads to clinical worsening of disease despite a decrease in bacterial burden in the lungs. TB infection is generally accompanied by an intense local inflammatory response which may be critical to TB pathogenesis. Clofazimine (CLF), a second-line anti-TB drug, delineated potential anti-mycobacterial effects in-vitro and in-vivo and also demonstrated anti-inflammatory potential in in-vitro experiments. However, clinical implications may be restricted owing to poor solubility and low bioavailability rendering a suboptimal drug concentration in the target organ. To unravel these issues, nanocrystals of CLF (CLF-NC) were prepared using a microfluidizer® technology, which was further processed into micro-sized CLF nano-clusters (CLF-NCLs) by spray drying technique. This particle engineering offers combined advantages of micron- and nano-scale particles where micron-size (∼5 μm) promise optimum aerodynamic parameters for the finest lung deposition, and nano-scale dimensions (∼600 nm) improve the dissolution profile of apparently insoluble clofazimine. An inhalable formulation was evaluated against virulent mycobacterium tuberculosis in in-vitro studies and in mice infected with aerosol TB infection. CLF-NCLs resulted in the significant killing of virulent TB bacteria with a MIC value of ∼0.62 μg/mL, as demonstrated by Resazurin microtiter assay (REMA). In TB-infected mice, inhaled doses of CLF-NCLs equivalent to ∼300 μg and ∼ 600 μg of CLF administered on every alternate day over 30 days significantly reduced the number of bacteria in the lung. With an inhaled dose of ∼600 μg/mice, reduction of mycobacterial colony forming units (CFU) was achieved by ∼1.95 Log10CFU times compared to CLF administered via oral gavage (∼1.18 Log10CFU). Lung histology scoring showed improved pathogenesis and inflammation in infected animals after 30 days of inhalation dosing of CLF-NCLs. The levels of pro-inflammatory mediators, including cytokines, TNF-α & IL-6, and MMP-2 in bronchoalveolar lavage fluid (BAL-F) and lung tissue homogenates, were attenuated after inhalation treatment. These pre-clinical data suggest inhalable CLF-NCLs are well tolerated, show significant anti-TB activity and apparently able to tackle the challenge of paradoxical chronic lung inflammation in murine TB model.
Collapse
Affiliation(s)
- Krishna Jadhav
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India
| | - Agrim Jhilta
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India
| | - Raghuraj Singh
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India
| | - Eupa Ray
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India
| | - Neleesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & A.H., Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu, J&K, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Lucknow, UP 226002, India
| | - Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India.
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India.
| |
Collapse
|
4
|
Carrêlo H, Cidade MT, Borges JP, Soares P. Gellan Gum/Alginate Microparticles as Drug Delivery Vehicles: DOE Production Optimization and Drug Delivery. Pharmaceuticals (Basel) 2023; 16:1029. [PMID: 37513940 PMCID: PMC10384707 DOI: 10.3390/ph16071029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Gellan gum is a biocompatible and easily accessible polysaccharide with excellent properties to produce microparticles as drug delivery systems. However, the production methods often fail in reproducibility, compromising the translational potential of such systems. In this work, the production of gellan gum-based microparticles was optimized using the coaxial air flow method, and an inexpensive and reproducible production method. A design of experiments was used to identify the main parameters that affect microparticle production and optimization, focusing on diameter and dispersibility. Airflow was the most significant factor for both parameters. Pump flow affected the diameter, while the gellan gum/alginate ratio affected dispersibility. Microparticles were revealed to be sensitive to pH with swelling, degradation, and encapsulation efficiency affected by pH. Using methylene blue as a model drug, higher encapsulation, and swelling indexes were obtained at pH 7.4, while a more pronounced release occurred at pH 6.5. Within PBs solutions, the microparticles endured up to two months. The microparticle release profiles were studied using well-known models, showing a Fickian-type release, but with no alteration by pH. The developed microparticles showed promising results as drug-delivery vehicles sensitive to pH.
Collapse
Affiliation(s)
- Henrique Carrêlo
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, 2829-516 Caparica, Portugal
| | - Maria Teresa Cidade
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, 2829-516 Caparica, Portugal
| | - João Paulo Borges
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, 2829-516 Caparica, Portugal
| | - Paula Soares
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
5
|
Uskoković V. Lessons from the history of inorganic nanoparticles for inhalable diagnostics and therapeutics. Adv Colloid Interface Sci 2023; 315:102903. [PMID: 37084546 DOI: 10.1016/j.cis.2023.102903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
The respiratory tract is one of the most accessible ones to exogenous nanoparticles, yet drug delivery by their means to it is made extraordinarily challenging because of the plexus of aerodynamic, hemodynamic and biomolecular factors at cellular and extracellular levels that synergistically define the safety and efficacy of this process. Here, the use of inorganic nanoparticles (INPs) for inhalable diagnostics and therapies of the lung is viewed through the prism of the history of studies on the interaction of INPs with the lower respiratory tract. The most conceptually and methodologically innovative and illuminative studies are referred to in the chronological order, as they were reported in the literature, and the trends in the progress of understanding this interaction of immense therapeutic and toxicological significance are being deduced from it. The most outstanding actual trends delineated include the diminishment of toxicity via surface functionalization, cell targeting, tagging and tracking via controlled binding and uptake, hybrid INP treatments, magnetic guidance, combined drug and gene delivery, use as adjuvants in inhalable vaccines, and other. Many of the understudied research directions, which have been accomplished by the nanostructured organic polymers in the pulmonary niche, are discussed. The progress in the use of INPs as inhalable diagnostics or therapeutics has been hampered by their well-recognized inflammatory potential and toxicity in the respiratory tract. However, the annual numbers of methodologically innovative studies have been on the rise throughout the past two decades, suggesting that this is a prolific direction of research, its comparatively poor commercial takings notwithstanding. Still, the lack of consensus on the effects of many INP compositions at low but therapeutically effective doses, the plethora of contradictory reports on ostensibly identical chemical compositions and NP properties, and the many cases of antagonism in combinatorial NP treatments imply that the rational design of inhalable medical devices based on INPs must rely on qualitative principles for the most part and embrace a partially stochastic approach as well. At the same time, the fact that the most studied INPs for pulmonary applications have been those with some of the thickest records of pulmonary toxicity, e.g., carbon, silver, gold, silica and iron oxide, is a silent call for the expansion of the search for new inorganic compositions for use in inhalable therapies to new territories.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, TardigradeNano LLC, 7 Park Vista, Irvine, CA 92604, USA; Department of Mechanical Engineering, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA.
| |
Collapse
|
6
|
Chan HW, Chow S, Zhang X, Zhao Y, Tong HHY, Chow SF. Inhalable Nanoparticle-based Dry Powder Formulations for Respiratory Diseases: Challenges and Strategies for Translational Research. AAPS PharmSciTech 2023; 24:98. [PMID: 37016029 PMCID: PMC10072922 DOI: 10.1208/s12249-023-02559-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/23/2023] [Indexed: 04/06/2023] Open
Abstract
The emergence of novel respiratory infections (e.g., COVID-19) and expeditious development of nanoparticle-based COVID-19 vaccines have recently reignited considerable interest in designing inhalable nanoparticle-based drug delivery systems as next-generation respiratory therapeutics. Among various available devices in aerosol delivery, dry powder inhalers (DPIs) are preferable for delivery of nanoparticles due to their simplicity of use, high portability, and superior long-term stability. Despite research efforts devoted to developing inhaled nanoparticle-based DPI formulations, no such formulations have been approved to date, implying a research gap between bench and bedside. This review aims to address this gap by highlighting important yet often overlooked issues during pre-clinical development. We start with an overview and update on formulation and particle engineering strategies for fabricating inhalable nanoparticle-based dry powder formulations. An important but neglected aspect in in vitro characterization methodologies for linking the powder performance with their bio-fate is then discussed. Finally, the major challenges and strategies in their clinical translation are highlighted. We anticipate that focused research onto the existing knowledge gaps presented in this review would accelerate clinical applications of inhalable nanoparticle-based dry powders from a far-fetched fantasy to a reality.
Collapse
Affiliation(s)
- Ho Wan Chan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 2/F, Laboratory Block 21 Sassoon Road, Hong Kong S.A.R., L2-08B, Pokfulam, China
| | - Stephanie Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 2/F, Laboratory Block 21 Sassoon Road, Hong Kong S.A.R., L2-08B, Pokfulam, China
| | - Xinyue Zhang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 2/F, Laboratory Block 21 Sassoon Road, Hong Kong S.A.R., L2-08B, Pokfulam, China
| | - Yayi Zhao
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong S.A.R, Shatin, China
| | - Henry Hoi Yee Tong
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao S.A.R., China
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 2/F, Laboratory Block 21 Sassoon Road, Hong Kong S.A.R., L2-08B, Pokfulam, China.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong S.A.R, Shatin, China.
| |
Collapse
|
7
|
Quarta E, Chiappi M, Adamiano A, Tampieri A, Wang W, Tetley TD, Buttini F, Sonvico F, Catalucci D, Colombo P, Iafisco M, Degli Esposti L. Inhalable Microparticles Embedding Biocompatible Magnetic Iron-Doped Hydroxyapatite Nanoparticles. J Funct Biomater 2023; 14:189. [PMID: 37103279 PMCID: PMC10145219 DOI: 10.3390/jfb14040189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Recently, there has been increasing interest in developing biocompatible inhalable nanoparticle formulations, as they have enormous potential for treating and diagnosing lung disease. In this respect, here, we have studied superparamagnetic iron-doped calcium phosphate (in the form of hydroxyapatite) nanoparticles (FeCaP NPs) which were previously proved to be excellent materials for magnetic resonance imaging, drug delivery and hyperthermia-related applications. We have established that FeCaP NPs are not cytotoxic towards human lung alveolar epithelial type 1 (AT1) cells even at high doses, thus proving their safety for inhalation administration. Then, D-mannitol spray-dried microparticles embedding FeCaP NPs have been formulated, obtaining respirable dry powders. These microparticles were designed to achieve the best aerodynamic particle size distribution which is a critical condition for successful inhalation and deposition. The nanoparticle-in-microparticle approach resulted in the protection of FeCaP NPs, allowing their release upon microparticle dissolution, with dimensions and surface charge close to the original values. This work demonstrates the use of spray drying to provide an inhalable dry powder platform for the lung delivery of safe FeCaP NPs for magnetically driven applications.
Collapse
Affiliation(s)
- Eride Quarta
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Michele Chiappi
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 0AZ, UK
| | - Alessio Adamiano
- Institute of Science, Technology and Sustainability for Ceramic Materials (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Anna Tampieri
- Institute of Science, Technology and Sustainability for Ceramic Materials (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Weijie Wang
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 0AZ, UK
| | - Teresa D. Tetley
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 0AZ, UK
| | - Francesca Buttini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
- Interdepartmental Center for Innovation in Health Products, Biopharmanet_TEC, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Fabio Sonvico
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
- Interdepartmental Center for Innovation in Health Products, Biopharmanet_TEC, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Daniele Catalucci
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), UOS Milan and IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Paolo Colombo
- PlumeStars srl, Parco Area Delle Scienze, 27/A, 43125 Parma, Italy
| | - Michele Iafisco
- Institute of Science, Technology and Sustainability for Ceramic Materials (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Lorenzo Degli Esposti
- Institute of Science, Technology and Sustainability for Ceramic Materials (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| |
Collapse
|
8
|
Investigation of Alogliptin-Loaded In Situ Gel Implants by 23 Factorial Design with Glycemic Assessment in Rats. Pharmaceutics 2022; 14:pharmaceutics14091867. [PMID: 36145615 PMCID: PMC9501034 DOI: 10.3390/pharmaceutics14091867] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/03/2022] Open
Abstract
The aim of the study was to design injectable long-acting poly (lactide-co-glycolide) (PLGA)-based in situ gel implants (ISGI) loaded with the anti-diabetic alogliptin. Providing sustained therapeutic exposures and improving the pharmacological responses of alogliptin were targeted for achieving reduced dosing frequency and enhanced treatment outputs. In the preliminary study, physicochemical characteristics of different solvents utilized in ISGI preparation were studied to select a proper solvent possessing satisfactory solubilization capacity, viscosity, water miscibility, and affinity to PLGA. Further, an optimization technique using a 23 factorial design was followed. The blood glucose levels of diabetic rats after a single injection with the optimized formulation were compared with those who received daily oral alogliptin. N-methyl-2-pyrrolidone (NMP) and dimethyl sulfoxide (DMSO), as highly water-miscible and low viscous solvents, demonstrated their effectiveness in successful ISGI preparation and controlling the burst alogliptin release. The impact of increasing lactide concentration and PLGA amount on reducing the burst and cumulative alogliptin release was represented. The optimized formulation comprising 312.5 mg of PLGA (65:35) and DMSO manifested a remarkable decrease in the rats’ blood glucose levels throughout the study period in comparison to that of oral alogliptin solution. Meanwhile, long-acting alogliptin-loaded ISGI systems demonstrated their feasibility for treating type 2 diabetes with frequent dosage reduction and patient compliance enhancement.
Collapse
|
9
|
Antimicrobial peptides for tackling cystic fibrosis related bacterial infections: a review. Microbiol Res 2022; 263:127152. [DOI: 10.1016/j.micres.2022.127152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022]
|
10
|
Huang Y, Yan S, Zhang S, Yin Q, Chen X, Wu WD. Spray dried hydroxyapatite-based supraparticles with uniform and controllable size and morphology. Colloids Surf B Biointerfaces 2022; 217:112610. [PMID: 35700565 DOI: 10.1016/j.colsurfb.2022.112610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
This work aims to prepare uniform spray dried hydroxyapatite-based (SD HAP-based) supraparticles with controllable morphology via micro-fluidic spray drying. Sodium polyacrylate (PAAS) and sodium chloride (NaCl) were used to prepare the precursor suspensions by regulating the inter-particle repulsive forces and electrostatic shielding effect, respectively. The particle size (D50) and zeta potential of the suspension were highly associated with the mass ratio of HAP to PAAS (mH/mP) and the NaCl concentration (CNaCl), which further had significant effect on the permeability (k) of the droplet shell formed during spray drying and ultimately the supraparticle morphology. D50 ˂ 2 µm and absolute zeta potential ˃ 20 mV, obtained when mH/mP ˂ 100 under low CNaCl, rendered ultralow k and consequently deformed supraparticles; Whereas D50 ˃ 2 µm and absolute zeta potential ˂ 20 mV, achieved by decreasing PAAS amount, i.e. mH/mP ≥ 100 or improving CNaCl to efficiently screen surface net charge of HAP, high k and spherical supraparticles were thus preferentially formed.
Collapse
Affiliation(s)
- Yuanyuan Huang
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Shen Yan
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Shengyu Zhang
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Quanyi Yin
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China.
| | - Xiaodong Chen
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Winston Duo Wu
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
11
|
Scherließ R, Bock S, Bungert N, Neustock A, Valentin L. Particle engineering in dry powders for inhalation. Eur J Pharm Sci 2022; 172:106158. [DOI: 10.1016/j.ejps.2022.106158] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
|