1
|
Stachowicz-Kuśnierz A, Rychlik P, Korchowiec J, Korchowiec B. Insights into Transfer of Supramolecular Doxorubicin/Congo Red Aggregates through Phospholipid Membranes. Molecules 2024; 29:2567. [PMID: 38893446 PMCID: PMC11173802 DOI: 10.3390/molecules29112567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Doxorubicin (DOX) is a commonly used chemotherapeutic drug, from the anthracycline class, which is genotoxic to neoplastic cells via a DNA intercalation mechanism. It is effective and universal; however, it also causes numerous side effects. The most serious of them are cardiotoxicity and a decrease in the number of myeloid cells. For this reason, targeted DOX delivery systems are desirable, since they would allow lowering the drug dose and therefore limiting systemic side effects. Recently, synthetic dyes, in particular Congo red (CR), have been proposed as possible DOX carriers. CR is a planar molecule, built of a central biphenyl moiety and two substituted naphthalene rings, connected with diazo bonds. In water, it forms elongated ribbon-shaped supramolecular structures, which are able to selectively interact with immune complexes. In our previous studies, we have shown that CR aggregates can intercalate DOX molecules. In this way, they preclude DOX precipitation in water solutions and increase its uptake by MCF7 breast cancer cells. In the present work, we further explore the interactions between DOX, CR, and their aggregates (CR/DOX) with phospholipid membranes. In addition to neutral molecules, the protonated doxorubicin form, DXP, is also studied. Molecular dynamics simulations are employed to study the transfer of CR, DOX, DXP, and their aggregates through POPC bilayers. Interactions of CR, DOX, and CR/DOX with model monolayers are studied with Langmuir trough measurements. This study shows that CR may support the transfer of doxorubicin molecules into the bilayer. Both electrostatic and van der Waals interactions with lipids are important in this respect. The former promote the initial stages of the insertion process, the latter keep guest molecules inside the bilayer.
Collapse
Affiliation(s)
- Anna Stachowicz-Kuśnierz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (P.R.); (J.K.)
| | | | | | - Beata Korchowiec
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (P.R.); (J.K.)
| |
Collapse
|
2
|
Wang Q, Zhu Z, Huang T, Huang M, Huang J. Changes in glycated myofibrillar proteins conformation on the formation of Nε-carboxymethyllysine under gradient thermal conditions. Food Chem 2023; 418:136005. [PMID: 37001357 DOI: 10.1016/j.foodchem.2023.136005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
Nε-carboxymethyllysine (CML), a frequently used marker of advanced glycation end products (AGEs) in food, was generated in food processing easily and caused changes in myofibrillar proteins (MPs) characterization. The relevance between glycosylated MPs structure alternation and CML formation under thermal conditions have been reported. However, the correlation mechanism was not clear yet. In this work, the influence of gradient heating (50℃, 60℃, 70℃, 80℃, and 90℃) on the different degrees of glycated MPs, which determined the correlation with CML formation in protein structural changes of MPs. In the rising stage of the CML level, glycation accelerated the fibrillation and aggregation behavior of MPs during heating and increased surface hydrophobicity and particle size. The protein cross-linking affected the protein modification caused by heating and glycation. This work highlights the substantial influences of glycosylation and thermal treatments on MPs, which transformed the MPs structural characteristics and CML level.
Collapse
|
3
|
Jiang T, Gonzalez KM, Cordova LE, Lu J. Nanotechnology-enabled gene delivery for cancer and other genetic diseases. Expert Opin Drug Deliv 2023; 20:523-540. [PMID: 37017558 PMCID: PMC10164135 DOI: 10.1080/17425247.2023.2200246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 04/04/2023] [Indexed: 04/06/2023]
Abstract
INTRODUCTION Despite gene therapy is ideal for genetic abnormality-related diseases, the easy degradation, poor targeting, and inefficiency in entering targeted cells are plaguing the effective delivery of gene therapy. Viral and non-viral vectors have been used for delivering gene therapeutics in vivo by safeguarding nucleic acid agents to target cells and to reach the specific intracellular location. A variety of nanotechnology-enabled safe and efficient systems have been successfully developed to improve the targeting ability for effective therapeutic delivery of genetic drugs. AREAS COVERED In this review, we outline the multiple biological barriers associated with gene delivery process, and highlight recent advances to gene therapy strategy in vivo, including gene correction, gene silencing, gene activation and genome editing. We point out current developments and challenges exist of non-viral and viral vector systems in association with chemical and physical gene delivery technologies and their potential for the future. EXPERT OPINION This review focuses on the opportunities and challenges to various gene therapy strategy, with specific emphasis on overcoming the challenges through the development of biocompatibility and smart gene vectors for potential clinical application.
Collapse
Affiliation(s)
- Tong Jiang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Karina Marie Gonzalez
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Leyla Estrella Cordova
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
- NCI-designated University of Arizona Comprehensive Cancer Center, Tucson, Arizona, 85721, United States
- BIO5 Institute, The University of Arizona, Tucson, Arizona, 85721, United States
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, 85721, United States
| |
Collapse
|
4
|
Khan A, Alam MT, Iqbal A, Siddiqui T, Ali A. Microwave-assisted one-pot multicomponent synthesis of steroidal pyrido[2,3-d]pyrimidines and their possible implications in drug development. Steroids 2023; 190:109154. [PMID: 36521632 DOI: 10.1016/j.steroids.2022.109154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Protein misfolding can lead to fibrillar and non-fibrillar deposits which are the signs of countless human diseases. A promising strategy for the prevention of such diseases is the inhibition of protein aggregation, and the most crucial step toward effective prevention is the development of small molecules having the potential for protein-aggregation inhibition. In this search, a series of novel steroidal pyrido[2,3-d]pyrimidines have been synthesized employing steroidal ketone, substituted aldehydes, and 2,6-diaminopyrimidin-4(3H)-one through the microwave-assisted one-pot multicomponent methodology. The aggregation inhibition potential of newly synthesized compounds was evaluated on human lysozyme (HLZ). All the synthesized compounds were found to be efficient in the inhibition of protein aggregation in carefully designed in vitro experiments. Moreover, molecular docking studies also determine the binding interactions between all the synthesized compounds and native HLZ through hydrogen bonding. The structures of synthesized compounds were also elucidated using various spectroscopic techniques.
Collapse
Affiliation(s)
- Asna Khan
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Md Tauqir Alam
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Arfeen Iqbal
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Tabassum Siddiqui
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Abad Ali
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh 202 002, UP, India.
| |
Collapse
|
5
|
Congo Red as a Supramolecular Carrier System for Doxorubicin: An Approach to Understanding the Mechanism of Action. Int J Mol Sci 2022; 23:ijms23168935. [PMID: 36012200 PMCID: PMC9408855 DOI: 10.3390/ijms23168935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
The uptake and distribution of doxorubicin in the MCF7 line of breast-cancer cells were monitored by Raman measurements. It was demonstrated that bioavailability of doxorubicin can be significantly enhanced by applying Congo red. To understand the mechanism of doxorubicin delivery by Congo red supramolecular carriers, additional monolayer measurements and molecular dynamics simulations on model membranes were undertaken. Acting as molecular scissors, Congo red particles cut doxorubicin aggregates and incorporated them into small-sized Congo red clusters. The mixed doxorubicin/Congo red clusters were adsorbed to the hydrophilic part of the model membrane. Such behavior promoted transfer through the membrane.
Collapse
|
6
|
Jagusiak A, Chłopaś K, Zemanek G, Kościk I, Skorek P, Stopa B. Albumin Binds Doxorubicin via Self−Assembling Dyes as Specific Polymolecular Ligands. Int J Mol Sci 2022; 23:ijms23095033. [PMID: 35563426 PMCID: PMC9104453 DOI: 10.3390/ijms23095033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Congo red (CR) type self–assembled ribbon–like structures (SRLS) were previously shown to interact with some proteins, including albumin. SRLS also complex with some drugs with a flat, ring–shaped structure with aromatic characteristics, intercalating them into their ribbon structure. The combination of interaction with proteins and drug binding by SRLS enables the use of such systems for immunotargeting. It is especially interesting in the case of chemotherapeutic agents. The present experiments aimed to show that the model carrier system composed of supramolecular albumin and Congo red efficiently binds doxorubicin (Dox) and that the drug can be released at reduced pH. The presented results come from the studies on such complexes differing in the molar ratio of CR to Dox. The following methods were used for the analysis: electrophoresis, dialysis, gel filtration, spectral analysis, and analysis of the size of the hydrodynamic radius using the dynamic light scattering method (DLS). The applied methods confirmed the formation of the CR–Dox complex, with large dimensions and changed properties compared with free CR. The presented results show that albumin binds both CR and its complex with Dox. Various CR–Dox molar ratios, 5:1, 2:1, and 1:1, were analyzed. The confirmation of the possibility of releasing the drug from the carriers thus formed was also obtained. The presented research is important due to the search for optimal solutions for the use of SRLS in drug immunotargeting, with particular emphasis on chemotherapeutic agents.
Collapse
Affiliation(s)
- Anna Jagusiak
- Chair of Medical Biochemistry, Faculty of Medicine, Medical College, Jagiellonian University, 31-034 Krakow, Poland; (G.Z.); (I.K.); (B.S.)
- Correspondence:
| | - Katarzyna Chłopaś
- Pulmonology and Allergology Clinical Department, University Hospital in Krakow, 30-688 Krakow, Poland;
| | - Grzegorz Zemanek
- Chair of Medical Biochemistry, Faculty of Medicine, Medical College, Jagiellonian University, 31-034 Krakow, Poland; (G.Z.); (I.K.); (B.S.)
| | - Izabela Kościk
- Chair of Medical Biochemistry, Faculty of Medicine, Medical College, Jagiellonian University, 31-034 Krakow, Poland; (G.Z.); (I.K.); (B.S.)
- Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 31-425 Krakow, Poland
| | - Paweł Skorek
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, 31-202 Krakow, Poland;
| | - Barbara Stopa
- Chair of Medical Biochemistry, Faculty of Medicine, Medical College, Jagiellonian University, 31-034 Krakow, Poland; (G.Z.); (I.K.); (B.S.)
| |
Collapse
|
7
|
Lebrón JA, López-Cornejo P, Ostos FJ. Supramolecular Systems for Gene and Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14030471. [PMID: 35335848 PMCID: PMC8948943 DOI: 10.3390/pharmaceutics14030471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Affiliation(s)
- José A. Lebrón
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain;
| | - Pilar López-Cornejo
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain;
- Correspondence: (P.L.-C.); (F.J.O.)
| | - Francisco J. Ostos
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, 41013 Seville, Spain
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Correspondence: (P.L.-C.); (F.J.O.)
| |
Collapse
|