1
|
Rodríguez-Pombo L, Carou-Senra P, Rodríguez-Martínez E, Januskaite P, Rial C, Félix P, Alvarez-Lorenzo C, Basit AW, Goyanes A. Customizable orodispersible films: Inkjet printing and data matrix encoding for personalized hydrocortisone dosing. Int J Pharm 2024; 655:124005. [PMID: 38493841 DOI: 10.1016/j.ijpharm.2024.124005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The aim of this study was to exploit the versatility of inkjet printing to develop flexible doses of drug-loaded orodispersible films that encoded information in a data matrix pattern, and to introduce a specialised data matrix-generator software specifically focused on the healthcare sector. Pharma-inks (drug-loaded inks) containing hydrocortisone (HC) were developed and characterised based on their rheological properties and drug content. Different strategies were investigated to improve HC solubility: formation of β-cyclodextrin complexes, Soluplus® based micelles, and the use of co-solvent systems. The software automatically adapted the data matrix size and identified the number of layers for printing. HC content deposited in each film layer was measured, and it was found that the proportion of co-solvent used directly affected the drug solubility and simultaneously played a role in the modification of the viscosity and surface tension of the inks. The formation of β-cyclodextrin complexes improved the drug quantity deposited in each layer. On the contrary, micelle-based inks were not suitable for printing. Orodispersible films containing flexible and low doses of personalised HC were successfully prepared, and the development of a code generator software oriented to medical use provided an additional, innovative, and revolutionary advantage to personalised medicine safety and accessibility.
Collapse
Affiliation(s)
- Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Paola Carou-Senra
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Erea Rodríguez-Martínez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Patricija Januskaite
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Carlos Rial
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao) CP 27543, Spain
| | - Paulo Félix
- CiTIUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao) CP 27543, Spain.
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao) CP 27543, Spain.
| |
Collapse
|
2
|
Carou-Senra P, Rodríguez-Pombo L, Awad A, Basit AW, Alvarez-Lorenzo C, Goyanes A. Inkjet Printing of Pharmaceuticals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309164. [PMID: 37946604 DOI: 10.1002/adma.202309164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Inkjet printing (IJP) is an additive manufacturing process that selectively deposits ink materials, layer-by-layer, to create 3D objects or 2D patterns with precise control over their structure and composition. This technology has emerged as an attractive and versatile approach to address the ever-evolving demands of personalized medicine in the healthcare industry. Although originally developed for nonhealthcare applications, IJP harnesses the potential of pharma-inks, which are meticulously formulated inks containing drugs and pharmaceutical excipients. Delving into the formulation and components of pharma-inks, the key to precise and adaptable material deposition enabled by IJP is unraveled. The review extends its focus to substrate materials, including paper, films, foams, lenses, and 3D-printed materials, showcasing their diverse advantages, while exploring a wide spectrum of therapeutic applications. Additionally, the potential benefits of hardware and software improvements, along with artificial intelligence integration, are discussed to enhance IJP's precision and efficiency. Embracing these advancements, IJP holds immense potential to reshape traditional medicine manufacturing processes, ushering in an era of medical precision. However, further exploration and optimization are needed to fully utilize IJP's healthcare capabilities. As researchers push the boundaries of IJP, the vision of patient-specific treatment is on the horizon of becoming a tangible reality.
Collapse
Affiliation(s)
- Paola Carou-Senra
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Atheer Awad
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent, TN24 8DH, UK
- FABRX Artificial Intelligence, Carretera de Escairón 14, Currelos (O Saviñao), CP 27543, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent, TN24 8DH, UK
- FABRX Artificial Intelligence, Carretera de Escairón 14, Currelos (O Saviñao), CP 27543, Spain
| |
Collapse
|
3
|
Carou-Senra P, Ong JJ, Castro BM, Seoane-Viaño I, Rodríguez-Pombo L, Cabalar P, Alvarez-Lorenzo C, Basit AW, Pérez G, Goyanes A. Predicting pharmaceutical inkjet printing outcomes using machine learning. Int J Pharm X 2023; 5:100181. [PMID: 37143957 PMCID: PMC10151423 DOI: 10.1016/j.ijpx.2023.100181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 05/06/2023] Open
Abstract
Inkjet printing has been extensively explored in recent years to produce personalised medicines due to its low cost and versatility. Pharmaceutical applications have ranged from orodispersible films to complex polydrug implants. However, the multi-factorial nature of the inkjet printing process makes formulation (e.g., composition, surface tension, and viscosity) and printing parameter optimization (e.g., nozzle diameter, peak voltage, and drop spacing) an empirical and time-consuming endeavour. Instead, given the wealth of publicly available data on pharmaceutical inkjet printing, there is potential for a predictive model for inkjet printing outcomes to be developed. In this study, machine learning (ML) models (random forest, multilayer perceptron, and support vector machine) to predict printability and drug dose were developed using a dataset of 687 formulations, consolidated from in-house and literature-mined data on inkjet-printed formulations. The optimized ML models predicted the printability of formulations with an accuracy of 97.22%, and predicted the quality of the prints with an accuracy of 97.14%. This study demonstrates that ML models can feasibly provide predictive insights to inkjet printing outcomes prior to formulation preparation, affording resource- and time-savings.
Collapse
Affiliation(s)
- Paola Carou-Senra
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Spain
| | - Jun Jie Ong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Brais Muñiz Castro
- IRLab, CITIC Research Center, Department of Computer Science, University of A Coruña, Spain
| | - Iria Seoane-Viaño
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Spain
| | - Pedro Cabalar
- IRLab, Department of Computer Science, University of A Coruña, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Spain
| | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- FabRx Ltd., Henwood House, Henwood, Ashford TN24 8DH, UK
| | - Gilberto Pérez
- IRLab, CITIC Research Center, Department of Computer Science, University of A Coruña, Spain
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Spain
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- FabRx Ltd., Henwood House, Henwood, Ashford TN24 8DH, UK
- Fabrx Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao) CP 27543, Spain
| |
Collapse
|
4
|
Sterle Zorec B. Two-dimensional printing of nanoparticles as a promising therapeutic method for personalized drug administration. Pharm Dev Technol 2023; 28:826-842. [PMID: 37788221 DOI: 10.1080/10837450.2023.2264920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
The necessity for personalized patient treatment has drastically increased since the contribution of genes to the differences in physiological and metabolic state of individuals have been exposed. Different approaches have been considered so far in order to satisfy all of the diversities in patient needs, yet none of them have been fully implemented thus far. In this framework, various types of 2D printing technologies have been identified to offer some potential solutions for personalized medication, which development is increasing rapidly. Accurate drug-on-demand deposition, the possibility of consuming multiple drug substances in one product and adjusting individual drug concentration are just some of the few benefits over existing bulk pharmaceuticals manufacture, which printing technologies brings. With inclusion of nanotechnology by printing nanoparticles from its dispersions some further opportunities such as controlled and stimuli-responsive drug release or targeted and dose depending on drug delivery were highlighted. Yet, there are still some challenges to be solved before such products can reach the pharmaceutical market. In those terms mostly chemical, physical as well as microbiological stability concerns should be answered, with which 2D printing technology could meet the treatment needs of every individual and fulfill some existing drawbacks of large-scale batch production of pharmaceuticals we possess today.
Collapse
Affiliation(s)
- Barbara Sterle Zorec
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Handa M, Afzal O, Beg S, SanapNasik S, Kaundal RK, Verma RK, Mishra A, Shukla R. Harnessing personalized tailored medicines to digital-based data-enriched edible pharmaceuticals. Drug Discov Today 2023; 28:103555. [PMID: 36931386 DOI: 10.1016/j.drudis.2023.103555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/26/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Tailoring drug products to personalized medicines poses challenges for conventional dosage forms. The prominent reason is the restricted availability of flexible dosage strengths in the market. Inappropriate dosage strengths lead to adverse drug reactions or compromised therapeutic effects. The situation worsens when the drug has a narrow therapeutic window. To overcome these challenges, data-enriched edible pharmaceuticals (DEEP) are novel concepts for designing solid oral products. DEEP have individualized doses and information embedded in quick response (QR) code form. When data are presented in a QR code, the information is printed with edible ink that contains the drug in tailored doses required for the patients.
Collapse
Affiliation(s)
- Mayank Handa
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, UP 226002, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, AlKharj, Saudi Arabia
| | - Sarwar Beg
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Sachin SanapNasik
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, UP 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Raebareli (NIPER-R), Lucknow, UP 226002, India
| | - Rahul K Verma
- Institute of Nano Science and Technology (INST), SAS Nagar, Punjab 140306, India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Guwahati 781101, Assam, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, UP 226002, India.
| |
Collapse
|
6
|
Cannabinoids: Challenges, opportunities and current techniques towards its extraction and purification for edibles. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Chao M, Genina N, Beer N, Kälvemark Sporrong S. Data-enriched edible pharmaceuticals (DEEPs): Patients' preferences, perceptions, and acceptability of new dosage forms and their digital aspects – An interview study. EXPLORATORY RESEARCH IN CLINICAL AND SOCIAL PHARMACY 2022; 6:100141. [PMID: 35909714 PMCID: PMC9335929 DOI: 10.1016/j.rcsop.2022.100141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/05/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Meie Chao
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Natalja Genina
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Netta Beer
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Sofia Kälvemark Sporrong
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department of Pharmacy, Uppsala University, Box 580, 751 23 Uppsala, Sweden
- Corresponding author at: Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|