1
|
Fiorin FDS, Godinho DB, Dos Santos EB, Aguiar AS, Schuch FB, de Mello MT, Radak Z, Fighera MR, Royes LFF. Relationship among depression, fatigue, and sleep after traumatic brain injury: The role of physical exercise as a non-pharmacological therapy. Exp Neurol 2025; 386:115156. [PMID: 39864790 DOI: 10.1016/j.expneurol.2025.115156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Traumatic brain injury (TBI) is a burdensome condition frequently associated with an increased risk of psychiatric disorders. Although the exact molecular signaling pathways have not yet been fully defined, the compromised integrity of functional brain networks in regions such as the prefrontal cortex and anterior cingulate cortex has been linked to persistent symptoms, including depression, fatigue, and sleep disorders. Understanding how TBI affects neural physiology enables the development of effective interventions. One such strategy may be physical exercise, which promotes neural repair and behavioral rehabilitation after TBI. However, there are caveats to consider when interpreting the effects of physical exercise on TBI-induced mental health issues. This review will highlight the main findings from the literature investigating how different physical exercise protocols affect the progression of TBI-induced depression, fatigue, and sleep disturbances. Furthermore, we aim to explore potential neurobiological pathways that explain how physical exercise influences depression, fatigue, and sleep following TBI.
Collapse
Affiliation(s)
- Fernando da Silva Fiorin
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Federal University of Santa Maria, Santa Maria, Brazil
| | - Douglas Buchmann Godinho
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Aderbal S Aguiar
- Biology of Exercise Laboratory, Department of Health Sciences, Federal University of Santa Catarina, Araranguá, Brazil
| | - Felipe Barreto Schuch
- Department of Sports Methods and Techniques, Federal University of Santa Maria, Santa Maria, Brazil; Faculty of Health Sciences, Universidad Autónoma de Chile, Providencia, Chile; Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marco Túlio de Mello
- Sports Training Centre, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Michele Rechia Fighera
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Federal University of Santa Maria, Santa Maria, Brazil
| | - Luiz Fernando Freire Royes
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Federal University of Santa Maria, Santa Maria, Brazil; Department of Sports Methods and Techniques, Federal University of Santa Maria, Santa Maria, Brazil.
| |
Collapse
|
2
|
Michalettos G, Clausen F, Rostami E, Marklund N. Post-injury treatment with 7,8-dihydroxyflavone attenuates white matter pathology in aged mice following focal traumatic brain injury. Neurotherapeutics 2025; 22:e00472. [PMID: 39428261 PMCID: PMC11742853 DOI: 10.1016/j.neurot.2024.e00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality, not least in the elderly. The incidence of aged TBI patients has increased dramatically during the last decades. High age is a highly negative prognostic factor in TBI, and pharmacological treatment options are lacking. We used the controlled cortical impact (CCI) TBI model in 23-month-old male and female mice and analyzed the effect of post-injury treatment with 7,8 dihydroxyflavone (7,8-DHF), a brain-derived neurotrophic factor (BDNF)-mimetic compound, on white matter pathology. Following CCI or sham injury, mice received subcutaneous 7,8-DHF injections (5 mg/kg) 30 min post-injury and were sacrificed on 2, 7 or 14 days post-injury (dpi) for histological and immunofluorescence analyses. Histological assessment with Luxol Fast Blue (LFB)/Cresyl Violet stain showed that administration of 7,8-DHF resulted in preserved white matter tissue at 2 and 7 dpi with no difference in cortical tissue loss at all investigated time points. Treatment with 7,8-DHF led to reduced axonal swellings at 2 and 7 dpi, as visualized by SMI-31 (Neurofilament Heavy Chain) immunofluorescence, and reduced number of TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labelling)/CC1-positive mature oligodendrocytes at 2 dpi in the perilesional white matter. Post-injury proliferation of Platelet-derived Growth Factor Receptor (PDGFRα)-positive oligodendodrocyte progenitor cells was not altered by 7,8-DHF. Our results suggest that 7,8-DHF can attenuate white matter pathology by mitigating axonal injury and oligodendrocyte death in the aged mouse brain following TBI. These data argue that further exploration of 7,8-DHF towards clinical use is warranted.
Collapse
Affiliation(s)
- Georgios Michalettos
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Lund, Sweden
| | - Fredrik Clausen
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Elham Rostami
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden; Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Niklas Marklund
- Department of Clinical Sciences Lund, Neurosurgery, Lund University and Lund University Hospital, Lund, Sweden.
| |
Collapse
|
3
|
Zhang X, Zheng Y, Wang Z, Zhang G, Yang L, Gan J, Jiang X. Calpain: The regulatory point of cardiovascular and cerebrovascular diseases. Biomed Pharmacother 2024; 179:117272. [PMID: 39153432 DOI: 10.1016/j.biopha.2024.117272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Calpain, a key member of the Calpain cysteine protease superfamily, performs limited protein hydrolysis in a calcium-dependent manner. Its activity is tightly regulated due to the potential for non-specific cleavage of various intracellular proteins upon aberrant activation. A thorough review of the literature from 2010 to 2023 reveals 121 references discussing cardiovascular and cerebrovascular diseases. Dysregulation of the Calpain system is associated with various pathological phenomena, including lipid metabolism disorders, inflammation, apoptosis, and excitotoxicity. Although recent studies have revealed the significant role of Calpain in cardiovascular and cerebrovascular diseases, the precise mechanisms remain incompletely understood. Exploring the potential of Calpain inhibition as a therapeutic approach for the treatment of cardiovascular and cerebrovascular diseases may emerge as a compelling area of interest for future calpain research.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yujia Zheng
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Guangming Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Lin Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
4
|
Mata-Bermudez A, Trejo-Chávez R, Martínez-Vargas M, Pérez-Arredondo A, de los Ángeles Martínez-Cardenas M, Diaz-Ruiz A, Rios C, Romero-Sánchez HA, Martínez-Antonio A, Navarro L. Effect of Mucuna pruriens seed extract on depression-like behavior derived from mild traumatic brain injury in rats. Biomedicine (Taipei) 2024; 14:23-30. [PMID: 39386181 PMCID: PMC11460573 DOI: 10.37796/2211-8039.1461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/18/2024] [Indexed: 10/12/2024] Open
Abstract
Background Traumatic brain injury (TBI) is a severe health problem for which there is no specific treatment, leading to neurological or neuropsychological consequences. One of the most described disorders, even after mild TBI (mTBI), is depression, related to mechanisms involving reactive oxygen species (ROS). The Mucuna pruriens (M. pruriens) plant has various antioxidant, neuroprotective, and anti-inflammatory properties. Purpose There is insufficient evidence of M. pruriens use for the treatment of neurobehavioral and depressive impairments induced by TBI and of the mechanisms underlying this effect, so we aimed to evaluate the ability of shortterm administration of M. pruriens extract to prevent neurobehavioral impairment and depression-like behaviors in a murine model of mTBI as well as evaluate the role of oxidative stress. Methods Male Wistar rats underwent mTBI or sham surgery. Immediately after, they were treated with vehicle or M. pruriens extract (50 mg/kg ip/day for five days). We evaluated neurobehavioral recovery using the Neurobehavioral Severity Scale-Revised (NSS-R) and the immobility time in the forced swimming test 3, 7, 15, 30, and 60 days after mTBI. In addition, lipid peroxidation (LP) and GSH concentrations were determined in some brain areas (motor cortex, striatum, midbrain, and nucleus accumbens). Results M. pruriens extract did not decrease neurobehavioral impairment caused by mTBI. Nevertheless, it prevented depression-like behaviors starting three days after mTBI, reduced LP, and increased GSH in some brain areas. Conclusions: M. pruriens may prevent depression-like behaviors and reduce oxidative stress by decreasing LP and increasing concentrations of antioxidant compounds.
Collapse
Affiliation(s)
- Alfonso Mata-Bermudez
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo.Postal 70-250, 04510, Ciudad de México,
Mexico
| | - Ricardo Trejo-Chávez
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo.Postal 70-250, 04510, Ciudad de México,
Mexico
- Doctorado en Ciencias Biomedicas, Universidad Nacional Autónoma de México, Apdo. Postal 70-250, 04510, Ciudad de México,
Mexico
| | - Marina Martínez-Vargas
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo.Postal 70-250, 04510, Ciudad de México,
Mexico
| | - Adán Pérez-Arredondo
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo.Postal 70-250, 04510, Ciudad de México,
Mexico
| | | | - Araceli Diaz-Ruiz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ciudad de México,
Mexico
| | - Camilo Rios
- Laboratorio de Neurofarmacología Molecular, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México,
Mexico
- Dirección de Investigación. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México,
Mexico
| | - Héctor A. Romero-Sánchez
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México,
Mexico
| | - Agustino Martínez-Antonio
- Biological Engineering Laboratory, Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Campus Irapuato, Guanajuato,
Mexico
| | - Luz Navarro
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo.Postal 70-250, 04510, Ciudad de México,
Mexico
| |
Collapse
|
5
|
Xiao J. Thirty years of BDNF study in central myelination: From biology to therapy. J Neurochem 2023; 167:321-336. [PMID: 37747083 DOI: 10.1111/jnc.15968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
Being the highest expressed neurotrophin in the mammalian brain, the brain-derived neurotrophic factor (BDNF) is essential to neural development and plasticity in both health and diseases. Following the discovery of BDNF by Yves-Alain Barde in 1982, the main feature of BDNF's activity in myelination was first described by Cellerino et al. in 1997. Since then, genetic manipulation of the BDNF-encoding gene and its receptors in murine models has revealed the contribution of BDNF to the myelinating process in the central nervous system (CNS). The series of BDNF or receptor mouse mutants as well as the BDNF polymorphism in humans have provided new insights into the roles that BDNF signaling plays in myelination in a complex manner. 2024 marks the 30th year of BDNF's research in myelination. Here, we share our perspective on the 30-year history of BDNF in the field of CNS myelination from phenotyping to therapeutic development, focusing on genetic evidence regarding the mechanism by which BDNF regulates myelin formation and repair in the CNS. This review also discusses the current hypotheses of BDNF's action on CNS myelination: axonal- and oligodendroglial-driven mechanisms, which may be ultimately activity-dependent. Last, this review raises the challenges and opportunities of developing BDNF-based therapies for neurodegenerative diseases, opening unanswered questions for future investigation.
Collapse
Affiliation(s)
- Junhua Xiao
- School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
- School of Allied Health, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
6
|
A Novel Laser-Based Zebrafish Model for Studying Traumatic Brain Injury and Its Molecular Targets. Pharmaceutics 2022; 14:pharmaceutics14081751. [PMID: 36015377 PMCID: PMC9416346 DOI: 10.3390/pharmaceutics14081751] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Traumatic brain injury (TBI) is a major public health problem. Here, we developed a novel model of non-invasive TBI induced by laser irradiation in the telencephalon of adult zebrafish (Danio rerio) and assessed their behavior and neuromorphology to validate the model and evaluate potential targets for neuroreparative treatment. Overall, TBI induced hypolocomotion and anxiety-like behavior in the novel tank test, strikingly recapitulating responses in mammalian TBI models, hence supporting the face validity of our model. NeuN-positive cell staining was markedly reduced one day, but not seven days, after TBI, suggesting increased neuronal damage immediately after the injury, and its fast recovery. The brain-derived neurotrophic factor (Bdnf) level in the brain dropped immediately after the trauma, but fully recovered seven days later. A marker of microglial activation, Iba1, was elevated in the TBI brain, albeit decreasing from Day 3. The levels of hypoxia-inducible factor 1-alpha (Hif1a) increased 30 min after the injury, and recovered by Day 7, further supporting the construct validity of the model. Collectively, these findings suggest that our model of laser-induced brain injury in zebrafish reproduces mild TBI and can be a useful tool for TBI research and preclinical neuroprotective drug screening.
Collapse
|