1
|
Wu X, Huang X, Zhu Q, Zhang J, Hu J, Song Y, You Y, Zhu L, Lu J, Xu X, Chen M, Wang W, Song X, Ji J, Du Y. Hybrid hair follicle stem cell extracellular vesicles co-delivering finasteride and gold nanoparticles for androgenetic alopecia treatment. J Control Release 2024; 373:652-666. [PMID: 39089503 DOI: 10.1016/j.jconrel.2024.07.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
Androgenetic alopecia (AGA) is a non-fatal disease prevalent worldwide. However, mixed efficacy has been observed among different therapies for hair regrowth in AGA patients. Thus, a nano-platform with synergistic treatments based on a hybrid extracellular vesicle encapsulating gold nanoparticles (AuNPs) and finasteride (Hybrid/Au@Fi) was constructed through membrane fusion between hair follicle stem cell (HFSC)-derived extracellular vesicles and liposomes. These hybrid vesicles (HVs) not only fuel hair regrowth by providing cellular signals in extracellular vesicles, but also improve storage stability, follicle retention, and drug encapsulation efficiency (EE%) for finasteride inhibiting 5α-reductase, and nano-size AuNPs that simulate low-level laser therapy (LLLT) with similar photothermal effects in vitro. The EE% of finasteride in these HVs reached 45.33%. The dual administration of these extracellular vesicles and finasteride showed a strong synergistic effect on HFSCs in vitro. In an AGA mouse model, once-daily topical Hybrid/Au@Fi (115.07 ± 0.32 nm, -7.50 ± 1.68 mV) gel led to a faster transition of hair follicles (HFs) from the catagen to the anagen, increased hair regrowth coverage, and higher quality of regrowth hair, compared to once-daily 5% minoxidil treatment. Compared to topical minoxidil, the multifaceted synergistic therapy of Hybrid/Au@Fi through topical administration offers a new option for intractable AGA patients with low side effects.
Collapse
Affiliation(s)
- Xiaochuan Wu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Xiajie Huang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Qi Zhu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Jucong Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahao Hu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanling Song
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuchan You
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Luwen Zhu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingyi Lu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Xu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Central Hospital, Lishui 323000, China
| | - Wei Wang
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou 310009, Zhejiang, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou 310009, Zhejiang, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Central Hospital, Lishui 323000, China
| | - Yongzhong Du
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China.
| |
Collapse
|
2
|
Heydari S, Barzegar-Jalali M, Heydari M, Radmehr A, Paiva-Santos AC, Kouhsoltani M, Hamishehkar H. The impact of particle size of nanostructured lipid carriers on follicular drug delivery: A comprehensive analysis of mouse and human hair follicle penetration. BIOIMPACTS : BI 2024; 14:30243. [PMID: 39493898 PMCID: PMC11530971 DOI: 10.34172/bi.2024.30243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/11/2024] [Accepted: 02/20/2024] [Indexed: 11/05/2024]
Abstract
Introduction Follicular delivery is one of the targeted drug delivery methods aiming to target the hair follicles. The accumulation and retention time of targeted drugs is enhanced when nanoparticles are used as drug carriers. Particle size is one of the important factors affecting the penetration and accumulation of particles in the hair follicles, and there is a controversy in different studies for the best particle size for follicular delivery. Mouse models are mostly used in clinical trials for dermal, transdermal, and follicular delivery studies. Also, it is essential to investigate the reliability of the results between human studies and mouse models. Methods Curcumin-loaded nanostructured lipid carriers (NLCs), as a fluorescent agent, with three different particle size ranges were prepared using the hot homogenization method and applied topically on the mouse and human study groups. Biopsies were taken from applied areas on different days after using the formulation. The histopathology studies were done on the skin biopsies of both groups using confocal laser scanning microscopy (CLSM). We compared the confocal laser scanning microscope pictures of different groups, in terms of penetration and retention time of nanoparticles in human and mouse hair follicles. Results The best particle size in both models was the 400 nm group but the penetration and accumulation of particles in human and mouse hair follicles were totally different even for the 400 nm group. In human studies, 400 nm particles showed good accumulation after seven days; this result can help to increase the formulation using intervals. Conclusion The best particle size for human and mouse follicular drug delivery is around 400 nm and although mouse models are not completely suitable for follicular delivery studies, they can be used in some conditions as experimental models.
Collapse
Affiliation(s)
- Saman Heydari
- Student Research Committee and Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Barzegar-Jalali
- Biotechnology Research Center and Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Heydari
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Radmehr
- Department of Dermatology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maryam Kouhsoltani
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Wu X, Du YZ. Nanodrug Delivery Strategies to Signaling Pathways in Alopecia. Mol Pharm 2023; 20:5396-5415. [PMID: 37817669 DOI: 10.1021/acs.molpharmaceut.3c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Over 50% of the global population suffers from hair loss. The mixed results in the treatment of hair loss reveal the limitations of conventional commercial topical drugs. One the one hand, the definite pathogenesis of hair loss is still an enigma. On the other hand, targeted drug carriers ensure the drug therapeutic effect and low side effects. This review highlights the organization and overview of nine crucial signaling pathways associated with hair loss, as well as the development of nanobased topical delivery systems loading the clinical drugs, which will fuel emerging hair loss treatment strategies.
Collapse
Affiliation(s)
- Xiaochuan Wu
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yong-Zhong Du
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
4
|
Kim MJ, Seong KY, Kim DS, Jeong JS, Kim SY, Lee S, Yang SY, An BS. Minoxidil-loaded hyaluronic acid dissolving microneedles to alleviate hair loss in an alopecia animal model. Acta Biomater 2022; 143:189-202. [PMID: 35202857 DOI: 10.1016/j.actbio.2022.02.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022]
Abstract
Alopecia is defined as hair loss in a part of the head due to various causes, such as drugs, stress and autoimmune disorders. Various therapeutic agents have been suggested depending on the cause of the condition and patient sex, and age. Minoxidil (MXD) is commonly used topically to treat alopecia, but its low absorption rate limits widespread use. To overcome the low absorption, we suggest microneedles (MNs) as controlled drug delivery systems that release MXD. We used hyaluronic acid (HA) to construct MN, as it is biocompatible and safe. We examined the effect of HA on the hair dermal papilla (HDP) cells that control the development of hair follicles. HA enhanced proliferation, migration, and aggregation of HDP cell by increasing cell-cell adhesion and decreasing cell substratum. These effects were mediated by the cluster of differentiation (CD)-44 and phosphorylation of serine‑threonine kinase (Akt). In chemotherapy-induced alopecia mice, topical application of HA tended to decrease chemotherapy-induced hair loss. Although the amount of MXD administered by HA-MNs was 10% of topical treatment, the MXD-containing HA-MNs (MXD-HA-MNs) showed better effects on the growth of hair than topical application of MXD. In summary, our results demonstrated that HA reduces hair loss in alopecia mice, and that delivery of MXD and HA using MXD-HA-MNs maximizes therapeutic effects and minimize the side effects of MXD for the treatment of alopecia. STATEMENT OF SIGNIFICANCE: (1) Significance, This work reports a new approach for treatment of alopecia using a dissolving microneedle (MN) prepared with hyaluronic acid (HA). The HA provided a better environment for cellular functions in the hair dermal papilla cells. The HA-MNs containing minoxidil (MXD) exhibited a significant reduction of hair loss, although amount of MXD contained in them was only 10% of topically applied MXD., (2) Scientific impact, This is the first report demonstrating the direct anti-alopecia effects of HA administrated in a transdermal route and the feasibility of novel therapeutics using MXD-containing HA-MNs. We believe that our work will excite interdisciplinary readers of Acta Biomaterialia, those who are interested in the natural polymers, drug delivery, and alopecia.
Collapse
|