1
|
Bulut S, Aasim M, Emsen B, Ali SA, Askin H, Karatas M. Machine learning modeling and response surface methodology driven antioxidant and anticancer activities of chitosan nanoparticle-mediated extracts of Bacopa monnieri. Int J Biol Macromol 2025; 310:143470. [PMID: 40280507 DOI: 10.1016/j.ijbiomac.2025.143470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/07/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
This study investigates the potential of chitosan nanoparticles (CNPs) in enhancing the bioavailability and efficacy of Bacopa monnieri extracts, known for their neuroprotective, antioxidant, and anticancer properties. Different concentrations of CNPs were added to the culture medium for in vitro shoot regeneration. Antioxidant activity (DPPH free radical scavenging and H2O2 removal assays) and cytotoxicity assay (LDH release and XTT viability) were performed. The results demonstrated the highest DPPH radical scavenging activity of 95.60 % at 125 μg/mL CNPs from methanol extract. Whereas, H2O2 scavenging activity increased with higher extract concentrations, and the maximum was recorded from methanol extract when used at 1000 μg/mL. Cytotoxicity assays revealed a dose-dependent increase in LDH activity and XTT reduction, and water-based extracts demonstrated the strongest cytotoxic effects. IC50 analysis indicated that CNP-enriched methanol and water extracts were significantly more cytotoxic to HeLa cells as compared to ethanol extracts. Response surface regression analysis and ML models confirmed the reliability of the experimental data, with the multilayer perceptron (MLP) model exhibiting the best predictive accuracy, followed by the random forest (RF) model. It can be concluded that CNP enrichment significantly improved the antioxidant and anticancer properties of B. monnieri extracts, highlighting the potential of CNP-based formulations for future studies.
Collapse
Affiliation(s)
- Seyma Bulut
- Department of Biotechnology, Faculty of Science, Necmettin Erbakan University, 42090 Konya, Turkey.
| | - Muhammad Aasim
- Department of Plant Protection, Faculty of Agricultural Sciences and Technology, Sivas University of Science and Technology, 58000 Sivas, Turkey.
| | - Bugrahan Emsen
- Department of Plant Protection, Faculty of Agricultural Sciences and Technology, Sivas University of Science and Technology, 58000 Sivas, Turkey.
| | - Seyid Amjad Ali
- Department of Information Systems and Technologies, Bilkent University, 06800 Ankara, Turkey.
| | - Hakan Askin
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey.
| | - Mehmet Karatas
- Department of Biology, Kamil Ozdag Faculty of Science, Karamanoglu Mehmetbey University, 70200 Karaman, Turkey.
| |
Collapse
|
2
|
Pinho V, Neves-Petersen MT, Machado R, Castro Gomes A. Light Assisted Covalent Immobilization of Proteins for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406561. [PMID: 39887935 DOI: 10.1002/smll.202406561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/24/2025] [Indexed: 02/01/2025]
Abstract
The covalent immobilization of proteins attracts considerable interest in the biomedical field due to its potential applications in biosensors, recombinant protein purification, and the development of personalized therapeutic carriers. In response to the demand for more cost-effective, time-efficient, and simpler protocols, photo-immobilization emerges as a technique that circumvents the limitations of conventional methods. This approach offers enhanced precision at the nanoscale level and facilitates device reusability, thereby aligning with current sustainability concerns. Photo-immobilization is versatile, as it can be applied to both 2D and 3D substrates. While some methods involve complex protocols using genetically engineered photosensitive linkers, more straightforward techniques rely on amino acid bonds, such as disulfide bonds, for covalent protein bonding. Photo-immobilization can be achieved with both ultraviolet (UV) and visible light. This systematic review examines literature from Scopus, PubMed, and Web of Science, offering insights into relevant studies and considerations for covalent protein immobilization, and presents photochemical approaches applicable to major protein types.
Collapse
Affiliation(s)
- Vanessa Pinho
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | | | - Raúl Machado
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Andreia Castro Gomes
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
3
|
Vo TS, Chit PP, Nguyen VH, Hoang T, Lwin KM, Vo TTBC, Jeon B, Han S, Lee J, Park Y, Kim K. A comprehensive review of chitosan-based functional materials: From history to specific applications. Int J Biol Macromol 2024; 281:136243. [PMID: 39393718 DOI: 10.1016/j.ijbiomac.2024.136243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/08/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
Chitosan (CTS), a natural biopolymer derived from chitin, has garnered significant attention owing to its potential chemical, biological, and physical properties, such as biocompatibility, bioactivity, and biosafety. This comprehensive review traces the historical development of CTS-based materials and delves into their specific applications across various fields. The study highlights the evolution of CTS from its initial discovery to its current state, emphasizing key milestones and technological advancements that have expanded its utility. Despite the extensive research, the synthesis and functionalization of CTS to achieve desired properties for targeted applications remain a challenge. This review addresses current problems such as the scalability of production, consistency in quality, and the environmental impact of extraction and modification processes. Additionally, it explores the novel applications of CTS-based materials in biomedicine, agriculture, environmental protection, and food industry, showcasing innovative solutions and future potentials. By providing a detailed analysis of the current state of CTS research and identifying gaps in knowledge, this review offers a valuable resource for researchers and industry professionals. The novelty of this work lies in its holistic approach, combining historical context with a forward-looking perspective on emerging trends and potential breakthroughs in the field of CTS-based functional materials. Therefore, this review will be helpful for readers by summarizing recent advances and discussing prospects in CTS-based functional materials.
Collapse
Affiliation(s)
- Thi Sinh Vo
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Pyone Pyone Chit
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Vu Hoang Nguyen
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia.
| | - Trung Hoang
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, South Korea; Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Khin Moe Lwin
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Tran Thi Bich Chau Vo
- Faculty of Industrial Management, College of Engineering, Can Tho University, Can Tho 900000, Viet Nam.
| | - Byounghyun Jeon
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Soobean Han
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jaehan Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Yunjeong Park
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94709, United States.
| | - Kyunghoon Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
4
|
Almukainzi M, El-Masry TA, Ibrahim HA, Saad HM, El Zahaby EI, Saleh A, El-Nagar MMF. Ameliorative Effect of Chitosan/ Spirulina platensis Ethanolic Extract Nanoformulation against Cyclophosphamide-Induced Ovarian Toxicity: Role of PPAR-γ/Nrf-2/HO-1 and NF-kB/TNF-α Signaling Pathways. Mar Drugs 2024; 22:395. [PMID: 39330276 PMCID: PMC11433581 DOI: 10.3390/md22090395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Cyclophosphamide (CP) is an anticancer drug that causes infertility disorders. This study was designed to evaluate a nanoformulation of chitosan with an ethanolic extract from Spirulina platensis in terms of its protection against cyclophosphamide-induced ovarian toxicity. Nine groups of female Wistar rats were randomly assigned as follows: 1: control vehicle, 2: chitosan polymer, 3: telmisartan, 4: Spirulina platensis extract, 5: nanoformulation of the Spirulina platensis, and 6: single injection of CP; groups 7, 8, and 9 received the same treatments as those used in groups 3, 4, and 5, respectively, with a single dose of CP (200 mg/kg, I.P). The results displayed that the CP treatment decreased estradiol, progesterone, anti-mullerian hormone, and GSH content, and it downregulated PPAR-γ, Nrf-2, and HO-1 gene expression. In addition, the CP treatment caused an increase in the FSH, LH, and MDA levels. In the same manner, the protein expression of caspase-3, NF-kB, and TNF-α was upregulated in response to the CP treatment, while PPAR-γ was downregulated in comparison with the control. The rats treated with SPNPs exhibited a substantial reduction in the detrimental effects of oxidative stress and inflammation of the ovarian tissue. This study's conclusions showed that SPNPs counteracted the effects of CP, preventing the death of ovarian follicles and restoring the gonadotropin hormone balance and normal ovarian histological appearance.
Collapse
Affiliation(s)
- May Almukainzi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (M.A.); (A.S.)
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (T.A.E.-M.); (H.A.I.)
| | - Hanaa A. Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (T.A.E.-M.); (H.A.I.)
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Cairo 51511, Egypt;
| | - Enas I. El Zahaby
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt;
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (M.A.); (A.S.)
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (T.A.E.-M.); (H.A.I.)
| |
Collapse
|
5
|
Lukáš Petrova S, Sincari V, Pavlova E, Pokorný V, Lobaz V, Hrubý M. Microfluidic Controlled Self-Assembly of Polylactide (PLA)-Based Linear and Graft Copolymers into Nanoparticles with Diverse Morphologies. ACS POLYMERS AU 2024; 4:331-341. [PMID: 39156556 PMCID: PMC11328328 DOI: 10.1021/acspolymersau.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 08/20/2024]
Abstract
This study outlines the microfluidic (MF) controlled self-assembly of polylactide (PLA)-based linear and graft copolymers. The PLA-based copolymers (PLA-Cs) were synthesized through a convenient one-pot/one-step ROP/RAFT technique. Three distinct vinyl monomers-triethylene glycol methacrylate (TEGMA), 2-hydroxypropyl methacrylate (HPMA), and N-(2-hydroxypropyl) methacrylamide (HPMAA) were employed to prepare various copolymers: linear thermoresponsive polylactide-b-poly(triethylene glycol methacrylate) (PLA-b-PTEGMA), graft pseudothermoresponsive poly[N-(2-hydroxypropyl)] methacrylate-g-polylactide (PHPMA-g-PLA), and graft amphiphilic poly[N-(2-hydroxypropyl)] methacrylamide-g-polylactide (PHPMAA-g-PLA). The MF technology was utilized for the controlled self-assembly of these PLA-based BCs in a solution, resulting in a range of nanoparticle (NP) morphologies. The thermoresponsive PLA-b-PTEGMA diblock copolymer formed thermodynamically stable micelles (Ms) through kinetically controlled assemblies. Similarly, employing MF channels led to the self-assembly of PHPMA-g-PLA, yielding polymersomes (PSs) with adjustable sizes under the same solution conditions. Conversely, the PHPMAA-g-PLA copolymer generated worm-like particles (Ws). The analysis of resulting nano-objects involves techniques such as transmission electron microscopy, dynamic light scattering investigations (DLS), and small-angle X-ray scattering (SAXS). More specifically, the thermoresponsive behavior of PLA-b-PTEGMA and PHPMA-g-PLA nano-objects is validated through variable-temperature DLS, TEM, and SAXS methods. Furthermore, the study explored the specific interactions between the formed Ms, PSs, and/or Ws with proteins in human blood plasma, utilizing isothermal titration calorimetry.
Collapse
Affiliation(s)
- Svetlana Lukáš Petrova
- Institute of Macromolecular Chemistry
v.v.i., Academy of Sciences of the Czech
Republic, Heyrovsky,
Sq. 2, 162 06 Prague
6, Czech Republic
| | - Vladimir Sincari
- Institute of Macromolecular Chemistry
v.v.i., Academy of Sciences of the Czech
Republic, Heyrovsky,
Sq. 2, 162 06 Prague
6, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry
v.v.i., Academy of Sciences of the Czech
Republic, Heyrovsky,
Sq. 2, 162 06 Prague
6, Czech Republic
| | - Václav Pokorný
- Institute of Macromolecular Chemistry
v.v.i., Academy of Sciences of the Czech
Republic, Heyrovsky,
Sq. 2, 162 06 Prague
6, Czech Republic
| | - Volodymyr Lobaz
- Institute of Macromolecular Chemistry
v.v.i., Academy of Sciences of the Czech
Republic, Heyrovsky,
Sq. 2, 162 06 Prague
6, Czech Republic
| | - Martin Hrubý
- Institute of Macromolecular Chemistry
v.v.i., Academy of Sciences of the Czech
Republic, Heyrovsky,
Sq. 2, 162 06 Prague
6, Czech Republic
| |
Collapse
|
6
|
Wong PC, Chen KH, Wang WR, Chen CY, Wang YT, Lee YB, Wu JL. Injectable ChitHCl-DDA tissue adhesive with high adhesive strength and biocompatibility for torn meniscus repair and regeneration. Int J Biol Macromol 2024; 270:132409. [PMID: 38768918 DOI: 10.1016/j.ijbiomac.2024.132409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Suture pull-through is a clinical problem in meniscus repair surgery due to the sharp leading edge of sutures. Several tissue adhesives have been developed as an alternative to traditional suturing; however, there is still no suitable tissue adhesive specific for meniscus repair treatment due to unsatisfactory biosafety, biodegradable, sterilizable, and tissue-bonding characteristics. In this study, we used a tissue adhesive composed of chitosan hydrochloride reacted with oxidative periodate-oxidized dextran (ChitHCl-DDA) combined with a chitosan-based hydrogel and oxidative dextran to attach to the meniscus. We conducted viscoelastic tests, viscosity tests, lap shear stress tests, Fourier transform infrared (FTIR) spectroscopy, swelling ratio tests, and degradation behavior tests to characterize these materials. An MTT assay, alcian blue staining, migration assay, cell behavior observations, and protein expression tests were used to understand cell viability and responses. Moreover, ex vivo and in vivo tests were used to analyze tissue regeneration and biocompatibility of the ChitHCl-DDA tissue adhesive. Our results revealed that the ChitHCl-DDA tissue adhesive provided excellent tissue adhesive strength, cell viability, and cell responses. This tissue adhesive has great potential for torn meniscus tissue repair and regeneration.
Collapse
Affiliation(s)
- Pei-Chun Wong
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Hao Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Wei-Ru Wang
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Chieh-Ying Chen
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Tzu Wang
- Department of Mechanical and Electro-Mechanical Engineering, TamKang University, New Taipei City, Taiwan
| | - Yu-Bin Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Jia-Lin Wu
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Orthopedics Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Centers for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
7
|
Zaharia MM, Bucatariu F, Karayianni M, Lotos ED, Mihai M, Pispas S. Synthesis of Thermoresponsive Chitosan- graft-Poly( N-isopropylacrylamide) Hybrid Copolymer and Its Complexation with DNA. Polymers (Basel) 2024; 16:1315. [PMID: 38794509 PMCID: PMC11124826 DOI: 10.3390/polym16101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
A hybrid synthetic-natural, thermoresponsive graft copolymer composed of poly(N-isopropyl acrylamide) (PNIPAM) side chains, prepared via RAFT polymerization, and a chitosan (Chit) polysaccharide backbone, was synthesized via radical addition-fragmentation reactions using the "grafting to" technique, in aqueous solution. ATR-FTIR, TGA, polyelectrolyte titrations and 1H NMR spectroscopy were employed in order to validate the Chit-g-PNIPAM copolymer chemical structure. Additionally, 1H NMR spectra and back conductometric titration were utilized to quantify the content of grafted PNIPAM side chains. The resulting graft copolymer contains dual functionality, namely both pH responsive free amino groups, with electrostatic complexation/coordination properties, and thermoresponsive PNIPAM side chains. Particle size measurements via dynamic light scattering (DLS) were used to study the thermoresponsive behavior of the Chit-g-PNIPAM copolymer. Thermal properties examined by TGA showed that, by the grafting modification with PNIPAM, the Chit structure became more thermally stable. The lower critical solution temperature (LCST) of the copolymer solution was determined by DLS measurements at 25-45 °C. Furthermore, dynamic and electrophoretic light scattering measurements demonstrated that the Chit-g-PNIPAM thermoresponsive copolymer is suitable of binding DNA molecules and forms nanosized polyplexes at different amino to phosphate groups ratios, with potential application as gene delivery systems.
Collapse
Affiliation(s)
- Marius-Mihai Zaharia
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.-M.Z.); (F.B.); (M.K.); (E.-D.L.)
| | - Florin Bucatariu
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.-M.Z.); (F.B.); (M.K.); (E.-D.L.)
| | - Maria Karayianni
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.-M.Z.); (F.B.); (M.K.); (E.-D.L.)
| | - Elena-Daniela Lotos
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.-M.Z.); (F.B.); (M.K.); (E.-D.L.)
| | - Marcela Mihai
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.-M.Z.); (F.B.); (M.K.); (E.-D.L.)
| | - Stergios Pispas
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.-M.Z.); (F.B.); (M.K.); (E.-D.L.)
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece
| |
Collapse
|
8
|
Zhou Y, Tian J, Zhu Y, Zhang Y, Zhao X. Multilevel chitosan-gelatin particles loaded with P4HA1 siRNA suppress glioma development. Drug Deliv Transl Res 2024; 14:665-677. [PMID: 37667088 DOI: 10.1007/s13346-023-01422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
It has been reported that prolyl 4-hydroxylase subunit alpha 1 (P4HA1) promoted tumor growth and metastasis of glioma; thus, targeting P4HA1 may be a promising therapeutic strategy against glioma. In consideration of the instability of siRNA in vivo, the chitosan-gelatin microspheres loaded with P4HA1 siRNA (P4HA1 siRNA@CGM) were employed. Firstly, the gel electrophoresis and hemolytic test were performed to assess the stability and blood compatibility of P4HA1 siRNA@CGM. Then, methyl thiazolyl tetrazolium (MTT), cell colony formation, Transwell assay, wound healing assay, gliosphere formation, tube formation, and Western blot were performed to assess the effects of P4HA1 siRNA@CGM on the biological functions of glioma. Finally, 125I-labeled P4HA1 siRNA@CGM was injected into the xenograft mice, radionuclide imaging was recorded, Ki67 and terminal deoxynucleoitidyl transferase-mediated nick end labeling (TUNEL) staining was performed to assess the effects of P4HA1 siRNA@CGM on tumor growth and apoptosis of glioma in vivo. The results showed that P4HA1 siRNA and P4HA1 siRNA@CGM not only markedly inhibited the proliferation, metastasis, gliosphere formation, and the protein levels of interstitial markers (N-cadherin and vimentin) and the transcription factors of epithelial-mesenchymal transition (EMT) (Snail, Slug, and Twist1) in glioma cells, but also inhibited the tube formation in human brain microvascular endothelial cells (HBMECs), and P4HA1 siRNA@CGM exhibited the better inhibitory effects than P4HA1 siRNA. Above results suggested the feasibility of P4HA1 siRNA@CGM in the clinical treatment of glioma.
Collapse
Affiliation(s)
- Yiting Zhou
- Department of Intervention Therapy, The Affiliated Hospital of Jiangnan University, Wuxi, 214002, China
| | - Jiajia Tian
- Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, 214000, China
| | - Yi Zhu
- Department of Neurosurgery, Medical School of Nantong University, Nantong University, Nantong, 226019, China
- Department of Neurosurgery, Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, 214002, China
| | - Yating Zhang
- Department of Neurosurgery, Medical School of Nantong University, Nantong University, Nantong, 226019, China
- Department of Neurosurgery, Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, 214002, China
| | - Xudong Zhao
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, 214005, China.
- Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, 214002, China.
- Wuxi Neurosurgical Institute, Wuxi, 214002, China.
| |
Collapse
|
9
|
Babelyte M, Peciulyte L, Navikaite-Snipaitiene V, Bendoraitiene J, Samaryk V, Rutkaite R. Synthesis and Characterization of Thermoresponsive Chitosan- graft-poly( N-isopropylacrylamide) Copolymers. Polymers (Basel) 2023; 15:3154. [PMID: 37571048 PMCID: PMC10421412 DOI: 10.3390/polym15153154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/16/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Thermoresponsive chitosan-graft-poly(N-isopropylacrylamide) (CS-g-PNIPAAm) copolymers of different composition were synthesized by free-radical polymerization of chitosan (CS) and N-isopropylacrylamide (NIPAAm) in aqueous solution using potassium persulfate (PPS) as an initiator. By changing the molar ratio of CS:NIPAAm from 1:0.25 to 1:10 graft copolymers with a CS backbone and different amounts of PNIPAM side chains were prepared. The chemical structure of the obtained CS-g-PNIPAAm copolymers was confirmed by FTIR and 1H NMR spectroscopy. 1H NMR spectra were also used to calculate the content of attached PNIPAAm side chains. Moreover, the lower critical solution temperature (LCST) behavior of synthesized copolymers was assessed by cloud point, differential scanning calorimetry and particle size measurements. The aqueous solutions of copolymers containing ≥12 molar percent of PNIPAAm side chains demonstrated LCST behavior with the phase separation at around 29.0-32.7 °C. The intensity of thermoresponsiveness depended on the composition of copolymers and increased with increasing content of poly(N-isopropylacrylamide) moieties. The synthesized thermoresponsive chitosan-graft-poly(N-isopropylacrylamide) copolymers could be potentially applied in drug delivery systems or tissue engineering.
Collapse
Affiliation(s)
- Migle Babelyte
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd. 19, 50254 Kaunas, Lithuania; (M.B.); (L.P.); (V.N.-S.); (J.B.)
| | - Laura Peciulyte
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd. 19, 50254 Kaunas, Lithuania; (M.B.); (L.P.); (V.N.-S.); (J.B.)
| | - Vesta Navikaite-Snipaitiene
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd. 19, 50254 Kaunas, Lithuania; (M.B.); (L.P.); (V.N.-S.); (J.B.)
| | - Joana Bendoraitiene
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd. 19, 50254 Kaunas, Lithuania; (M.B.); (L.P.); (V.N.-S.); (J.B.)
| | - Volodymyr Samaryk
- Department of Organic Chemistry, Lviv Polytechnic National University, Stepana Bandery St. 14, 79000 Lviv, Ukraine;
| | - Ramune Rutkaite
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd. 19, 50254 Kaunas, Lithuania; (M.B.); (L.P.); (V.N.-S.); (J.B.)
| |
Collapse
|
10
|
Khalaf EM, Abood NA, Atta RZ, Ramírez-Coronel AA, Alazragi R, Parra RMR, Abed OH, Abosaooda M, Jalil AT, Mustafa YF, Narmani A, Farhood B. Recent progressions in biomedical and pharmaceutical applications of chitosan nanoparticles: A comprehensive review. Int J Biol Macromol 2023; 231:123354. [PMID: 36681228 DOI: 10.1016/j.ijbiomac.2023.123354] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Nowadays, the most common approaches in the prognosis, diagnosis, and treatment of diseases are along with undeniable limitations. Thus, the ever-increasing need for using biocompatible natural materials and novel practical modalities is required. Applying biomaterials, such as chitosan nanoparticles (CS NPs: FDA-approved long-chain polymer of N-acetyl-glucosamine and D-glucosamine for some pharmaceutical applications), can serve as an appropriate alternative to overcome these limitations. Recently, the biomedical applications of CS NPs have extensively been investigated. These NPs and their derivatives can not only prepare through different physical and chemical approaches but also modify with various molecules and bioactive materials. The potential properties of CS NPs, such as biocompatibility, biodegradability, serum stability, solubility, non-immunogenicity, anti-inflammatory properties, appropriate pharmacokinetics and pharmacodynamics, and so forth, have made them excellent candidates for biomedical applications. Therefore, CS NPs have efficiently applied for various biomedical applications, like regenerative medicine and tissue engineering, biosensors for the detection of microorganisms, and drug delivery systems (DDS) for the suppression of diseases. These NPs possess a high level of biosafety. In summary, CS NPs have the potential ability for biomedical and clinical applications, and it would be remarkably beneficial to develop new generations of CS-based material for the future of medicine.
Collapse
Affiliation(s)
- Eman M Khalaf
- Department of Pharmacy, Al Maarif University College, Ramadi, 31001 Anbar, Iraq
| | - Noor Adil Abood
- Medical Laboratory Techniques, Al-Ma'moon University, Baghdad, Iraq
| | - Raghad Z Atta
- Department of Medical Laboratory Techniques, College of Medical Technology, Al-Farahidi University, Baghdad, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Laboratory of Psychometrics, Comparative psychology and Ethology, Catholic University of Cuenca, Cuenca, Ecuador
| | - Reem Alazragi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Osama H Abed
- Dentistry Department, Al-Rasheed University College, Baghdad, Iraq
| | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
11
|
Petroni S, Tagliaro I, Antonini C, D’Arienzo M, Orsini SF, Mano JF, Brancato V, Borges J, Cipolla L. Chitosan-Based Biomaterials: Insights into Chemistry, Properties, Devices, and Their Biomedical Applications. Mar Drugs 2023; 21:md21030147. [PMID: 36976196 PMCID: PMC10059909 DOI: 10.3390/md21030147] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Chitosan is a marine-origin polysaccharide obtained from the deacetylation of chitin, the main component of crustaceans’ exoskeleton, and the second most abundant in nature. Although this biopolymer has received limited attention for several decades right after its discovery, since the new millennium chitosan has emerged owing to its physicochemical, structural and biological properties, multifunctionalities and applications in several sectors. This review aims at providing an overview of chitosan properties, chemical functionalization, and the innovative biomaterials obtained thereof. Firstly, the chemical functionalization of chitosan backbone in the amino and hydroxyl groups will be addressed. Then, the review will focus on the bottom-up strategies to process a wide array of chitosan-based biomaterials. In particular, the preparation of chitosan-based hydrogels, organic–inorganic hybrids, layer-by-layer assemblies, (bio)inks and their use in the biomedical field will be covered aiming to elucidate and inspire the community to keep on exploring the unique features and properties imparted by chitosan to develop advanced biomedical devices. Given the wide body of literature that has appeared in past years, this review is far from being exhaustive. Selected works in the last 10 years will be considered.
Collapse
Affiliation(s)
- Simona Petroni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Irene Tagliaro
- Department of Materials Science, University of Milano-Bicocca, 20125 Milano, Italy
| | - Carlo Antonini
- Department of Materials Science, University of Milano-Bicocca, 20125 Milano, Italy
| | | | - Sara Fernanda Orsini
- Department of Materials Science, University of Milano-Bicocca, 20125 Milano, Italy
| | - João F. Mano
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Virginia Brancato
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - João Borges
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (J.B.); (L.C.); Tel.: +351-234372585 (J.B.); +39-0264483460 (L.C.)
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
- Correspondence: (J.B.); (L.C.); Tel.: +351-234372585 (J.B.); +39-0264483460 (L.C.)
| |
Collapse
|
12
|
de Barros Mamede Vidal Damasceno M, Santos SAAR, Araújo JRC, Barroso LKV, Benevides SC, Magalhães FEA, Tavares KCS, de Azevedo Moreira R, de Oliveira Monteiro-Moreira AC, Silva ARAE, Campos AR. Development of a Nanoformulation for Oral Protein Administration: Characterization and Preclinical Orofacial Antinociceptive Effect. AAPS PharmSciTech 2022; 23:239. [PMID: 36002707 DOI: 10.1208/s12249-022-02396-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Nanoencapsulation is a valid alternative for the oral administration of peptide drugs and proteins, as nanoparticles protect them from proteolytic degradation in the gastrointestinal tract and promote the absorption of these macromolecules. The orofacial antinociceptive effect of frutalin (FTL), through the intraperitoneal route, has already been proven. This study aimed to develop, characterize, and evaluate the orofacial antinociceptive activity of an oral formulation containing FTL in acute and neuropathic preclinical tests. Nanoencapsulated FTL was administered by oral route. The acute nociceptive behavior was induced by administering capsaicin to the upper lip and NaCl to the right cornea. The nociceptive behavior was also induced by formalin injected into the temporomandibular joint. The neuropathic pain model involved infraorbital nerve transection (IONX), which induced mechanical hypersensitivity and was assessed by von Frey stimulation. Trpv1 gene expression was analyzed in the trigeminal ganglion. The analyzed sample did not show any cytotoxicity; 52.2% of the FTL was encapsulated, and the size of the nanocapsule was less than 200 nm, the polydispersion was 0.361, and the zeta potential was - 5.87 and - 12.8 mV, with and without FTL, respectively. Nanoencapsulated FTL administered by oral route had an orofacial antinociceptive effect in acute and neuropathic rodent models. The antinociceptive effect of FTL was prevented by ruthenium red, but not by camphor. FTL reduced Trpv1 gene expression. FTL promotes orofacial antinociception, probably due to the antagonism of TRPV1 channels, and the nanoformulation represents an effective method for the oral administration of this protein. HIGHLIGHTS: • Nanoformulation for oral protein administration. • Nanocapsule containing FTL prevents orofacial nociceptive acute and neuropathic pain. • Frutalin promotes orofacial antinociception behavior antagonism of TRPV1 channels.
Collapse
Affiliation(s)
| | | | - João Ronielly Campêlo Araújo
- Experimental Biology Center, University of Fortaleza, Av. Washington Soares, 1321, CEP 60811-905 - Edson Queiroz, Fortaleza, Ceará, Brazil
| | - Lana Karine Vasconcelos Barroso
- Experimental Biology Center, University of Fortaleza, Av. Washington Soares, 1321, CEP 60811-905 - Edson Queiroz, Fortaleza, Ceará, Brazil
| | - Samara Casemiro Benevides
- Experimental Biology Center, University of Fortaleza, Av. Washington Soares, 1321, CEP 60811-905 - Edson Queiroz, Fortaleza, Ceará, Brazil
| | - Francisco Ernani Alves Magalhães
- Experimental Biology Center, University of Fortaleza, Av. Washington Soares, 1321, CEP 60811-905 - Edson Queiroz, Fortaleza, Ceará, Brazil.,State University of Ceará, Tauá, Brazil
| | - Kaio César Simiano Tavares
- Experimental Biology Center, University of Fortaleza, Av. Washington Soares, 1321, CEP 60811-905 - Edson Queiroz, Fortaleza, Ceará, Brazil
| | - Renato de Azevedo Moreira
- Experimental Biology Center, University of Fortaleza, Av. Washington Soares, 1321, CEP 60811-905 - Edson Queiroz, Fortaleza, Ceará, Brazil
| | | | - Angelo Roncalli Alves E Silva
- Experimental Biology Center, University of Fortaleza, Av. Washington Soares, 1321, CEP 60811-905 - Edson Queiroz, Fortaleza, Ceará, Brazil
| | - Adriana Rolim Campos
- Experimental Biology Center, University of Fortaleza, Av. Washington Soares, 1321, CEP 60811-905 - Edson Queiroz, Fortaleza, Ceará, Brazil.
| |
Collapse
|
13
|
Ding J, Guo Y. Recent Advances in Chitosan and its Derivatives in Cancer Treatment. Front Pharmacol 2022; 13:888740. [PMID: 35694245 PMCID: PMC9178414 DOI: 10.3389/fphar.2022.888740] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer has become a main public health issue globally. The conventional treatment measures for cancer include surgery, radiotherapy and chemotherapy. Among the various available treatment measures, chemotherapy is still one of the most important treatments for most cancer patients. However, chemotherapy for most cancers still faces many problems associated with a lot of adverse effects, which limit its therapeutic potency, low survival quality and discount cancer prognosis. In order to decrease these side effects and improve treatment effectiveness and patient’s compliance, more targeted treatments are needed. Sustainable and controlled deliveries of drugs with controllable toxicities are expected to address these hurdles. Chitosan is the second most abundant natural polysaccharide, which has excellent biocompatibility and notable antitumor activity. Its biodegradability, biocompatibility, biodistribution, nontoxicity and immunogenicity free have made chitosan become a widely used polymer in the pharmacology, especially in oncotherapy. Here, we make a brief review of the main achievements in chitosan and its derivatives in pharmacology with a special focus on their agents delivery applications, immunomodulation, signal pathway modulation and antitumor activity to highlight their role in cancer treatment. Despite a large number of successful studies, the commercialization of chitosan copolymers is still a big challenge. The further development of polymerization technology may satisfy the unmet medical needs.
Collapse
Affiliation(s)
- Jingxian Ding
- Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, China
| | - Yonghong Guo
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Yonghong Guo,
| |
Collapse
|
14
|
Biocompatible Materials in Otorhinolaryngology and Their Antibacterial Properties. Int J Mol Sci 2022; 23:ijms23052575. [PMID: 35269718 PMCID: PMC8910137 DOI: 10.3390/ijms23052575] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 12/29/2022] Open
Abstract
For decades, biomaterials have been commonly used in medicine for the replacement of human body tissue, precise drug-delivery systems, or as parts of medical devices that are essential for some treatment methods. Due to rapid progress in the field of new materials, updates on the state of knowledge about biomaterials are frequently needed. This article describes the clinical application of different types of biomaterials in the field of otorhinolaryngology, i.e., head and neck surgery, focusing on their antimicrobial properties. The variety of their applications includes cochlear implants, middle ear prostheses, voice prostheses, materials for osteosynthesis, and nasal packing after nasal/paranasal sinuses surgery. Ceramics, such as as hydroxyapatite, zirconia, or metals and metal alloys, still have applications in the head and neck region. Tissue engineering scaffolds and drug-eluting materials, such as polymers and polymer-based composites, are becoming more common. The restoration of life tissue and the ability to prevent microbial colonization should be taken into consideration when designing the materials to be used for implant production. The authors of this paper have reviewed publications available in PubMed from the last five years about the recent progress in this topic but also establish the state of knowledge of the most common application of biomaterials over the last few decades.
Collapse
|