1
|
Azumah J, Vasilic D, Smistad G, Hiorth M. Preparation of sodium hyaluronate coated liposomes: effect of polymer molecular weight, coating concentration, amount of charged lipids and type of hydration medium on the stability. J Liposome Res 2025:1-14. [PMID: 39862424 DOI: 10.1080/08982104.2025.2456194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/10/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
In this study, liposomes consisting of soybean phosphatidyl choline (SoyPC) and different molar concentrations (10 mol% and 20 mol%) of dioleoyl trimethylammoniumpropane (DOTAP) were prepared by the thin film hydration method and coated with sodium hyaluronate (NaHA) of different MWs (8-15 kDa, 30-50 kDa and 90-130 kDa) and concentrations (0.01-0.2% w/w) using phosphate buffer (PB) or glycerol phosphate buffer (G-PB) as the hydration medium. These NaHA coated liposomes could have a potential in the treatment of dry mouth since glycerol and NaHA are known for their lubricating and hydrating properties. The liposomes composed of SoyPC-DOTAP 20 mol%, and coated with NaHA MW 90-130 kDa, 0.05% w/w were found to be most stable during storage. The liposomes with 20 mol% DOTAP coated with NaHA MW 30-50 kDa, 0.05% w/w showed promising results as these stayed stable for at least two weeks. However, the liposomes coated with NaHA MW 8-15 kDa were generally unstable irrespective of the combinations of the investigated parameters. When the stable liposomes were introduced into artificial saliva (AS), aggregation rapidly occurred. Sodium alginate (NaAlg) coated liposomes that were prepared for comparison were found to be stable in AS. The study has demonstrated the influence of the amount of charged lipid which must be high, the polymer MW which must lay in the area 30 kDa-130 kDa and coating concentration which should be intermediate 0.05% w/w in preparing stable NaHA coated liposomes. Further studies need to be conducted to understand the instability exhibited by the NaHA coated liposomes in AS.
Collapse
Affiliation(s)
- Joseph Azumah
- SiteDel Group, Department of Pharmacy, University of Oslo, Blindern, Oslo, Norway
| | - Danijela Vasilic
- SiteDel Group, Department of Pharmacy, University of Oslo, Blindern, Oslo, Norway
| | - Gro Smistad
- SiteDel Group, Department of Pharmacy, University of Oslo, Blindern, Oslo, Norway
| | - Marianne Hiorth
- SiteDel Group, Department of Pharmacy, University of Oslo, Blindern, Oslo, Norway
| |
Collapse
|
2
|
Cimino C, Vidal LB, Conti F, López ES, Bucolo C, García ML, Musumeci T, Pignatello R, Carbone C. From Preformulative Design to in Vivo Tests: A Complex Path of Requisites and Studies for Nanoparticle Ocular Application. Part 2: In Vitro, Ex Vivo, and In Vivo Studies. Mol Pharm 2024; 21:6062-6099. [PMID: 39514183 DOI: 10.1021/acs.molpharmaceut.4c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The incidence of ocular pathologies is constantly increasing, as is the interest of the researchers in developing new strategies to ameliorate the treatment of these conditions. Nowadays, drug delivery systems are considered among the most relevant approaches due to their applicability in the treatment of a great variety of inner and outer eye pathologies through painless topical administrations. The design of such nanocarriers requires a deep study of many aspects related to the administration route but also a consideration of the authorities and pharmacopeial requirements, in order to achieve a clinical outcome. On such bases, the scope of this review is to describe the path of the analyses that could be performed on nanoparticles, along with the assessment of their applicability for ophthalmic treatments. Preformulation studies, physicochemical and technological characterization, and preliminary noncellular in vitro studies have been described in part 1 of this review. Herein, first the in vitro cellular assays are described; subsequently, nonocular organotypic tests and ex vivo studies are reported, as to present the various analyses to which the formulations can be subjected before in vivo studies, described in the last part. In each step, the models that could be used are presented and compared, highlighting the pros and cons. Moreover, their reliability and eventual acceptance by regulatory agencies are discussed. Hence, this review provides an overview of the most relevant assays applicable for nanocarriers intended for ophthalmic administration to guide researchers in the experimental decision process.
Collapse
Affiliation(s)
- Cinzia Cimino
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Lorena Bonilla Vidal
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Federica Conti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95124 Catania, Italy
| | - Elena Sánchez López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95124 Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95124 Catania, Italy
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| |
Collapse
|
3
|
Brugnera M, Vicario-de-la-Torre M, González-Cela Casamayor MA, López-Cano JJ, Bravo-Osuna I, Huete-Toral F, González Rubio ML, Carracedo G, Molina-Martínez IT, Andrés-Guerrero V, Herrero-Vanrell R. Enhancing the hypotensive effect of latanoprost by combining synthetic phosphatidylcholine liposomes with hyaluronic acid and osmoprotective agents. Drug Deliv Transl Res 2024; 14:2804-2822. [PMID: 38602615 PMCID: PMC11385046 DOI: 10.1007/s13346-024-01584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
The first line of glaucoma treatment focuses on reducing intraocular pressure (IOP) through the prescription of topical prostaglandin analogues, such as latanoprost (LAT). Topical ophthalmic medicines have low bioavailability due to their rapid elimination from the ocular surface. Nanotechnology offers innovative ways of enhancing the ocular bioavailability of antiglaucoma agents while reducing administration frequency. This study aims to combine LAT-loaded synthetic phosphatidylcholine liposomes with hyaluronic acid (0.2% w/v) and the osmoprotectants betaine (0.40% w/v) and leucine (0.90% w/v) (LAT-HA-LIP) to extend the hypotensive effect of LAT while protecting the ocular surface. LAT-HA-LIP was prepared as a mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine and 1,2-dimyristoyl-sn-glycero-3-phosphocholine, cholesterol and α-tocopherol acetate. LAT-HA-LIP exhibited high drug-loading capacity (104.52 ± 4.10%), unimodal vesicle sizes (195.14 ± 14.34 nm) and a zeta potential of -13.96 ± 0.78 mV. LAT-HA-LIP was isotonic (284.00 ± 1.41 mOsm L-1), had neutral pH (7.63 ± 0.01) and had suitable surface tension (44.07 ± 2.70 mN m-1) and viscosity (2.69 ± 0.15 mPa s-1) for topical ophthalmic administration. LAT-HA-LIP exhibited optimal in vitro tolerance in human corneal and conjunctival epithelial cells. No signs of ocular alteration or discomfort were observed when LAT-HA-LIP was instilled in albino male New Zealand rabbits. Hypotensive studies revealed that, after a single eye drop, the effect of LAT-HA-LIP lasted 24 h longer than that of a marketed formulation and that relative ocular bioavailability was almost three times higher (p < 0.001). These findings indicate the potential ocular protection and hypotensive effect LAT-HA-LIP offers in glaucoma treatment.
Collapse
Affiliation(s)
- Marco Brugnera
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Complutense University of Madrid (UCM), Madrid, Spain
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; IdISSC, Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Faculty of Pharmacy, UCM, Madrid, Spain
| | - Marta Vicario-de-la-Torre
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Complutense University of Madrid (UCM), Madrid, Spain
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; IdISSC, Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Faculty of Pharmacy, UCM, Madrid, Spain
| | - Miriam Ana González-Cela Casamayor
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Complutense University of Madrid (UCM), Madrid, Spain
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; IdISSC, Madrid, Spain
| | - José Javier López-Cano
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Complutense University of Madrid (UCM), Madrid, Spain
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; IdISSC, Madrid, Spain
| | - Irene Bravo-Osuna
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Complutense University of Madrid (UCM), Madrid, Spain
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; IdISSC, Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Faculty of Pharmacy, UCM, Madrid, Spain
| | - Fernando Huete-Toral
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, UCM, Madrid, Spain
| | - María Luisa González Rubio
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, UCM, Madrid, Spain
| | - Gonzalo Carracedo
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, UCM, Madrid, Spain
| | - Irene Teresa Molina-Martínez
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Complutense University of Madrid (UCM), Madrid, Spain
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; IdISSC, Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Faculty of Pharmacy, UCM, Madrid, Spain
| | - Vanessa Andrés-Guerrero
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Complutense University of Madrid (UCM), Madrid, Spain.
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; IdISSC, Madrid, Spain.
- University Institute of Industrial Pharmacy (IUFI), Faculty of Pharmacy, UCM, Madrid, Spain.
| | - Rocío Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Complutense University of Madrid (UCM), Madrid, Spain.
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; IdISSC, Madrid, Spain.
- University Institute of Industrial Pharmacy (IUFI), Faculty of Pharmacy, UCM, Madrid, Spain.
| |
Collapse
|
4
|
Micheli L, Di Cesare Mannelli L, Mosti E, Ghelardini C, Bilia AR, Bergonzi MC. Antinociceptive Action of Thymoquinone-Loaded Liposomes in an In Vivo Model of Tendinopathy. Pharmaceutics 2023; 15:1516. [PMID: 37242757 PMCID: PMC10222138 DOI: 10.3390/pharmaceutics15051516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Tendinopathies represent about 45% of musculoskeletal lesions and they are a big burden in clinics characterized by activity-related pain, focal tendon tenderness and intra-tendinous imaging changes. Many approaches have been proposed for tendinopathies' management (e.g., nonsteroidal anti-inflammatory drugs, corticosteroids, eccentric exercises, laser therapy), unfortunately with very little support of efficacy or serious side effects, thus making the identification of new treatments fundamental. The aim of the study was to test the protective and pain reliever effect of thymoquinone (TQ)-loaded formulations in a rat model of tendinopathy induced by carrageenan intra-tendon injection (20 µL of carrageenan 0.8% on day 1). Conventional (LP-TQ) and hyaluronic acid (HA)-coated TQ liposomes (HA-LP-TQ) were characterized and subjected to in vitro release and stability studies at 4 °C. Then, TQ and liposomes were peri-tendon injected (20 µL) on days 1, 3, 5, 7 and 10 to evaluate their antinociceptive profile using mechanical noxious and non-noxious stimuli (paw pressure and von Frey tests), spontaneous pain (incapacitance test) and motor alterations (Rota rod test). Liposomes containing 2 mg/mL of TQ and covered with HA (HA-LP-TQ2) reduced the development of spontaneous nociception and hypersensitivity for a long-lasting effect more than the other formulations. The anti-hypersensitivity effect matched with the histopathological evaluation. In conclusion, the use of TQ encapsulated in HA-LP liposomes is suggested as a new treatment for tendinopathies.
Collapse
Affiliation(s)
- Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy; (L.M.); (L.D.C.M.); (C.G.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy; (L.M.); (L.D.C.M.); (C.G.)
| | - Elena Mosti
- Department of Chemistry Ugo Schiff, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (E.M.); (A.R.B.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy; (L.M.); (L.D.C.M.); (C.G.)
| | - Anna Rita Bilia
- Department of Chemistry Ugo Schiff, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (E.M.); (A.R.B.)
| | - Maria Camilla Bergonzi
- Department of Chemistry Ugo Schiff, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (E.M.); (A.R.B.)
| |
Collapse
|
5
|
Landucci E, Mazzantini C, Calvani M, Pellegrini-Giampietro DE, Bergonzi MC. Evaluation of Conventional and Hyaluronic Acid-Coated Thymoquinone Liposomes in an In Vitro Model of Dry Eye. Pharmaceutics 2023; 15:pharmaceutics15020578. [PMID: 36839901 PMCID: PMC9963930 DOI: 10.3390/pharmaceutics15020578] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Dry eye disease (DED) is a common ocular disorder characterized by an inadequate lubrication of the eye by tears leading to inflammation and the alteration of the ocular surface. Current treatments are often limited due to their side effects and ineffectiveness. Thymoquinone (TQ) is a natural compound present in the essential oil of Nigella sativa L., with anti-inflammatory and antioxidant activities. In this study, conventional and hyaluronic acid-coated liposomes were developed to improve TQ activity at ocular level. In the present study, the cytoprotective effects of TQ or TQ liposomes were assessed against oxidative and inflammatory processes in human corneal epithelial cells (HCE-2). Hyperosmolarity conditions (450 mOsm) were used as a model of DED. Interleukin-1β (IL-1β), Interleukin-6 (IL-6) and tumor necrosis factor (TNFα) were quantified by quantitative real-time polymerase chain reaction (RT-qPCR); COX-2 and Phospho-NF-κB p65 (p-p65) by Western blotting (WB). Moreover, the mitochondrial reactive oxygen species (mtROS) levels were measured by MitoSOX assay. The hyperosmotic treatment induced a significant increase of the proinflammatory genes and proteins expression that were significantly decreased in the liposomes-treated cells. The coincubation with hyaluronic acid-coated liposomes significantly reverted the increase of mtROS production, evidently stimulated by the hyperosmotic stress. Our data suggest that TQ-loaded liposomes have potential as a therapeutic agent in dry eye disease, improving the TQ efficacy.
Collapse
Affiliation(s)
- Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
- Correspondence: (E.L.); (M.C.B.); Tel.: +30-055-2758378 (E.L.); +30-055-4573678 (M.C.B.)
| | - Costanza Mazzantini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Maura Calvani
- Division of Pediatric Oncology/Hematology, Meyer University Children’s Hospital, Viale Pieraccini 6, 50139 Florence, Italy
| | - Domenico E. Pellegrini-Giampietro
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
- Correspondence: (E.L.); (M.C.B.); Tel.: +30-055-2758378 (E.L.); +30-055-4573678 (M.C.B.)
| |
Collapse
|
6
|
Bioactive Molecules from Plants: Discovery and Pharmaceutical Applications. Pharmaceutics 2022; 14:pharmaceutics14102116. [PMID: 36297551 PMCID: PMC9608623 DOI: 10.3390/pharmaceutics14102116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022] Open
|
7
|
Das B, Nayak AK, Mallick S. Lipid-based nanocarriers for ocular drug delivery: An updated review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Li L, Xia X, Luo Y, Zhu Y, Luo X, Yang B, Shang L. Prospects and hot spots for mammalian target of rapamycin in the field of neuroscience from 2002 to 2021. Front Integr Neurosci 2022; 16:940265. [PMID: 36118114 PMCID: PMC9477085 DOI: 10.3389/fnint.2022.940265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Mammalian target of rapamycin (mTOR) is an important molecule that regulates cell metabolism, growth, and proliferation in the nervous system. This study aimed to present the current study hot spots and predict the future development trend of the mTOR pathway in neurologic diseases using bibliometrics. We referred to the publications in the Web of Science Core Collection database. VOSviewer and CiteSpace programs were used to evaluate countries/regions, institutions, authors, journals, keywords, and citations showing the current study focus and predicting the future trend of mTOR in neuroscience. The search date ended on 19 June 2022, and there were 3,029 articles on mTOR in neuroscience from 2002 to 2021. Visual analysis showed that although the number of publications declined slightly in some years, the number of publications related to mTOR generally showed an upward trend, reaching its peak in 2021. It had the largest number of publications in the United States. Keywords and literature analysis showed that protein synthesis regulation, ischemia, mitochondrial dysfunction, oxidative stress, and neuroinflammation may be hot spots and future directions of the nervous system in mTOR studies. Recently, the most studied neurological diseases are Alzheimer’s disease (AD), tuberous sclerosis complex (TSC), and depression, which are still worthy of further studies by researchers in the future. This can provide a useful reference for future researchers to study mTOR further in the field of neuroscience.
Collapse
Affiliation(s)
- Lijun Li
- Jiangxi Clinical Research Center for Ophthalmic Disease, Jiangxi Research Institute of Ophthalmology and Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Xiaojing Xia
- Jiangxi Clinical Research Center for Ophthalmic Disease, Jiangxi Research Institute of Ophthalmology and Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Yunfeng Luo
- Jiangxi Clinical Research Center for Ophthalmic Disease, Jiangxi Research Institute of Ophthalmology and Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Yuanting Zhu
- Jiangxi Clinical Research Center for Ophthalmic Disease, Jiangxi Research Institute of Ophthalmology and Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Xuhong Luo
- Jiangxi Clinical Research Center for Ophthalmic Disease, Jiangxi Research Institute of Ophthalmology and Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Baolin Yang
- Department of Human Anatomy, School of Basic Medicine, Nanchang University, Nanchang, China
| | - Lei Shang
- Jiangxi Clinical Research Center for Ophthalmic Disease, Jiangxi Research Institute of Ophthalmology and Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
- *Correspondence: Lei Shang,
| |
Collapse
|
9
|
Sanap SN, Kedar A, Bisen AC, Agrawal S, Bhatta RS. A recent update on therapeutic potential of vesicular system against fungal keratitis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Formulation and Evaluation of Moxifloxacin Loaded Bilosomes In-Situ Gel: Optimization to Antibacterial Evaluation. Gels 2022; 8:gels8070418. [PMID: 35877503 PMCID: PMC9323078 DOI: 10.3390/gels8070418] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
In this study, moxifloxacin (MX)-loaded bilosome (BS) in situ gel was prepared to improve ocular residence time. MX-BSs were prepared using the thin-film hydration method. They were optimized using a Box−Behnken design (BBD) with bile salt (A, sodium deoxycholate), an edge activator (B, Cremophor EL), and a surfactant (C, Span 60) as process variables. Their effects were assessed based on hydrodynamic diameter (Y1), entrapment efficacy (Y2), and polydispersity index (Y3). The optimized formulation (MX-BSop) depicted a low hydrodynamic diameter (192 ± 4 nm) and high entrapment efficiency (76 ± 1%). Further, MX-BSop was successfully transformed into an in situ gel using chitosan and sodium alginate as carriers. The optimized MX-BSop in situ gel (MX-BSop-Ig4) was further evaluated for gelling capacity, clarity, pH, viscosity, in vitro release, bio-adhesiveness, ex vivo permeation, toxicity, and antimicrobial properties. MX-BSop-Ig4 exhibited an optimum viscosity of 65.4 ± 5.3 cps in sol and 287.5 ± 10.5 cps in gel states. The sustained release profile (82 ± 4% in 24 h) was achieved with a Korsmeyer−Peppas kinetic release model (R2 = 0.9466). Significant bio-adhesion (967.9 dyne/cm2) was achieved in tear film. It also exhibited 1.2-fold and 2.8-fold higher permeation than MX-Ig and a pure MX solution, respectively. It did not show any toxicity to the tested tissue, confirmed by corneal hydration (77.3%), cornea histopathology (no internal changes), and a HET-CAM test (zero score). MX-BSop-Ig4 exhibited a significantly (p < 0.05) higher antimicrobial effect than pure MX against Staphylococcus aureus and Escherichia coli. The findings suggest that bilosome in situ gel is a good alternative to increase corneal residence time, as well as to improve therapeutic activity.
Collapse
|
11
|
Formulation and Evaluation of Nano Lipid Carrier-Based Ocular Gel System: Optimization to Antibacterial Activity. Gels 2022; 8:gels8050255. [PMID: 35621552 PMCID: PMC9140781 DOI: 10.3390/gels8050255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/02/2022] [Accepted: 04/12/2022] [Indexed: 02/08/2023] Open
Abstract
The present research work was designed to prepare Azithromycin (AM)-loaded nano lipid carriers (NLs) for ocular delivery. NLs were prepared by the emulsification–homogenization method and further optimized by the Box Behnken design. AM-NLs were optimized using the independent constraints of homogenization speed (A), surfactant concentration (B), and lipid concentration (C) to obtain optimal NLs (AM-NLop). The selected AM-NLop was further converted into a sol-gel system using a mucoadhesive polymer blend of sodium alginate and hydroxyl propyl methyl cellulose (AM-NLopIG). The sol-gel system was further characterized for drug release, permeation, hydration, irritation, histopathology, and antibacterial activity. The prepared NLs showed nano-metric size particles (154.7 ± 7.3 to 352.2 ± 15.8 nm) with high encapsulation efficiency (48.8 ± 1.1 to 80.9 ± 2.9%). AM-NLopIG showed a more prolonged drug release (98.6 ± 4.6% in 24 h) than the eye drop (99.4 ± 5.3% in 3 h). The ex vivo permeation result depicted AM-NLopIG, AM-IG, and eye drop. AM-NLopIG exhibited significant higher AM permeation (60.7 ± 4.1%) than AM-IG (33.46 ± 3.04%) and eye drop (23.3 ± 3.7%). The corneal hydration was found to be 76.45%, which is within the standard limit. The histopathology and HET-CAM results revealed that the prepared formulation is safe for ocular use. The antibacterial study revealed enhanced activity from the AM-NLopIG.
Collapse
|
12
|
Mencucci R, Ghelardi E, Celandroni F, Mazzantini C, Vecchione A, Pellegrini-Giampietro DE, Favuzza E, Landucci E. Antiseptics and the Ocular Surface: In Vitro Antimicrobial Activity and Effects on Conjunctival and Corneal Epithelial Cells of a New Liposomal Ocular Spray Containing Biosecur® Citrus Extract. Ophthalmol Ther 2022; 11:1067-1077. [PMID: 35284982 PMCID: PMC9114213 DOI: 10.1007/s40123-022-00492-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/23/2022] [Indexed: 10/30/2022] Open
Abstract
Introduction Methods Results Conclusion
Collapse
|
13
|
Chen X, Wu J, Lin X, Wu X, Yu X, Wang B, Xu W. Tacrolimus Loaded Cationic Liposomes for Dry Eye Treatment. Front Pharmacol 2022; 13:838168. [PMID: 35185587 PMCID: PMC8855213 DOI: 10.3389/fphar.2022.838168] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 12/27/2022] Open
Abstract
Eye drops are ophthalmic formulations routinely used to treat dry eye. However, the low ocular bioavailability is an obvious drawback of eye drops owing to short ocular retention time and weak permeability of the cornea. Herein, to improve the ocular bioavailability of eye drops, a cationic liposome eye drop was constructed and used to treat dry eye. Tacrolimus liposomes exhibit a diameter of around 300 nm and a surface charge of +30 mV. Cationic liposomes could interact with the anionic ocular surface, extending the ocular retention time and improving tacrolimus amount into the cornea. The cationic liposomes notably prolonged the ocular retention time of eye drops, leading to an increased tacrolimus concentration in the ocular surface. The tacrolimus liposomes were also demonstrated to reduce reactive oxygen species and dry eye-related inflammation factors. The use of drug-loaded cationic liposomes is a good formulation in the treatment of ocular disease; the improved ocular retention time and biocompatibility give tremendous scope for application in the treatment of ocular disease, with further work in the area recommended.
Collapse
Affiliation(s)
- Xiang Chen
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jicheng Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Xueqi Lin
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xingdi Wu
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xuewen Yu
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Wen Xu
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|