1
|
Chu Y, Setayesh J, Dumontet T, Krumeich L, Werner J, Moretti IF, De Sousa K, Kennedy C, La Pensee C, Lerario AM, Hammer GD. Adrenocortical stem cells in health and disease. Nat Rev Endocrinol 2025:10.1038/s41574-025-01091-2. [PMID: 40065108 DOI: 10.1038/s41574-025-01091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 04/13/2025]
Abstract
The adrenal cortex is the major site of production of steroid hormones, which are essential for life. The normal development and homeostatic renewal of the adrenal cortex depend on capsular stem cells and cortical progenitor cells. These cell populations are highly plastic and support adaptation to physiological demands, injury and disease, linking steroid production and adrenal (organ) homeostasis with systemic endocrine cues and organismal homeostasis. This Review integrates findings from the past decade, outlining the mechanisms that govern the establishment and maintenance of the adrenal stem cell niche under different physiological and pathological conditions. The sophisticated regulation of the stem cell niche by gene regulatory networks, coordinated through paracrine and endocrine signalling, is highlighted in a context-dependent and sex-specific manner. We discuss how dysregulation of this intricate regulatory network is implicated in a wide range of adrenal diseases, and how emerging knowledge from adrenal stem cell research is inspiring the future development of gene-based and cell-based therapeutic strategies.
Collapse
Affiliation(s)
- Yulan Chu
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jordan Setayesh
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Typhanie Dumontet
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Lauren Krumeich
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Johanna Werner
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Division of Endocrinology and Diabetology, Department of Internal Medicine I, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Isabele F Moretti
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Kelly De Sousa
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Christopher Kennedy
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Christopher La Pensee
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Antonio M Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Gary D Hammer
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Endocrine Oncology Program, Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Al-Thani AN, Jan AG, Abbas M, Geetha M, Sadasivuni KK. Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review. Life Sci 2024; 352:122899. [PMID: 38992574 DOI: 10.1016/j.lfs.2024.122899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
This comprehensive review provides an in-depth analysis of how nanotechnology has revolutionized cancer theragnostic, which combines diagnostic and therapeutic methods to customize cancer treatment. The study examines the unique attributes, uses, and difficulties linked to different types of nanoparticles, including gold, iron oxide, silica, Quantum dots, Carbon nanotubes, and liposomes, in the context of cancer treatment. In addition, the paper examines the progression of nanotheranostics, emphasizing its uses in precise medication administration, photothermal therapy, and sophisticated diagnostic methods such as MRI, CT, and fluorescence imaging. Moreover, the article highlights the capacity of nanoparticles to improve the effectiveness of drugs, reduce the overall toxicity in the body, and open up new possibilities for treating cancer by releasing drugs in a controlled manner and targeting specific areas. Furthermore, it tackles concerns regarding the compatibility of nanoparticles and their potential harmful effects, emphasizing the significance of continuous study to improve nanotherapeutic methods for use in medical treatments. The review finishes by outlining potential future applications of nanotechnology in predictive oncology and customized medicine.
Collapse
Affiliation(s)
- Alshayma N Al-Thani
- College of Arts and Sciences, Department of Biological and Environmental Science, Qatar
| | - Asma Ghafoor Jan
- College of Arts and Sciences, Department of Biological and Environmental Science, Qatar
| | - Mohamed Abbas
- Centre for Advanced Materials, Qatar University, Qatar.
| | - Mithra Geetha
- Centre for Advanced Materials, Qatar University, Qatar
| | - Kishor Kumar Sadasivuni
- Centre for Advanced Materials, Qatar University, Qatar; Centre for Advanced Materials, Qatar University, Qatar Department of Mechanical and Industrial Engineering, Qatar
| |
Collapse
|
3
|
Ajmeera D, Ajumeera R. Drug repurposing: A novel strategy to target cancer stem cells and therapeutic resistance. Genes Dis 2024; 11:148-175. [PMID: 37588226 PMCID: PMC10425757 DOI: 10.1016/j.gendis.2022.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 01/21/2023] Open
Abstract
Chemotherapy is an effortless and frequently used approach in cancer therapy. However, in most cases, it can only prolong life expectancy and does not guarantee a complete cure. Furthermore, chemotherapy is associated with severe adverse effects, one of the major complications of effective cancer therapy. In addition, newly published research outputs show that cancer stem cells are involved in cancer disease progression, drug resistance, metastasis, and recurrence and that they are functional in the trans-differentiation capacity of cancer stem cells to cancer cells in response to treatments. Novel strategies are therefore required for better management of cancer therapy. The prime approach would be to synthesize and develop novel drugs that need extensive resources, time, and endurance to be brought into therapeutic use. The subsequent approach would be to screen the anti-cancer activity of available non-cancerous drugs. This concept of repurposing non-cancer drugs as an alternative to current cancer therapy has become popular in recent years because using existing anticancer drugs has several adverse effects. Micronutrients have also been investigated for cancer therapy due to their significant anti-cancer effects with negligible or no side effects and availability in food sources. In this paper, we discuss an ideal hypothesis for screening available non-cancerous drugs with anticancer activity, with a focus on cancer stem cells and their clinical application for cancer treatment. Further, drug repurposing and the combination of micronutrients that can target both cancers and cancer stem cells may result in a better therapeutic approach leading to maximum tumor growth control.
Collapse
Affiliation(s)
- Divya Ajmeera
- Cell Biology Department, ICMR-National Institute of Nutrition (NIN), Hyderabad, Telangana 500007, India
| | - Rajanna Ajumeera
- Cell Biology Department, ICMR-National Institute of Nutrition (NIN), Hyderabad, Telangana 500007, India
| |
Collapse
|
4
|
Marcu LG, Dell’Oro M, Bezak E. Opportunities in Cancer Therapies: Deciphering the Role of Cancer Stem Cells in Tumour Repopulation. Int J Mol Sci 2023; 24:17258. [PMID: 38139085 PMCID: PMC10744048 DOI: 10.3390/ijms242417258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Tumour repopulation during treatment is a well acknowledged yet still challenging aspect of cancer management. The latest research results show clear evidence towards the existence of cancer stem cells (CSCs) that are responsible for tumour repopulation, dissemination, and distant metastases in most solid cancers. Cancer stem cell quiescence and the loss of asymmetrical division are two powerful mechanisms behind repopulation. Another important aspect in the context of cancer stem cells is cell plasticity, which was shown to be triggered during fractionated radiotherapy, leading to cell dedifferentiation and thus reactivation of stem-like properties. Repopulation during treatment is not limited to radiotherapy, as there is clinical proof for repopulation mechanisms to be activated through other conventional treatment techniques, such as chemotherapy. The dynamic nature of stem-like cancer cells often elicits resistance to treatment by escaping drug-induced cell death. The aims of this scoping review are (1) to describe the main mechanisms used by cancer stem cells to initiate tumour repopulation during therapy; (2) to present clinical evidence for tumour repopulation during radio- and chemotherapy; (3) to illustrate current trends in the identification of CSCs using specific imaging techniques; and (4) to highlight novel technologies that show potential in the eradication of CSCs.
Collapse
Affiliation(s)
- Loredana G. Marcu
- UniSA Allied Health & Human Performance, University of South Australia, Adelaide, SA 5001, Australia;
- Faculty of Informatics and Science, University of Oradea, 410087 Oradea, Romania
| | - Mikaela Dell’Oro
- Australian Centre for Quantitative Imaging, School of Medicine, The University of Western Australia, Perth, WA 6009, Australia;
| | - Eva Bezak
- UniSA Allied Health & Human Performance, University of South Australia, Adelaide, SA 5001, Australia;
- Faculty of Chemistry & Physics, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
5
|
Won Lee J, Kyu Shim M, Kim H, Jang H, Lee Y, Hwa Kim S. RNAi therapies: Expanding applications for extrahepatic diseases and overcoming delivery challenges. Adv Drug Deliv Rev 2023; 201:115073. [PMID: 37657644 DOI: 10.1016/j.addr.2023.115073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/31/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
The era of RNA medicine has become a reality with the success of messenger RNA (mRNA) vaccines against COVID-19 and the approval of several RNA interference (RNAi) agents in recent years. Particularly, therapeutics based on RNAi offer the promise of targeting intractable and previously undruggable disease genes. Recent advances have focused in developing delivery systems to enhance the poor cellular uptake and insufficient pharmacokinetic properties of RNAi therapeutics and thereby improve its efficacy and safety. However, such approach has been mainly achieved via lipid nanoparticles (LNPs) or chemical conjugation with N-Acetylgalactosamine (GalNAc), thus current RNAi therapy has been limited to liver diseases, most likely to encounter liver-targeting limitations. Hence, there is a huge unmet medical need for intense evolution of RNAi therapeutics delivery systems to target extrahepatic tissues and ultimately extend their indications for treating various intractable diseases. In this review, challenges of delivering RNAi therapeutics to tumors and major organs are discussed, as well as their transition to clinical trials. This review also highlights innovative and promising preclinical RNAi-based delivery platforms for the treatment of extrahepatic diseases.
Collapse
Affiliation(s)
- Jong Won Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Man Kyu Shim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyosuk Kim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hochung Jang
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Yuhan Lee
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Accelerated Medical Innovation & Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Sun Hwa Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| |
Collapse
|
6
|
Huang H, Chen H, Shou D, Quan Y, Cheng J, Chen H, Ning G, Li Y, Xia Y, Zhou Y. Engineering siRNA-loaded and RGDfC-targeted selenium nanoparticles for highly efficient silencing of DCBLD2 gene for colorectal cancer treatment. DISCOVER NANO 2023; 18:94. [PMID: 37477789 PMCID: PMC10361954 DOI: 10.1186/s11671-023-03870-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Effective and safe delivery of small interfering RNA (siRNA) by nanomaterials to cancer cells is one of the main challenges in cancer treatment. In this study, we constructed the selenium nanoparticles conjugated with RGDfC (one tumor-targeted polypeptide) to prepare a biocompatible gene vector (RGDfC-SeNPs) and then loaded with siDCBLD2 to synthesize the RGDfC-Se@siDCBLD2 for colorectal cancer (CRC) therapy. As expected, RGDfC-SeNPs could enhance the cellular uptake of siDCBLD2 in human HCT-116 colon cancer cells by targeting polypeptide RGDfC on the surface of colon cancer cells. RGDfC-Se@siDCBLD2 could be effectively internalized by HCT-116 cells mainly through a clathrin-related endocytosis pathway. In addition, RGDfC-Se@siDCBLD2 exhibited high siRNA release efficiency in an acidic tumor environment. Moreover, RGDfC-Se@siDCBLD2 could inhibit the proliferation and induce apoptosis in HCT-116 cells by special silencing gene DCBLD2 expression. RGDfC-Se@siDCBLD2 could be specifically accumulated to the tumor sites and exhibited significantly anti-CRC efficacy on HCT-116 tumor-bearing mice without obvious side effects. Taken together, these results suggest that selenium nanoparticles can be used as an effective gene vector with good biocompatibility, and RGDfC-Se@siDCBLD2 provides a promising strategy for combining tumor-target and siRNA delivery in treating CRC.
Collapse
Affiliation(s)
- Hongli Huang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Hanqing Chen
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Diwen Shou
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Ying Quan
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Jiemin Cheng
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Huiting Chen
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Gang Ning
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Yongqiang Li
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Yu Xia
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China.
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China.
| |
Collapse
|
7
|
Chen X, Zhang L, Wang X, Xu L, Sun J, Liu Y, Liu X, Kalvakolanu DV, Guo B. Stat3 shRNA delivery with folate receptor-modified multi-functionalized graphene oxide particles for combined infrared radiation and gene therapy in hepatocellular carcinoma. Anticancer Drugs 2023; 34:715-724. [PMID: 36729998 DOI: 10.1097/cad.0000000000001461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
As a vital oncogene, a variety of inhibitors targeting Stat3 and its various upstream signaling pathways has been explored. Since small molecules, peptidomimetics and other peptide inhibitors usually lead to side effects and difficult administration, gene therapeutics that have characteristics of low toxicity and high targeting, make them an attractive alternative for targeting Stat3. A major challenge to this approach is the lack of safe delivery systems for in-vivo applications. Among the various siRNA delivery systems, nanoparticles emerge as a new tool for gene delivery with high biocompatibility, low cost, and minimal toxicity. In this study, we developed a graphene oxide (GO)-based nanocarrier, GO-polyethyleneimine (PEI)-polyethylene glycol (PEG)-folic acid (FA), as a tool targeting for Stat3-specific shRNA to mouse hepatoma cells in vitro and in vivo . Infrared photothermal therapy was combined in vivo since GO has the characteristic of infrared absorbability. Our results suggest a significant tumor growth inhibition after treatment with GO-PEI-PEG-FA- sh-Stat3 combined with infrared photothermal therapy. Thus, GO-PEI-PEG-FA appears to be a novel nano-transformer that could be used in the clinics in future.
Collapse
Affiliation(s)
- Xuyang Chen
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, China
- Department of Pathophysiology, Basic Medical College, Jilin University, Changchun 130021, China
| | - Ling Zhang
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology University of Maryland School Medicine, Baltimore, Maryland, USA
| | - Xiaoqin Wang
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Libo Xu
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Jicheng Sun
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Yiran Liu
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Xiaorui Liu
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Dhan V Kalvakolanu
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology University of Maryland School Medicine, Baltimore, Maryland, USA
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| |
Collapse
|
8
|
Minz R, Sharma PK, Negi A, Kesari KK. MicroRNAs-Based Theranostics against Anesthetic-Induced Neurotoxicity. Pharmaceutics 2023; 15:1833. [PMID: 37514018 PMCID: PMC10385075 DOI: 10.3390/pharmaceutics15071833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Various clinical reports indicate prolonged exposure to general anesthetic-induced neurotoxicity (in vitro and in vivo). Behavior changes (memory and cognition) are compilations commonly cited with general anesthetics. The ability of miRNAs to modulate gene expression, thereby selectively altering cellular functions, remains one of the emerging techniques in the recent decade. Importantly, engineered miRNAs (which are of the two categories, i.e., agomir and antagomir) to an extent found to mitigate neurotoxicity. Utilizing pre-designed synthetic miRNA oligos would be an ideal analeptic approach for intervention based on indicative parameters. This review demonstrates engineered miRNA's potential as prophylactics and/or therapeutics minimizing the general anesthetics-induced neurotoxicity. Furthermore, we share our thoughts regarding the current challenges and feasibility of using miRNAs as therapeutic agents to counteract the adverse neurological effects. Moreover, we discuss the scientific status and updates on the novel neuro-miRNAs related to therapy against neurotoxicity induced by amyloid beta (Aβ) and Parkinson's disease (PD).
Collapse
Affiliation(s)
- Roseleena Minz
- Department of Life Sciences, Central University of Jharkhand, Brambe, Ranchi 853205, Jharkhand, India
| | - Praveen Kumar Sharma
- Department of Life Sciences, Central University of Jharkhand, Brambe, Ranchi 853205, Jharkhand, India
| | - Arvind Negi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
9
|
Ahmad A, Rashid S, Chaudhary AA, Alawam AS, Alghonaim MI, Raza SS, Khan R. Nanomedicine as potential cancer therapy via targeting dysregulated transcription factors. Semin Cancer Biol 2023; 89:38-60. [PMID: 36669712 DOI: 10.1016/j.semcancer.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/02/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Cancer as a disease possess quite complicated pathophysiological implications and is among the prominent causes of morbidity and mortality on global scales. Anti-cancer chemotherapy, surgery, and radiation therapy are some of the present-day conventional treatment options. However, these therapeutic paradigms own several retreats, including lack of specificity, non-targeted toxicological implications, inefficient drug delivery to targeted cells, and emergence of cancer resistance, ultimately causing ineffective cancer management. Owing to the advanced and better biophysical characteristic features and potentiality for the tailoring and customizations and in several fashions, nanotechnology can entirely transubstantiate the cancer identification and its managements. Additionally, nanotechnology also renders several answers to present-day mainstream limitations springing-up in anti-cancer therapeutics. Nanocarriers, owing to their outstanding physicochemical features including but not limited to their particle size, surface morphological features viz. shape etc., have been employed in nanomedicinal platforms for targeting various transcription factors leading to worthy pharmacological outcomes. This transcription targeting activates the wide array of cellular and molecular events like antioxidant enzyme-induction, apoptotic cell death, cell-cycle arrest etc. These outcomes are obtained after the activation or inactivation of several transcription factors and cellular pathways. Further, nanoformulations have been precisely calibrated and functionalized with peculiar targeting groups for improving their efficiency to deliver the drug-payload to specified and targeted cancerous cells and tissues. This review undertakes an extensive, across-the-board and all-inclusive approach consisting of various studies encompassing different types of tailored and customized nanoformulations and nanomaterials designed for targeting the transcription factors implicated in the process of carcinogenesis, tumor-maturation, growth and metastasis. Various transcription factors viz. nuclear factor kappa (NF-κB), signal transducer and activators of transcription (STAT), Cmyc and Twist-related protein 1 (TWIST1) along with several types of nanoparticles targeting these transcription factors have been summarized here. A section has also been dedicated to the different types of nanoparticles targeting the hypoxia inducing factors. Efforts have been made to summarize several other transcription factors implicated in various stages of cancer development, growth, progression and invasion, and their targeting with different kinds of nanomedicinal agents.
Collapse
Affiliation(s)
- Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Abdullah S Alawam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mohammad Ibrahim Alghonaim
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Syed Shadab Raza
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College Hospital, Sarfarazganj, Lucknow 226003, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| |
Collapse
|
10
|
Kola P, Nagesh PKB, Roy PK, Deepak K, Reis RL, Kundu SC, Mandal M. Innovative nanotheranostics: Smart nanoparticles based approach to overcome breast cancer stem cells mediated chemo- and radioresistances. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1876. [PMID: 36600447 DOI: 10.1002/wnan.1876] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
The alarming increase in the number of breast cancer patients worldwide and the increasing death rate indicate that the traditional and current medicines are insufficient to fight against it. The onset of chemo- and radioresistances and cancer stem cell-based recurrence make this problem harder, and this hour needs a novel treatment approach. Competent nanoparticle-based accurate drug delivery and cancer nanotheranostics like photothermal therapy, photodynamic therapy, chemodynamic therapy, and sonodynamic therapy can be the key to solving this problem due to their unique characteristics. These innovative formulations can be a better cargo with fewer side effects than the standard chemotherapy and can eliminate the stability problems associated with cancer immunotherapy. The nanotheranostic systems can kill the tumor cells and the resistant breast cancer stem cells by novel mechanisms like local hyperthermia and reactive oxygen species and prevent tumor recurrence. These theranostic systems can also combine with chemotherapy or immunotherapy approaches. These combining approaches can be the future of anticancer therapy, especially to overcome the breast cancer stem cells mediated chemo- and radioresistances. This review paper discusses several novel theranostic systems and smart nanoparticles, their mechanism of action, and their modifications with time. It explains their relevance and market scope in the current era. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Prithwish Kola
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | - Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - K Deepak
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Rui Luis Reis
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimaraes, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimaraes, Portugal
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
11
|
Yang Y, Meng WJ, Wang ZQ. The origin of gastric cancer stem cells and their effects on gastric cancer: Novel therapeutic targets for gastric cancer. Front Oncol 2022; 12:960539. [PMID: 36185219 PMCID: PMC9520244 DOI: 10.3389/fonc.2022.960539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
Gastric cancer (GC) is one of the most prevalent malignancies and the most common causes of cancer-related mortality worldwide. Furthermore, the prognosis of advanced GC remains poor even after surgery combined with chemoradiotherapy. As a small group of cells with unlimited differentiation and self-renewal ability in GC, accumulating evidence shows that GC stem cells (GCSCs) are closely associated with the refractory characteristics of GC, such as drug resistance, recurrence, and metastasis. With the extensive development of research on GCSCs, GCSCs seem to be promising therapeutic targets for GC. However, the relationship between GCSCs and GC is profound and intricate, and its mechanism of action is still under exploration. In this review, we elaborate on the source and key concepts of GCSCs, systematically summarize the role of GCSCs in GC and their underlying mechanisms. Finally, we review the latest information available on the treatment of GC by targeting GCSCs. Thus, this article may provide a theoretical basis for the future development of the novel targets based on GCSCs for the treatment of GC.
Collapse
|
12
|
Rodrigues KF, Yong WTL, Bhuiyan MSA, Siddiquee S, Shah MD, Venmathi Maran BA. Current Understanding on the Genetic Basis of Key Metabolic Disorders: A Review. BIOLOGY 2022; 11:biology11091308. [PMID: 36138787 PMCID: PMC9495729 DOI: 10.3390/biology11091308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Metabolic disorders (MD) are a challenge to healthcare systems; the emergence of the modern socio-economic system has led to a profound change in lifestyles in terms of dietary habits, exercise regimens, and behavior, all of which complement the genetic factors associated with MD. Diabetes Mellitus and Familial hypercholesterolemia are two of the 14 most widely researched MD, as they pose the greatest challenge to the public healthcare system and have an impact on productivity and the economy. Research findings have led to the development of new therapeutic molecules for the mitigation of MD as well as the invention of experimental strategies, which target the genes themselves via gene editing and RNA interference. Although these approaches may herald the emergence of a new toolbox to treat MD, the current therapeutic approaches still heavily depend on substrate reduction, dietary restrictions based on genetic factors, exercise, and the maintenance of good mental health. The development of orphan drugs for the less common MD such as Krabbe, Farber, Fabry, and Gaucher diseases, remains in its infancy, owing to the lack of investment in research and development, and this has driven the development of personalized therapeutics based on gene silencing and related technologies. Abstract Advances in data acquisition via high resolution genomic, transcriptomic, proteomic and metabolomic platforms have driven the discovery of the underlying factors associated with metabolic disorders (MD) and led to interventions that target the underlying genetic causes as well as lifestyle changes and dietary regulation. The review focuses on fourteen of the most widely studied inherited MD, which are familial hypercholesterolemia, Gaucher disease, Hunter syndrome, Krabbe disease, Maple syrup urine disease, Metachromatic leukodystrophy, Mitochondrial encephalopathy lactic acidosis stroke-like episodes (MELAS), Niemann-Pick disease, Phenylketonuria (PKU), Porphyria, Tay-Sachs disease, Wilson’s disease, Familial hypertriglyceridemia (F-HTG) and Galactosemia based on genome wide association studies, epigenetic factors, transcript regulation, post-translational genetic modifications and biomarker discovery through metabolomic studies. We will delve into the current approaches being undertaken to analyze metadata using bioinformatic approaches and the emerging interventions using genome editing platforms as applied to animal models.
Collapse
Affiliation(s)
- Kenneth Francis Rodrigues
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
- Correspondence: (K.F.R.); (B.A.V.M.); Tel.: +60-16-2096905 (B.A.V.M.)
| | - Wilson Thau Lym Yong
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | | | | | - Muhammad Dawood Shah
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Balu Alagar Venmathi Maran
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
- Correspondence: (K.F.R.); (B.A.V.M.); Tel.: +60-16-2096905 (B.A.V.M.)
| |
Collapse
|
13
|
Hu T, Gong H, Xu J, Huang Y, Wu F, He Z. Nanomedicines for Overcoming Cancer Drug Resistance. Pharmaceutics 2022; 14:pharmaceutics14081606. [PMID: 36015232 PMCID: PMC9412887 DOI: 10.3390/pharmaceutics14081606] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Clinically, cancer drug resistance to chemotherapy, targeted therapy or immunotherapy remains the main impediment towards curative cancer therapy, which leads directly to treatment failure along with extended hospital stays, increased medical costs and high mortality. Therefore, increasing attention has been paid to nanotechnology-based delivery systems for overcoming drug resistance in cancer. In this respect, novel tumor-targeting nanomedicines offer fairly effective therapeutic strategies for surmounting the various limitations of chemotherapy, targeted therapy and immunotherapy, enabling more precise cancer treatment, more convenient monitoring of treatment agents, as well as surmounting cancer drug resistance, including multidrug resistance (MDR). Nanotechnology-based delivery systems, including liposomes, polymer micelles, nanoparticles (NPs), and DNA nanostructures, enable a large number of properly designed therapeutic nanomedicines. In this paper, we review the different mechanisms of cancer drug resistance to chemotherapy, targeted therapy and immunotherapy, and discuss the latest developments in nanomedicines for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
| | - Hanlin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Jiayue Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
| | - Yuan Huang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
| | - Fengbo Wu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Correspondence: (F.W.); or (Z.H.); Tel.: +86-28-85422965 (Z.H.); Fax: +86-28-85422664 (Z.H.)
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Correspondence: (F.W.); or (Z.H.); Tel.: +86-28-85422965 (Z.H.); Fax: +86-28-85422664 (Z.H.)
| |
Collapse
|
14
|
Alnasser SM. Stem cell challenge in cancer progression, oncology and therapy. Gene X 2022; 840:146748. [PMID: 35868413 DOI: 10.1016/j.gene.2022.146748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 11/04/2022] Open
Abstract
Stem cell therapy consisted in the use of cells to treat damaged tissue, especially in cancer cases. Several cancer treatment techniques are developed today. However, the effectiveness of the treatments as well as the results remain too limited. We will discuss in this work the main advantages of the use of several categories of cells in the treatment of various cancerous diseases. The analysis of the obtained results related to cell therapy across the world over a period of twenty years can help to orient the researchers to the objectives in a more relevant and more reliable manner. The complex challenges of funded cancer care are discussed to provide a clear perspective on the future of administration and current treatment methods.
Collapse
Affiliation(s)
- Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Saudi Arabia.
| |
Collapse
|
15
|
Rodríguez F, Caruana P, De la Fuente N, Español P, Gámez M, Balart J, Llurba E, Rovira R, Ruiz R, Martín-Lorente C, Corchero JL, Céspedes MV. Nano-Based Approved Pharmaceuticals for Cancer Treatment: Present and Future Challenges. Biomolecules 2022; 12:biom12060784. [PMID: 35740909 PMCID: PMC9221343 DOI: 10.3390/biom12060784] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the main causes of death worldwide. To date, and despite the advances in conventional treatment options, therapy in cancer is still far from optimal due to the non-specific systemic biodistribution of antitumor agents. The inadequate drug concentrations at the tumor site led to an increased incidence of multiple drug resistance and the appearance of many severe undesirable side effects. Nanotechnology, through the development of nanoscale-based pharmaceuticals, has emerged to provide new and innovative drugs to overcome these limitations. In this review, we provide an overview of the approved nanomedicine for cancer treatment and the rationale behind their designs and applications. We also highlight the new approaches that are currently under investigation and the perspectives and challenges for nanopharmaceuticals, focusing on the tumor microenvironment and tumor disseminate cells as the most attractive and effective strategies for cancer treatments.
Collapse
Affiliation(s)
- Francisco Rodríguez
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (F.R.); (P.C.); (R.R.)
| | - Pablo Caruana
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (F.R.); (P.C.); (R.R.)
| | - Noa De la Fuente
- Servicio de Cirugía General y del Aparato Digestivo, Hospital HM Rosaleda, 15701 Santiago de Compostela, Spain;
| | - Pía Español
- Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain; (P.E.); (E.L.); (R.R.)
| | - María Gámez
- Department of Pharmacy, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Josep Balart
- Department of Radiation Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Elisa Llurba
- Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain; (P.E.); (E.L.); (R.R.)
| | - Ramón Rovira
- Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain; (P.E.); (E.L.); (R.R.)
| | - Raúl Ruiz
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (F.R.); (P.C.); (R.R.)
| | - Cristina Martín-Lorente
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina and CIBER-BBN, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Correspondence: (J.L.C.); (M.V.C.); Tel.: +34-93-5812148 (J.L.C.); +34-93-400000 (ext. 1427) (M.V.C.)
| | - María Virtudes Céspedes
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (F.R.); (P.C.); (R.R.)
- Correspondence: (J.L.C.); (M.V.C.); Tel.: +34-93-5812148 (J.L.C.); +34-93-400000 (ext. 1427) (M.V.C.)
| |
Collapse
|
16
|
Reptiles as Promising Sources of Medicinal Natural Products for Cancer Therapeutic Drugs. Pharmaceutics 2022; 14:pharmaceutics14040874. [PMID: 35456708 PMCID: PMC9025323 DOI: 10.3390/pharmaceutics14040874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022] Open
Abstract
Natural products have historically played an important role as a source of therapeutic drugs for various diseases, and the development of medicinal natural products is still a field with high potential. Although diverse drugs have been developed for incurable diseases for several decades, discovering safe and efficient anticancer drugs remains a formidable challenge. Reptiles, as one source of Asian traditional medicines, are known to possess anticancer properties and have been used for a long time without a clarified scientific background. Recently, it has been reported that extracts, crude peptides, sera, and venom isolated from reptiles could effectively inhibit the survival and proliferation of various cancer cells. In this article, we summarize recent studies applying ingredients derived from reptiles in cancer therapy and discuss the difficulties and prospective development of natural product research.
Collapse
|