1
|
Jafar M, Ahmad Khan MS, Akbar MJ, AlSaihaty HS, Alasmari SS. Obliteration of H. pylori infection through the development of a novel thyme oil laden nanoporous gastric floating microsponge. Heliyon 2024; 10:e29246. [PMID: 38638985 PMCID: PMC11024545 DOI: 10.1016/j.heliyon.2024.e29246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024] Open
Abstract
Thyme oil (TO) is a valuable essential oil believed to possess a variety of bioactivities, including antibacterial, anticancer, and antioxidant properties. These attributes grant TO the excellent capability to treat a wide range of diseases, particularly the effective eradication of Helicobacter pylori infection in the stomach. However, its practical use is limited by its low stability under atmospheric conditions. Our current research aims to encapsulate TO in eudragit (EGT) microsponges to enhance its stability and improve its effectiveness against H. pylori. The TO microsponges were prepared using EGT as a polymer, polysorbate 80 as a stabilizer, and dichloromethane (DCM) as a solvent via the quasi-emulsion solvent evaporation method. The product yield, particle size, surface morphology, entrapment efficiency, drug-polymer interaction, in-vitro floating, and in-vitro drug release of the microsponges were evaluated. The most promising microsponge was tested against H. pylori ATCC 43504 strains. The results showed that the microsponges exhibited a high product yield (ranging from 41 % ± 0.75-81.27 % ± 1.13), excellent entrapment efficiency (ranging from 63.01 % ± 0.79-88.64 % ± 0.98), prolonged in-vitro floating time (more than 12 h) and sustained in-vitro drug release for 18 h (81.53 %). Scanning electron microscopy results indicated that the microsponges were spherical in shape with a spongy surface. The average particle size of the selected microsponges was determined to be 49.79 ± 1.4 μm, and their average pore size was measured to be 0.81 ± 0.14 μm. DSC study results revealed that TO was physically entrapped in the microsponges. In-vitro anti-H. pylori activity studies demonstrated that TO in microsponge was more effective against H. pylori than pure TO. In conclusion, the developed microsponges containing thyme oil provide a promising alternative for the efficient targeting and eradication of H. Pylori infection.
Collapse
Affiliation(s)
- Mohammed Jafar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34212, Saudi Arabia
| | - Mohd Sajjad Ahmad Khan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34212, Saudi Arabia
| | - Mohammad Jamal Akbar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34212, Saudi Arabia
| | - Hadi Saleem AlSaihaty
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34212, Saudi Arabia
| | - Sultan Saad Alasmari
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34212, Saudi Arabia
| |
Collapse
|
2
|
Shi M, Chen Z, Gong H, Peng Z, Sun Q, Luo K, Wu B, Wen C, Lin W. Luteolin, a flavone ingredient: Anticancer mechanisms, combined medication strategy, pharmacokinetics, clinical trials, and pharmaceutical researches. Phytother Res 2024; 38:880-911. [PMID: 38088265 DOI: 10.1002/ptr.8066] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 02/15/2024]
Abstract
Current pharmaceutical research is energetically excavating the pharmacotherapeutic role of herb-derived ingredients in multiple malignancies' targeting. Luteolin is one of the major phytochemical components that exist in various traditional Chinese medicine or medical herbs. Mounting evidence reveals that this phytoconstituent endows prominent therapeutic actions on diverse malignancies, with the underlying mechanisms, combined medication strategy, and pharmacokinetics elusive. Additionally, the clinical trial and pharmaceutical investigation of luteolin remain to be systematically delineated. The present review aimed to comprehensively summarize the updated information with regard to the anticancer mechanism, combined medication strategies, pharmacokinetics, clinical trials, and pharmaceutical researches of luteolin. The survey corroborates that luteolin executes multiple anticancer effects mainly by dampening proliferation and invasion, spurring apoptosis, intercepting cell cycle, regulating autophagy and immune, inhibiting inflammatory response, inducing ferroptosis, and pyroptosis, as well as epigenetic modification, and so on. Luteolin can be applied in combination with numerous clinical anticarcinogens and natural ingredients to synergistically enhance the therapeutic efficacy of malignancies while reducing adverse reactions. For pharmacokinetics, luteolin has an unfavorable oral bioavailability, it mainly persists in plasma as glucuronides and sulfate-conjugates after being metabolized, and is regarded as potent inhibitors of OATP1B1 and OATP2B1, which may be messed with the pharmacokinetic interactions of miscellaneous bioactive substances in vivo. Besides, pharmaceutical innovation of luteolin with leading-edge drug delivery systems such as host-guest complexes, nanoparticles, liposomes, nanoemulsion, microspheres, and hydrogels are beneficial to the exploitation of luteolin-based products. Moreover, some registered clinical trials on luteolin are being carried out, yet clinical research on anticancer effects should be continuously promoted.
Collapse
Affiliation(s)
- Mingyi Shi
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zixian Chen
- College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Gong
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Sun
- Sichuan Provincial Key Laboratory of Individualized Drug Therapy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Baoyu Wu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuanbiao Wen
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Lin
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Elhefni N, Ebada SS, Abdel-Aziz MM, Marwan ESM, El-Sharkawy S, El-Neketi M. Promising anti- Helicobacter pylori and anti-inflammatory metabolites from unused parts of Phoenix dactylifera CV 'Zaghloul': in vitro and in silico study. PHARMACEUTICAL BIOLOGY 2023; 61:657-665. [PMID: 37092359 PMCID: PMC10128457 DOI: 10.1080/13880209.2023.2200841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CONTEXT Date palm waste is an agricultural waste that accumulates in massive amounts causing serious pollution and environmental problems. OBJECTIVES Date palm trees, Phoenix dactylifera Linn CV 'Zaghloul' (Arecaceae) grown in Egypt, leave behind waste products that were investigated to produce compounds with anti-Helicobacter pylori and anti-inflammatory activities. MATERIALS AND METHODS Chromatographic workup of P. dactylifera aqueous methanol extract derived from fibrous mesh and fruit bunch (without fruit) afforded a new sesquiterpene lactone derivative, phodactolide A (1), along with ten known compounds (2-11), primarily identified as polyphenols. Chemical structures were unambiguously elucidated based on mass and 1D/2D NMR spectroscopy. All isolated compounds were assessed for their activities against H. pylori using broth micro-well dilution method and clarithromycin as a positive control. The anti-inflammatory response of isolated compounds was evaluated by inhibiting cyclooxygenase-2 enzyme using TMPD Assay followed by an in silico study to validate their mechanism of action using celecoxib as a standard drug. RESULTS Compounds 4, 6 and 8-10 exhibited potent anti-H. pylori activity with MIC values ranging from 0.48 to 1.95 µg/mL that were comparable to or more potent than clarithromycin. For COX-2 inhibitory assay, 4, 7 and 8 revealed promising activities with IC50 values of 1.04, 0.65 and 0.45 μg/mL, respectively. These results were verified by molecular docking studies, where 4, 7 and 8 showed the best interactions with key amino acid residues of COX-2 active site. CONCLUSION The present study characterizes a new sesquiterpene lactone and recommends 4 and 8 for future in vivo studies as plausible anti-ulcer remedies.
Collapse
Affiliation(s)
- Nada Elhefni
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Sherif S. Ebada
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Marwa M. Abdel-Aziz
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - El-Sayed M. Marwan
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Saleh El-Sharkawy
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mona El-Neketi
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- CONTACT Mona El-Neketi Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, 35516Mansoura, Egypt
| |
Collapse
|
4
|
Jafar M, Sajjad Ahmad Khan M, Salahuddin M, Zahoor S, Mohammed Hesham Slais H, Ibrahim Alalwan L, Radhi Alshaban H. DEVELOPMENT OF APIGENIN LOADED GASTRORETENTIVE MICROSPONGE FOR THE TARGETING OF HELICO BACTER PYLORI. Saudi Pharm J 2023; 31:659-668. [PMID: 37181149 PMCID: PMC10172626 DOI: 10.1016/j.jsps.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
The goal of the present work was to invent an apigenin-stacked gastroretentive microsponge to target H. pylori. The quasi-emulsion technique was used to prepare microsponges, which were then tested for various physicochemical properties, in-vivo gastric retention, and in-vitro anti-H. pylori study. The microsponge that demonstrated a comparatively good product yield (76.23 ± 0.84), excellent entrapment efficiency (97.84 ± 0.85), sustained in-vitro gastric retention period, and prolonged drug release were chosen for further investigations. The microsponge's SEM analysis showed that it had a spherical form, porous surface, and interconnected spaces. No drug-polymer interactions were detected in the FTIR investigation. Apigenin was found to be dispersed in the microsponge's polymeric matrix according to DSC & XRD investigations. Moreover, the microsponge in the rat's stomach floated for 4 h, according to the ultrasonography. The antibacterial activity of apigenin against H. pylori was nearly two folds more than the pure apigenin and had a more sustained release in the best microsponge, according to the in vitro MIC data, when compared to pure apigenin. To sum up, the developed gastroretentive microsponge with apigenin offers a viable alternative for the efficient targeting of H. pylori. But more preclinical & clinical studies of our best microsponge would yield considerably more fruitful results.
Collapse
|
5
|
Biodegradable Guar-Gum-Based Super-Porous Matrices for Gastroretentive Controlled Drug Release in the Treatment of Helicobacter pylori: A Proof of Concept. Int J Mol Sci 2023; 24:ijms24032281. [PMID: 36768604 PMCID: PMC9917163 DOI: 10.3390/ijms24032281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
An increase in resistance to key antibiotics has made the need for novel treatments for the gastric colonization of Helicobacter pylori (H. pylori) a matter of the utmost urgency. Recent studies tackling this topic have focused either on the discovery of new compounds to ameliorate therapeutic regimes (such as vonoprazan) or the synthesis of gastroretentive drug delivery systems (GRDDSs) to improve the pharmacokinetics of oral formulations. The use of semi-interpenetrating polymer networks (semi-IPNs) that can act as super-porous hydrogels for this purpose is proposed in the present work, specifically those displaying low ecological footprint, easy synthesis, self-floating properties, high encapsulation efficiency for drugs such as amoxicillin (AMOX), great mucoadhesiveness, and optimal mechanical strength when exposed to stomach-like fluids. To achieve such systems, biodegradable synthetic copolymers containing acid-labile monomers were prepared and interpenetrated with guar gum (GG) in a one-pot polymerization process based on thiol-ene click reactions. The resulting matrices were characterized by SEM, GPC, TGA, NMR, and rheology studies, and the acidic hydrolysis of the acid-sensitive polymers was also studied. Results confirm that some of the obtained matrices are expected to perform optimally as GRDDSs for the sustained release of active pharmaceutical ingredients at the gastrointestinal level, being a priori facilitated by its disaggregation. Therefore, the optimal performance of these systems is assessed by varying the molar ratio of the labile monomer in the matrices.
Collapse
|
6
|
Novel luteolin@pro-phytomicelles: In vitro characterization and in vivo evaluation of protection against drug-induced hepatotoxicity. Chem Biol Interact 2022; 365:110095. [PMID: 35970426 DOI: 10.1016/j.cbi.2022.110095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022]
Abstract
A novel nanoformulation with the small molecule phytochemical dipotassium glycyrrhizinate as a nanomaterial was developed for the oral delivery of luteolin (Lut), a widely used phytochemical, but it suffered from poor water solubility and low oral bioavailability. This novel nanoformulation, named Lut@pro-phytomicelles, can be fabricated with a simple process. Lut@pro-phytomicelles can instantly dissolve into aqueous mediums and formulate through self-assembly a clear phytomicelle solution with a Lut encapsulation efficiency of 99.16 ± 0.90%, a small micelle size of 30.32 ± 0.12 nm, and a narrow polydispersity index of 0.138 ± 0.024. The optimized formulation demonstrated that Lut had solubility in up to 50 mg/ml of water as a result of its encapsulation within DG phytomicelles. Lut@pro-phytomicelles exhibited excellent characteristics, including good storage stability, a fast in vitro release profile, improvement in in vitro antioxidant activity, and high safety potential. In the oral bioavailability evaluation, a shorter Tmax, increased Cmax, and improved AUC0-t were obtained with Lut@pro-phytomicelles when compared to bare Lut. The distribution evaluation further showed that Lut@pro-phytomicelles could effectively increase the concentrations of Lut in all the tested organs and gastrointestinal segments. In the protection efficacy evaluation, 100 mg/kg Lut@pro-phytomicelles demonstrated strong effects against acetaminophen-induced hepatotoxicity. The mechanisms of inhibiting high-mobility group box 1 signaling and suppressing oxidative stress were involved in this strong treatment effect. These results showed that simple but novel Lut@pro-phytomicelles provided a new, promising nano-delivery system for Lut with a significantly improved in vivo profile.
Collapse
|
7
|
Scope and Limitations of Current Antibiotic Therapies against Helicobacter pylori: Reviewing Amoxicillin Gastroretentive Formulations. Pharmaceutics 2022; 14:pharmaceutics14071340. [PMID: 35890236 PMCID: PMC9320814 DOI: 10.3390/pharmaceutics14071340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
Even though general improvement of quality of life has happened around the globe, statistics show that gastric cancer is still a very serious medical concern in some regions of the world. A big portion of malignant neoplasms that develop inside the stomach are linked to an infection of Helicobacter pylori; in fact, this pathogen has already been categorized as a group 1 carcinogen by the World Health Organization (WHO). Still, the efficacy of current anti-H. pylori therapeutic approaches is insufficient and follows a worrying decreasing trend, mainly due to an exponential increase in resistance to key antibiotics. This work analyzes the clinical and biological characteristics of this pathogen, especially its link to gastric cancer, and provides a comprehensive review of current formulation trends for H. pylori eradication. Research effort has focused both on the discovery of new combinations of chemicals that function as optimized antibiotic regimens, and on the preparation of gastroretentive drug delivery systems (GRDDSs) to improve overall pharmacokinetics. Regarding the last topic, this review aims to summarize the latest trend in amoxicillin-loaded GRDDS, since this is the antibiotic that has shown the least bacterial resistance worldwide. It is expected that the current work could provide some insight into the importance of innovative options to combat this microorganism. Therefore, this review can inspire new research strategies in the development of efficient formulations for the treatment of this infection and the consequent prevention of gastric cancer.
Collapse
|
8
|
Mazzucchelli S. Natural Nanoparticles: A Safe Bullet for Treatment and Detection of Solid Tumors. Pharmaceutics 2022; 14:pharmaceutics14061126. [PMID: 35745699 PMCID: PMC9230549 DOI: 10.3390/pharmaceutics14061126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Serena Mazzucchelli
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milan, Italy
| |
Collapse
|