1
|
Steel TR, Stjärnhage J, Riisom M, Bloomfield HO, Herbert CD, Jamieson SMF, Astin JW, Söhnel T, Hartinger CG. The Chemistry of Anticancer Mononuclear and N-Bridged Dinuclear 8-Aminoquinoline Half-sandwich Metal Complexes. Chemistry 2025; 31:e202404366. [PMID: 40130746 PMCID: PMC12015398 DOI: 10.1002/chem.202404366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Indexed: 03/26/2025]
Abstract
Piano-stool complexes of ruthenium and other platinum group metals have shown promising preclinical results as anticancer agents, often with alternative modes of action to traditional platinum-based compounds. Quinoline is considered a privileged structure in medicinal chemistry and many complexes with potent anticancer activity have been reported. To assess the effect of incorporating bidentate 8-aminoquinoline-η2N-1,N-8 (AQH) ligands in half-sandwich piano-stool metal complexes of the general formula [M(L)(AQH)Cl]+, the respective Ru, Os (L=η6-p-cymene), Rh and Ir (L=η5-pentamethylcyclopentadienyl) complexes were prepared. Deprotonation of AQH during the reaction gave dinuclear [M(L)(AQ)]2 2+ complexes with the deprotonated μ-κ1N-8-aminoquinolinato-η2N-1,N-8 (AQ) ligands acting as bridges between the metal centers. Conversion of the mononuclear Ru, Rh and Ir compounds to the dimetallic analogues was facilitated under basic conditions and improved for the Ru derivative by the addition of AgNO3 to abstract the chlorido ligand. In in vitro anticancer activity studies, the dimetallic complexes were in general more potent than mononuclear analogues. The higher activity of the dimetallic compounds can be explained by higher uptake into cancer cells, as demonstrated for the respective Ru complexes, while zebrafish embryo studies demonstrated low toxicity, irrespective of the number of metal centers in the complexes.
Collapse
Affiliation(s)
- Tasha R. Steel
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Julia Stjärnhage
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Mie Riisom
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Hugh O. Bloomfield
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Caitlin D. Herbert
- Department of Molecular Medicine and PathologyFaculty of Medical and Health SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Stephen M. F. Jamieson
- Auckland Cancer Society Research CentreUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Jonathan W. Astin
- Department of Molecular Medicine and PathologyFaculty of Medical and Health SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Tilo Söhnel
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
- MacDiarmid Institute for Advanced Materials and NanotechnologyVictoria University of Wellington, PO Box 600Wellington6140New Zealand
| | - Christian G. Hartinger
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| |
Collapse
|
2
|
Pastuch-Gawołek G, Szreder J. Effect of Glycoconjugation on Cytotoxicity and Selectivity of 8-Aminoquinoline Derivatives Compared to 8-Hydroxyquinoline. Molecules 2025; 30:427. [PMID: 39860296 PMCID: PMC11767929 DOI: 10.3390/molecules30020427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Numerous emerging chemotherapeutic agents incorporate N-heterocyclic fragments in their structures, with the quinoline skeleton being particularly significant. Our recent works have focused on glycoconjugates of 8-hydroxyquinoline (8-HQ), which demonstrated enhanced bioavailability and solubility compared to their parent compounds, although they fell short in selectivity. In this study, our objective was to improve the selectivity of glycoconjugates by replacing the oxygen atom with nitrogen by substituting the 8-HQ moiety with 8-aminoquinoline (8-AQ). The 8-AQ derivatives were functionalized through the amino group and linked to sugar derivatives (D-glucose or D-galactose) that were modified with an azide, alkylazide, or propargyl group at the anomeric position by copper(I)-catalyzed 1,3-dipolar azido-alkyne cycloaddition (CuAAC). The resulting glycoconjugates, as well as their potential metabolites, were evaluated for their ability to inhibit the proliferation of cancer cell lines (including HCT 116 and MCF-7) and a healthy cell line (NHDF-Neo). Two of the synthesized glycoconjugates (17 and 18) demonstrated higher cytotoxicity than their oxygen-containing counterparts and showed improved selectivity for cancer cells, thus enhancing their anticancer potential. Furthermore, it was found that glycoconjugates exhibited greater cytotoxicity in comparison to their potential metabolites.
Collapse
Affiliation(s)
- Gabriela Pastuch-Gawołek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland;
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Julia Szreder
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland;
| |
Collapse
|
3
|
Caligiuri R, Massai L, Geri A, Ricciardi L, Godbert N, Facchetti G, Lupo MG, Rossi I, Coffetti G, Moraschi M, Sicilia E, Vigna V, Messori L, Ferri N, Mazzone G, Aiello I, Rimoldi I. Cytotoxic Pt(II) complexes containing alizarin: a selective carrier for DNA metalation. Dalton Trans 2024; 53:2602-2618. [PMID: 38223973 DOI: 10.1039/d3dt03889k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Many efforts have been made in the last few decades to selectively transport antitumor agents to their potential target sites with the aim to improve efficacy and selectivity. Indeed, this aspect could greatly improve the beneficial effects of a specific anticancer agent especially in the case of orphan tumors like the triple negative breast cancer. A possible strategy relies on utilizing a protective leaving group like alizarin as the Pt(II) ligand to reduce the deactivation processes of the pharmacophore enacted by Pt resistant cancer cells. In this study a new series of neutral mixed-ligand Pt(II) complexes bearing alizarin and a variety of diamine ligands were synthesized and spectroscopically characterized by FT-IR, NMR and UV-Vis analyses. Three Pt(II) compounds, i.e., 2b, 6b and 7b, emerging as different both in terms of structural properties and cytotoxic effects (not effective, 10.49 ± 1.21 μM and 24.5 ± 1.5 μM, respectively), were chosen for a deeper investigation of the ability of alizarin to work as a selective carrier. The study comprises the in vitro cytotoxicity evaluation against triple negative breast cancer cell lines and ESI-MS interaction studies relative to the reaction of the selected Pt(II) complexes with model proteins and DNA fragments, mimicking potential biological targets. The results allow us to suggest the use of complex 6b as a prospective anticancer agent worthy of further investigations.
Collapse
Affiliation(s)
- Rossella Caligiuri
- MAT-INLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Pietro Bucci Cubo 14C, Arcavacata di Rende (CS), 87036, Italy.
| | - Lara Massai
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Andrea Geri
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Loredana Ricciardi
- CNR-Nanotec, UoS di Cosenza, Dipartimento di Fisica, Università della Calabria, 87036 Rende (CS), Italy
| | - Nicolas Godbert
- MAT-INLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Pietro Bucci Cubo 14C, Arcavacata di Rende (CS), 87036, Italy.
- LPM-Laboratorio Preparazione Materiali, STAR-Lab, Università della Calabria, Via Tito Flavio, 87036 Rende (CS), Italy
| | - Giorgio Facchetti
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy.
| | | | - Ilaria Rossi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Giulia Coffetti
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy.
| | - Martina Moraschi
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy.
| | - Emilia Sicilia
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Pietro Bucci Cubo 14C, Arcavacata di Rende (CS), 87036, Italy.
| | - Vincenzo Vigna
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Pietro Bucci Cubo 14C, Arcavacata di Rende (CS), 87036, Italy.
| | - Luigi Messori
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Nicola Ferri
- Department of Medicine, University of Padova, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Pietro Bucci Cubo 14C, Arcavacata di Rende (CS), 87036, Italy.
| | - Iolinda Aiello
- MAT-INLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Pietro Bucci Cubo 14C, Arcavacata di Rende (CS), 87036, Italy.
- LPM-Laboratorio Preparazione Materiali, STAR-Lab, Università della Calabria, Via Tito Flavio, 87036 Rende (CS), Italy
- CNR-Nanotec, UoS di Cosenza, Dipartimento di Fisica, Università della Calabria, 87036 Rende (CS), Italy
| | - Isabella Rimoldi
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy.
| |
Collapse
|
4
|
Sancho‐Albero M, Facchetti G, Panini N, Meroni M, Bello E, Rimoldi I, Zucchetti M, Frapolli R, De Cola L. Enhancing Pt(IV) Complexes' Anticancer Activity upon Encapsulation in Stimuli-Responsive Nanocages. Adv Healthc Mater 2023; 12:e2202932. [PMID: 36908188 PMCID: PMC11468457 DOI: 10.1002/adhm.202202932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/27/2023] [Indexed: 03/14/2023]
Abstract
Platinum-based chemotherapy is the first-line treatment for different cancer types, and in particular, for malignant pleural mesothelioma patients (a tumor histotype with urgent medical needs). Herein, a strategy is presented to stabilize, transport, and intracellularly release a platinumIV (PtIV ) prodrug using a breakable nanocarrier. Its reduction, and therefore activation as an anticancer drug, is promoted by the presence of glutathione in neoplastic cells that also causes the destruction of the carrier. The nanocage presents a single internal cavity in which the hydrophobic complex (Pt(dach)Cl2 (OH)2 ), (dach = R,R-diaminocyclohexane) is encapsulated. The in vitro uptake and the internalization kinetics in cancer model cells are evaluated and, using flow cytometry analysis, the successful release and activation of the Pt-based drug inside cancer cells are demonstrated. The in vitro findings are confirmed by the in vivo experiments on a mice model obtained by xenografting MPM487, a patient-derived malignant pleural mesothelioma. MPM487 confirms the well-known resistance of malignant pleural mesothelioma to cisplatin treatment while an interesting 50% reduction of tumor growth is observed when mice are treated with the PtIV , entrapped in the nanocages, at an equivalent dose of the platinum complex.
Collapse
Affiliation(s)
- María Sancho‐Albero
- Department of Biochemistry and Molecular PharmacologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSVia Mario Negri 2Milan20156Italy
| | - Giorgio Facchetti
- Department of Pharmaceutical ScienceDISFARMUniversità degli Studi di MilanoMilan20133Italy
| | - Nicolò Panini
- Laboratory of Cancer PharmacologyDepartment of OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSVia Mario Negri 2Milan20156Italy
| | - Marina Meroni
- Laboratory of Cancer PharmacologyDepartment of OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSVia Mario Negri 2Milan20156Italy
| | - Ezia Bello
- Laboratory of Cancer PharmacologyDepartment of OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSVia Mario Negri 2Milan20156Italy
| | - Isabella Rimoldi
- Department of Pharmaceutical ScienceDISFARMUniversità degli Studi di MilanoMilan20133Italy
| | - Massimo Zucchetti
- Laboratory of Cancer PharmacologyDepartment of OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSVia Mario Negri 2Milan20156Italy
| | - Roberta Frapolli
- Laboratory of Cancer PharmacologyDepartment of OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSVia Mario Negri 2Milan20156Italy
| | - Luisa De Cola
- Department of Biochemistry and Molecular PharmacologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSVia Mario Negri 2Milan20156Italy
- Department of Pharmaceutical ScienceDISFARMUniversità degli Studi di MilanoMilan20133Italy
| |
Collapse
|
5
|
Coffetti G, Moraschi M, Facchetti G, Rimoldi I. The Challenging Treatment of Cisplatin-Resistant Tumors: State of the Art and Future Perspectives. Molecules 2023; 28:molecules28083407. [PMID: 37110640 PMCID: PMC10144581 DOI: 10.3390/molecules28083407] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
One of the main problems in chemotherapy using platinum drugs as anticancer agents is the resistance phenomenon. Synthesizing and evaluating valid alternative compounds is challenging. This review focuses on the last two years of progress in the studies of platinum (II)- and platinum (IV)-based anticancer complexes. In particular, the research studies reported herein focus on the capability of some platinum-based anticancer agents to bypass resistance to chemotherapy, which is typical of well-known drugs such as cisplatin. Regarding platinum (II) complexes, this review deals with complexes in trans conformation; complexes containing bioactive ligands, as well as those that are differently charged, all experience a different reaction mechanism compared with cisplatin. Regarding platinum (IV) compounds, the focus was on complexes with biologically active ancillary ligands that exert a synergistic effect with platinum (II)-active complexes upon reduction, or those for which controllable activation can be realized thanks to intracellular stimuli.
Collapse
Affiliation(s)
- Giulia Coffetti
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy
| | - Martina Moraschi
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy
| | - Giorgio Facchetti
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy
| | - Isabella Rimoldi
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy
| |
Collapse
|