1
|
Machireddy B, He M. Cyclic and acyclic acetals as safe, nonaqueous formaldehyde equivalents for the synthesis of pillararenes. Chem Commun (Camb) 2024; 60:10160-10163. [PMID: 39189717 DOI: 10.1039/d4cc03306j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Pillar[5]arene was synthesized using acyclic acetals diethoxymethane and dimethoxymethane, and cyclic acetals 1,3-dioxolane and 1,3,5-trioxane as an alternative to paraformaldehyde. Both Lewis and Brønsted acids were effective in catalyzing the hydrolysis of acetal and initiating the Friedel-Crafts reaction in pillararene synthesis.
Collapse
Affiliation(s)
- Babitha Machireddy
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Maggie He
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
2
|
Martí-Centelles V, Piskorz TK, Duarte F. CageCavityCalc ( C3): A Computational Tool for Calculating and Visualizing Cavities in Molecular Cages. J Chem Inf Model 2024; 64:5604-5616. [PMID: 38980812 PMCID: PMC11267575 DOI: 10.1021/acs.jcim.4c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Organic(porous) and metal-organic cages are promising biomimetic platforms with diverse applications spanning recognition, sensing, and catalysis. The key to the emergence of these functions is the presence of well-defined inner cavities capable of binding a wide range of guest molecules and modulating their properties. However, despite the myriad cage architectures currently available, the rational design of structurally diverse and functional cages with specific host-guest properties remains challenging. Efficiently predicting such properties is critical for accelerating the discovery of novel functional cages. Herein, we introduce CageCavityCalc (C3), a Python-based tool for calculating the cavity size of molecular cages. The code is available on GitHub at https://github.com/VicenteMartiCentelles/CageCavityCalc. C3 utilizes a novel algorithm that enables the rapid calculation of cavity sizes for a wide range of molecular structures and porous systems. Moreover, C3 facilitates easy visualization of the computed cavity size alongside hydrophobic and electrostatic potentials, providing insights into host-guest interactions within the cage. Furthermore, the calculated cavity can be visualized using widely available visualization software, such as PyMol, VMD, or ChimeraX. To enhance user accessibility, a PyMol plugin has been created, allowing nonspecialists to use this tool without requiring computer programming expertise. We anticipate that the deployment of this computational tool will significantly streamline cage cavity calculations, thereby accelerating the discovery of functional cages.
Collapse
Affiliation(s)
- Vicente Martí-Centelles
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera s/n, Valencia 46022, Spain
- CIBER
de Bioingeniería Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid 28029, Spain
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera
s/n, Valencia 46022, Spain
| | - Tomasz K. Piskorz
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Fernanda Duarte
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
3
|
Stoikov D, Ivanov A, Shafigullina I, Gavrikova M, Padnya P, Shiabiev I, Stoikov I, Evtugyn G. Flow-Through Amperometric Biosensor System Based on Functionalized Aryl Derivative of Phenothiazine and PAMAM-Calix-Dendrimers for the Determination of Uric Acid. BIOSENSORS 2024; 14:120. [PMID: 38534227 DOI: 10.3390/bios14030120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024]
Abstract
A flow-through biosensor system for the determination of uric acid was developed on the platform of flow-through electrochemical cell manufactured by 3D printing from poly(lactic acid) and equipped with a modified screen-printed graphite electrode (SPE). Uricase was immobilized to the inner surface of a replaceable reactor chamber. Its working volume was reduced to 10 μL against a previously reported similar cell. SPE was modified independently of the enzyme reactor with carbon black, pillar[5]arene, poly(amidoamine) dendrimers based on the p-tert-butylthiacalix[4]arene (PAMAM-calix-dendrimers) platform and electropolymerized 3,7-bis(4-aminophenylamino) phenothiazin-5-ium chloride. Introduction of the PAMAM-calix-dendrimers into the electrode coating led to a fivefold increase in the redox currents of the electroactive polymer. It was found that higher generations of the PAMAM-calix-dendrimers led to a greater increase in the currents measured. Coatings consisted of products of the electropolymerization of the phenothiazine with implemented pillar[5]arene and PAMAM-calix-dendrimers showing high efficiency in the electrochemical reduction of hydrogen peroxide that was formed in the enzymatic oxidation of uric acid. The presence of PAMAM-calix-dendrimer G2 in the coating increased the redox signal related to the uric acid assay by more than 1.5 times. The biosensor system was successfully applied for the enzymatic determination of uric acid in chronoamperometric mode. The following optimal parameters for the chronoamperometric determination of uric acid in flow-through conditions were established: pH 8.0, flow rate 0.2 mL·min-1, 5 U of uricase per reactor. Under these conditions, the biosensor system made it possible to determine from 10 nM to 20 μM of uric acid with the limit of detection (LOD) of 4 nM. Glucose (up to 1 mM), dopamine (up to 0.5 mM), and ascorbic acid (up to 50 μM) did not affect the signal of the biosensor toward uric acid. The biosensor was tested on spiked artificial urine samples, and showed 101% recovery for tenfold diluted samples. The ease of assembly of the flow cell and the low cost of the replacement parts make for a promising future application of the biosensor system in routine clinical analyses.
Collapse
Affiliation(s)
- Dmitry Stoikov
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Alexey Ivanov
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Insiya Shafigullina
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Milena Gavrikova
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Pavel Padnya
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Igor Shiabiev
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Ivan Stoikov
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Gennady Evtugyn
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
- Analytical Chemistry Department, Chemical Technology Institute, Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russia
| |
Collapse
|
4
|
Jiang T, Gonzalez KM, Cordova LE, Lu J. Nanotechnology-enabled gene delivery for cancer and other genetic diseases. Expert Opin Drug Deliv 2023; 20:523-540. [PMID: 37017558 PMCID: PMC10164135 DOI: 10.1080/17425247.2023.2200246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 04/04/2023] [Indexed: 04/06/2023]
Abstract
INTRODUCTION Despite gene therapy is ideal for genetic abnormality-related diseases, the easy degradation, poor targeting, and inefficiency in entering targeted cells are plaguing the effective delivery of gene therapy. Viral and non-viral vectors have been used for delivering gene therapeutics in vivo by safeguarding nucleic acid agents to target cells and to reach the specific intracellular location. A variety of nanotechnology-enabled safe and efficient systems have been successfully developed to improve the targeting ability for effective therapeutic delivery of genetic drugs. AREAS COVERED In this review, we outline the multiple biological barriers associated with gene delivery process, and highlight recent advances to gene therapy strategy in vivo, including gene correction, gene silencing, gene activation and genome editing. We point out current developments and challenges exist of non-viral and viral vector systems in association with chemical and physical gene delivery technologies and their potential for the future. EXPERT OPINION This review focuses on the opportunities and challenges to various gene therapy strategy, with specific emphasis on overcoming the challenges through the development of biocompatibility and smart gene vectors for potential clinical application.
Collapse
Affiliation(s)
- Tong Jiang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Karina Marie Gonzalez
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Leyla Estrella Cordova
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
- NCI-designated University of Arizona Comprehensive Cancer Center, Tucson, Arizona, 85721, United States
- BIO5 Institute, The University of Arizona, Tucson, Arizona, 85721, United States
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, 85721, United States
| |
Collapse
|
5
|
lixia L, ying Y, hong W, zhe L, Jiqian L. Rapid Detection of Ag+ in Food Using Cholesteric Chiral Artificial Receptor L5. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
6
|
Host-Guest Complexes. Int J Mol Sci 2022; 23:ijms232415730. [PMID: 36555372 PMCID: PMC9779678 DOI: 10.3390/ijms232415730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Host-guest complexes, also known as inclusion complexes, are supramolecular structures [...].
Collapse
|
7
|
Lebrón JA, López-Cornejo P, Ostos FJ. Supramolecular Systems for Gene and Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14030471. [PMID: 35335848 PMCID: PMC8948943 DOI: 10.3390/pharmaceutics14030471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Affiliation(s)
- José A. Lebrón
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain;
| | - Pilar López-Cornejo
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain;
- Correspondence: (P.L.-C.); (F.J.O.)
| | - Francisco J. Ostos
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, 41013 Seville, Spain
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Correspondence: (P.L.-C.); (F.J.O.)
| |
Collapse
|