1
|
Deshmukh R, Dewangan B, Harwansh RK, Agrawal R, Garg A, Chopra H. Current Trends in Nanotechnology-Based Drug Delivery Systems for the Diagnosis and Treatment of Malaria: A Review. Curr Drug Deliv 2025; 22:310-331. [PMID: 38265385 DOI: 10.2174/0115672018291253240115012327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Malaria is still a major endemic disease transmitted in humans via Plasmodium-infected mosquitoes. The eradication of malarial parasites and the control measures have been rigorously and extensively deployed by local and international health organizations. Malaria's recurrence is a result of the failure to entirely eradicate it. The drawbacks related to malarial chemotherapy, non-specific targeting, multiple drug resistance, requirement of high doses, intolerable toxicity, indefinable complexity of Plasmodium's life cycle, and advent of drug-resistant strains of P. falciparum are the causes of the ineffective eradication measures. With the emergence of nanotechnology and its application in various industrial domains, the rising interest in the medical field, especially in epidemiology, has skyrocketed. The applications of nanosized carriers have sparked special attention, aiming towards minimizing the overall side effects caused due to drug therapy and avoiding bioavailability. The applications of concepts of nanobiotechnology to both vector control and patient therapy can also be one of the approaches. The current study focuses on the use of hybrid drugs as next-generation antimalarial drugs because they involve fewer drug adverse effects. The paper encompasses the numerous nanosized delivery-based systems that have been found to be effective among higher animal models, especially in treating malarial prophylaxis. This paper delivers a detailed review of diagnostic techniques, various nanotechnology approaches, the application of nanocarriers, and the underlying mechanisms for the management of malaria, thereby providing insights and the direction in which the current trends are imparted from the innovative and technological perspective.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | | | - Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Rutvi Agrawal
- Rajiv Academy for pharmacy, NH-2, Mathura-Delhi Road, Mathura- 281001, India
| | - Akash Garg
- Rajiv Academy for pharmacy, NH-2, Mathura-Delhi Road, Mathura- 281001, India
| | - Himansu Chopra
- Rajiv Academy for pharmacy, NH-2, Mathura-Delhi Road, Mathura- 281001, India
| |
Collapse
|
2
|
Bhargava S, Deshmukh R, Dewangan HK. Recent Advancement in Drug Development for Treating Malaria using Herbal Medicine and Nanotechnological Approach. Curr Pharm Des 2025; 31:203-218. [PMID: 39279710 DOI: 10.2174/0113816128321468240828103439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 09/18/2024]
Abstract
More than two hundred million people around the world are infected with malaria, a blood-borne disease that poses a significant risk to human life. Single medications, such as lumefantrine, primaquine, and chloroquine, as well as combinations of these medications with artemisinin or its derivatives, are currently being used as therapies. In addition, due to rising antimalarial drug resistance, other therapeutic options are needed immediately. Furthermore, due to anti-malarial medication failures, a new drug is required. Medication discovery and development are costly and time-consuming. Many malaria treatments have been developed however, most treatments have low water solubility and bioavailability. They may also cause drugresistant parasites, which would increase malaria cases and fatalities. Nanotechnology may offer a safer, more effective malaria therapy and control option. Nanoparticles' high loading capacity, concentrated drug delivery, biocompatibility, and low toxicity make them an attractive alternative to traditional therapy. Nanotechnologybased anti-malarial chemotherapeutic medications outperform conventional therapies in therapeutic benefits, safety, and cost. This improves patient treatment compliance. The limitations of malaria treatments and the importance of nanotechnological approaches to the treatment of malaria were also topics that were covered in this review. The most recent advancements in nanomaterials and the advantages they offer in terms of medication delivery are discussed in this article. The prospective therapy for malaria is also discussed. Additionally, the limitations of malaria therapies and the importance of nanotechnology-based approaches to the treatment of malaria were explored.
Collapse
Affiliation(s)
- Sarvesh Bhargava
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Hitesh Kumar Dewangan
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
3
|
Camarero-Hoyos C, Bouzón-Arnáiz I, Avalos-Padilla Y, Fallica AN, Román-Álamo L, Ramírez M, Portabella E, Cuspinera O, Currea-Ayala D, Orozco-Quer M, Ribera M, Siden-Kiamos I, Spanos L, Iglesias V, Crespo B, Viera S, Andreu D, Sulleiro E, Zarzuela F, Urtasun N, Pérez-Torras S, Pastor-Anglada M, Arce EM, Muñoz-Torrero D, Fernàndez-Busquets X. Leveraging the Aggregated Protein Dye YAT2150 for Malaria Chemotherapy. Pharmaceutics 2024; 16:1290. [PMID: 39458619 PMCID: PMC11514582 DOI: 10.3390/pharmaceutics16101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/09/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: YAT2150 is a first-in-class antiplasmodial compound that has been recently proposed as a new interesting drug for malaria therapy. Methods/Results: The fluorescence of YAT2150 rapidly increases upon its entry into Plasmodium, a property that can be of use for the design of highly sensitive diagnostic approaches. YAT2150 blocks the in vitro development of the ookinete stage of Plasmodium and, when added to an infected blood meal, inhibits oocyst formation in the mosquito. Thus, the compound could possibly contribute to future transmission-blocking antimalarial strategies. Cell influx/efflux studies in Caco-2 cells suggest that YAT2150 is internalized by endocytosis and also through the OATP2B1 transporter, whereas its main export route would be via OSTα. YAT2150 has an overall favorable drug metabolism and pharmacokinetics profile, and its moderate cytotoxicity can be significantly reduced upon encapsulation in immunoliposomes, which leads to a dramatic increase in the drug selectivity index to values close to 1000. Although YAT2150 binds amyloid-forming peptides, its in vitro fluorescence emission is stronger upon association with peptides that form amorphous aggregates, suggesting that regions enriched in unstructured proteins are the preferential binding sites of the drug inside Plasmodium cells. The reduction of protein aggregation in the parasite after YAT2150 treatment, which has been suggested to be directly related to the drug's mode of action, is also observed following treatment with quinoline antimalarials like chloroquine and primaquine. Conclusions: Altogether, the data presented here indicate that YAT2150 can represent the spearhead of a new family of compounds for malaria diagnosis and therapy due to its presumed novel mode of action based on the interaction with functional protein aggregates in the pathogen.
Collapse
Affiliation(s)
- Claudia Camarero-Hoyos
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036 Barcelona, Spain; (C.C.-H.); (I.B.-A.); (Y.A.-P.); (A.N.F.); (L.R.-Á.); (M.R.); (E.P.); (O.C.); (D.C.-A.); (M.O.-Q.); (M.R.); (V.I.)
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Doctoral School of Biotechnology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Inés Bouzón-Arnáiz
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036 Barcelona, Spain; (C.C.-H.); (I.B.-A.); (Y.A.-P.); (A.N.F.); (L.R.-Á.); (M.R.); (E.P.); (O.C.); (D.C.-A.); (M.O.-Q.); (M.R.); (V.I.)
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Yunuen Avalos-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036 Barcelona, Spain; (C.C.-H.); (I.B.-A.); (Y.A.-P.); (A.N.F.); (L.R.-Á.); (M.R.); (E.P.); (O.C.); (D.C.-A.); (M.O.-Q.); (M.R.); (V.I.)
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Antonino Nicolò Fallica
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036 Barcelona, Spain; (C.C.-H.); (I.B.-A.); (Y.A.-P.); (A.N.F.); (L.R.-Á.); (M.R.); (E.P.); (O.C.); (D.C.-A.); (M.O.-Q.); (M.R.); (V.I.)
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Lucía Román-Álamo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036 Barcelona, Spain; (C.C.-H.); (I.B.-A.); (Y.A.-P.); (A.N.F.); (L.R.-Á.); (M.R.); (E.P.); (O.C.); (D.C.-A.); (M.O.-Q.); (M.R.); (V.I.)
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Miriam Ramírez
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036 Barcelona, Spain; (C.C.-H.); (I.B.-A.); (Y.A.-P.); (A.N.F.); (L.R.-Á.); (M.R.); (E.P.); (O.C.); (D.C.-A.); (M.O.-Q.); (M.R.); (V.I.)
| | - Emma Portabella
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036 Barcelona, Spain; (C.C.-H.); (I.B.-A.); (Y.A.-P.); (A.N.F.); (L.R.-Á.); (M.R.); (E.P.); (O.C.); (D.C.-A.); (M.O.-Q.); (M.R.); (V.I.)
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Ona Cuspinera
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036 Barcelona, Spain; (C.C.-H.); (I.B.-A.); (Y.A.-P.); (A.N.F.); (L.R.-Á.); (M.R.); (E.P.); (O.C.); (D.C.-A.); (M.O.-Q.); (M.R.); (V.I.)
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Daniela Currea-Ayala
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036 Barcelona, Spain; (C.C.-H.); (I.B.-A.); (Y.A.-P.); (A.N.F.); (L.R.-Á.); (M.R.); (E.P.); (O.C.); (D.C.-A.); (M.O.-Q.); (M.R.); (V.I.)
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Marc Orozco-Quer
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036 Barcelona, Spain; (C.C.-H.); (I.B.-A.); (Y.A.-P.); (A.N.F.); (L.R.-Á.); (M.R.); (E.P.); (O.C.); (D.C.-A.); (M.O.-Q.); (M.R.); (V.I.)
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Maria Ribera
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036 Barcelona, Spain; (C.C.-H.); (I.B.-A.); (Y.A.-P.); (A.N.F.); (L.R.-Á.); (M.R.); (E.P.); (O.C.); (D.C.-A.); (M.O.-Q.); (M.R.); (V.I.)
| | - Inga Siden-Kiamos
- Institute of Molecular Biology and Biotechnology, FORTH, N. Plastira 100, 700 13 Heraklion, Greece; (I.S.-K.); (L.S.)
| | - Lefteris Spanos
- Institute of Molecular Biology and Biotechnology, FORTH, N. Plastira 100, 700 13 Heraklion, Greece; (I.S.-K.); (L.S.)
| | - Valentín Iglesias
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036 Barcelona, Spain; (C.C.-H.); (I.B.-A.); (Y.A.-P.); (A.N.F.); (L.R.-Á.); (M.R.); (E.P.); (O.C.); (D.C.-A.); (M.O.-Q.); (M.R.); (V.I.)
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Clinical Research Centre, Medical University of Białystok, Kilińskiego 1, 15-369 Białystok, Poland
| | - Benigno Crespo
- Global Health Medicines R&D, GlaxoSmithKline (GSK), 28760 Tres Cantos, Spain; (B.C.); (S.V.)
| | - Sara Viera
- Global Health Medicines R&D, GlaxoSmithKline (GSK), 28760 Tres Cantos, Spain; (B.C.); (S.V.)
| | - David Andreu
- Department of Medicine and Life Sciences, Barcelona Biomedical Research Park, Pompeu Fabra University, Dr. Aiguader 88, 08003 Barcelona, Spain;
| | - Elena Sulleiro
- Microbiology Department, Vall d’Hebron University Hospital (VHUH), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (E.S.); (F.Z.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III Health Institute, 28029 Madrid, Spain
| | - Francesc Zarzuela
- Microbiology Department, Vall d’Hebron University Hospital (VHUH), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (E.S.); (F.Z.)
| | - Nerea Urtasun
- Molecular Pharmacology and Experimental Therapeutics (MPET), Department of Biochemistry and Molecular Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (N.U.); (S.P.-T.); (M.P.-A.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Carlos III Health Institute, 28029 Madrid, Spain
- Institut de Recerca Hospital Sant Joan de Déu de Barcelona (IRSJD), Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- Institute of Biomedicine (IBUB), University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain;
| | - Sandra Pérez-Torras
- Molecular Pharmacology and Experimental Therapeutics (MPET), Department of Biochemistry and Molecular Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (N.U.); (S.P.-T.); (M.P.-A.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Carlos III Health Institute, 28029 Madrid, Spain
- Institut de Recerca Hospital Sant Joan de Déu de Barcelona (IRSJD), Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- Institute of Biomedicine (IBUB), University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain;
| | - Marçal Pastor-Anglada
- Molecular Pharmacology and Experimental Therapeutics (MPET), Department of Biochemistry and Molecular Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (N.U.); (S.P.-T.); (M.P.-A.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Carlos III Health Institute, 28029 Madrid, Spain
- Institut de Recerca Hospital Sant Joan de Déu de Barcelona (IRSJD), Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- Institute of Biomedicine (IBUB), University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain;
| | - Elsa M. Arce
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain;
| | - Diego Muñoz-Torrero
- Institute of Biomedicine (IBUB), University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain;
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain;
| | - Xavier Fernàndez-Busquets
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036 Barcelona, Spain; (C.C.-H.); (I.B.-A.); (Y.A.-P.); (A.N.F.); (L.R.-Á.); (M.R.); (E.P.); (O.C.); (D.C.-A.); (M.O.-Q.); (M.R.); (V.I.)
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
4
|
Tajudeen YA, Oladipo HJ, Yusuff SI, Abimbola SO, Abdulkadir M, Oladunjoye IO, Omotosho AO, Egbewande OM, Shittu HD, Yusuf RO, Ogundipe O, Muili AO, Afolabi AO, Dahesh SMA, Gameil MAM, El-Sherbini MS. A landscape review of malaria vaccine candidates in the pipeline. Trop Dis Travel Med Vaccines 2024; 10:19. [PMID: 39085983 PMCID: PMC11293096 DOI: 10.1186/s40794-024-00222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/15/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Globally, malaria continues to pose a major health challenge, with approximately 247 million cases of the illness and 627,000 deaths reported in 2021. However, the threat is particularly pronounced in sub-Saharan African countries, where pregnant women and children under the age of five face heightened vulnerability to the disease. As a result, the imperative to develop malaria vaccines especially for these vulnerable populations, remains crucial in the pursuit of malaria eradication. However, despite decades of research, effective vaccine development faces technical challenges, including the rapid spread of drug-resistant parasite strains, the complex parasite lifecycle, the development of liver hypnozoites with potential for relapse, and evasion of the host immune system. This review aims to discuss the different malaria vaccine candidates in the pipeline, highlighting different approaches used for adjuvating these candidates, their benefits, and outcomes, and summarizing the progress of these vaccine candidates under development. METHOD A comprehensive web-based search for peer-reviewed journal articles published in SCOPUS, MEDLINE (via PubMed), Science Direct, WHO, and Advanced Google Scholar databases was conducted from 1990 to May 2022. Context-specific keywords such as "Malaria", "Malaria Vaccine", "Malaria Vaccine Candidates", "Vaccine Development", "Vaccine Safety", "Clinical Trials", "mRNA Vaccines", "Viral Vector Vaccines", "Protein-based Vaccines", "Subunit Vaccines", "Vaccine Adjuvants", "Vaccine-induced Immune Responses", and "Immunogenicity" were emphatically considered. Articles not directly related to malaria vaccine candidates in preclinical and clinical stages of development were excluded. RESULTS Various approaches have been studied for malaria vaccine development, targeting different parasite lifecycle stages, including the pre-erythrocytic, erythrocytic, and sexual stages. The RTS, S/AS01 vaccine, the first human parasite vaccine reaching WHO-listed authority maturity level 4, has demonstrated efficacy in preventing clinical malaria in African children. However, progress was slow in introducing other safe, and feasible malaria vaccines through clinical trials . Recent studies highlight the potential effectiveness of combining pre-erythrocytic and blood-stage vaccines, along with the advantages of mRNA vaccines for prophylaxis and treatment, and nonstructural vaccines for large-scale production. CONCLUSION Malaria vaccine candidates targeting different lifecycle stages of the parasite range from chemoprophylaxis vaccination to cross-species immune protection. The use of a multi-antigen, multi-stage combinational vaccine is therefore essential in the context of global health. This demands careful understanding and critical consideration of the long-term multi-faceted interplay of immune interference, co-dominance, complementary immune response, molecular targets, and adjuvants affecting the overall vaccine-induced immune response. Despite challenges, advancements in clinical trials and vaccination technology offer promising possibilities for novel approaches in malaria vaccine development.
Collapse
Affiliation(s)
- Yusuf Amuda Tajudeen
- Department of Microbiology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
- Department of Epidemiology and Medical Statistics, Faculty of Public Health, College of Medicine, University of Ibadan, P.M.B 5017 G.P.O, Ibadan, Oyo State, Nigeria
| | - Habeebullah Jayeola Oladipo
- Department of Microbiology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
- Faculty of Pharmaceutical Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
| | - Sodiq Inaolaji Yusuff
- Department of Medicine, Faculty of Clinical Sciences, Obafemi Awolowo University, Ibadan- Ife Rd, Ife, 220282, Osun State, Nigeria
| | - Samuel O Abimbola
- Cyprus International Institute of Environmental and Public Health, Cyprus University of Technology, Limassol, 3036, Cyprus
| | - Muritala Abdulkadir
- Faculty of Pharmaceutical Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
| | - Iyiola Olatunji Oladunjoye
- Department of Microbiology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
| | - Abass Olawale Omotosho
- Department of Microbiology, Faculty of Pure and Applied Sciences, Kwara State University, P.M.B 1530, Malete-Ilorin, Ilorin, Nigeria
| | | | | | - Rashidat Onyinoyi Yusuf
- Faculty of Pharmaceutical Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
| | - Oluwatosin Ogundipe
- Department of Epidemiology and Medical Statistics, Faculty of Public Health, College of Medicine, University of Ibadan, P.M.B 5017 G.P.O, Ibadan, Oyo State, Nigeria
| | - Abdulbasit Opeyemi Muili
- Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, P.M.B 4000, Ogbomosho, Oyo State, Nigeria
| | - Abdullateef Opeyemi Afolabi
- Faculty of Biomedical Sciences, Department of Microbiology and Immunology, Kampala International University, Bushenyi, Uganda.
| | - Salwa M A Dahesh
- Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, GOTHI, Damietta, Egypt
| | | | - Mona Said El-Sherbini
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
5
|
Maciver SK, Abdelnasir S, Anwar A, Siddiqui R, Khan NA. Modular nanotheranostic agents for protistan parasitic diseases: Magic bullets with tracers. Mol Biochem Parasitol 2023; 253:111541. [PMID: 36603708 DOI: 10.1016/j.molbiopara.2022.111541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023]
Abstract
Protistan parasitic infections contribute significantly to morbidity and mortality, causing more than 2 billion human infections annually. However, current treatments are often limited; due to ineffective drugs and drug resistance, thus better options are urgently required. In the present context, theranostics agents are those that offer simultaneous detection, diagnosis and even treatment of protistan parasitic diseases. "Nanotheranostics" is the term used to describe such agents, that are around 100 nm or less in size. Anti-parasitic activity of nanoparticles (NPs) has been reported, and many have useful intrinsic imaging properties, but it is perhaps their multifunctional nature that offers the greatest potential. NPs may be used as adapters onto which various subunits with different functions may be attached. These subunits may facilitate targeting parasites, coupled with toxins to eradicate parasites, and probe subunits for detection of particles and/or parasites. The modular nature of nano-platforms promises a "mix and match" approach for the construction of tailored agents by using combinations of these subunits against different protistan parasites. Even though many of the subunits have shown promise alone, these have not yet been put together convincingly enough to form working theranostics against protistan parasites. Although the clinical application of nanotheranostics to protistan parasitic infections in humans requires more research, we conclude that they offer not just a realisation of Paul Ehrlich's long imagined "magic bullet" concept, but potentially are magic bullets combined with tracer bullets.
Collapse
Affiliation(s)
- Sutherland Kester Maciver
- Centre for Discovery Brain Science, Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Scotland, UK
| | - Sumayah Abdelnasir
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia.
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates; Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|