1
|
Bourang S, Noruzpour M, Jahanbakhsh Godekahriz S, Ebrahimi HAC, Amani A, Asghari Zakaria R, Yaghoubi H. Application of nanoparticles in breast cancer treatment: a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6459-6505. [PMID: 38700795 DOI: 10.1007/s00210-024-03082-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/02/2024] [Indexed: 09/25/2024]
Abstract
It is estimated that cancer is the second leading cause of death worldwide. The primary or secondary cause of cancer-related mortality for women is breast cancer. The main treatment method for different types of cancer is chemotherapy with drugs. Because of less water solubility of chemotherapy drugs or their inability to pass through membranes, their body absorbs them inadequately, which lowers the treatment's effectiveness. Drug specificity and pharmacokinetics can be changed by nanotechnology using nanoparticles. Instead, targeted drug delivery allows medications to be delivered to the targeted sites. In this review, we focused on nanoparticles as carriers in targeted drug delivery, their characteristics, structure, and the previous studies related to breast cancer. It was shown that nanoparticles could reduce the negative effects of chemotherapy drugs while increasing their effectiveness. Lipid-based nanocarriers demonstrated notable results in this instance, and some products that are undergoing various stages of clinical trials are among the examples. Nanoparticles based on metal or polymers demonstrated a comparable level of efficacy. With the number of cancer cases rising globally, many researchers are now looking into novel treatment approaches, particularly the use of nanotechnology and nanoparticles in the treatment of cancer. In order to help clinicians, this article aimed to gather more information about various areas of nanoparticle application in breast cancer therapy, such as modifying their synthesis and physicochemical characterization. It also sought to gain a deeper understanding of the mechanisms underlying the interactions between nanoparticles and biologically normal or infected tissues.
Collapse
Affiliation(s)
- Shima Bourang
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mehran Noruzpour
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sodabeh Jahanbakhsh Godekahriz
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hossein Ali Ca Ebrahimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Amin Amani
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Rasool Asghari Zakaria
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hashem Yaghoubi
- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| |
Collapse
|
2
|
González-Reyna MA, Molina GA, Juarez-Moreno K, Rodríguez-Torres A, Esparza R, Estevez M. Green nanoarchitectonics of carbon quantum dots from Cinchona Pubescens Vahl as targeted and controlled drug cancer nanocarrier. BIOMATERIALS ADVANCES 2023; 153:213561. [PMID: 37515841 DOI: 10.1016/j.bioadv.2023.213561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Abstract
Carbon quantum dots (CQDs) are a new carbon-based nanomaterial that has attracted tremendous attention due to their excellent fluorescent properties, chemical stability, water solubility, and biocompatibility features. Here, fluorescent CQDs synthesized by a green nanoarchitectonic method using Cinchona Pubescens Vahl extract were evaluated as drug nanocarriers for carboplatin (CBP) delivery. The characterization methods showed CQDs with semispherical shapes and sizes around 5 nm, temperature- and pH-dependent functional groups that interact with the CBP molecule adding specificity to the drug-delivery system. Based on the load efficiency results, it seems that the CQDs can carry almost 100 μg of carboplatin for every 1 mg of CQDs. This is possible due to the self-assembly process that takes place through the interaction between the protonation/deprotonation functional groups of CQDs and the hydrolyzed CBP molecule. Through this process, it is created spherical nanoparticles with an average size of 77.44 nm. The CQDs-CBP nanoparticles release the drug through a diffusion-controlled release mechanism where the acidic media is preferred, and the EPR effect also plays a helpful role. Besides, the viability test shows that the CQDs have almost null cytotoxicity suggesting that they could be used as a promising cancer treatment, improving the efficiency of cell internalization and significantly increasing their drug delivery.
Collapse
Affiliation(s)
- M A González-Reyna
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico
| | - Gustavo Andrés Molina
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico
| | - Karla Juarez-Moreno
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico
| | - Angelina Rodríguez-Torres
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico
| | - Rodrigo Esparza
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico
| | - Miriam Estevez
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico..
| |
Collapse
|
3
|
Sojdeh S, Banitalebi Dehkordi A, Badiei A, Zarrabi A, Makvandi P, Ashrafizadeh M, Saeb MR, Lima EC, Rabiee M, Asadnia M, Webster TJ, Rabiee N. N-doped carbon nanospheres as selective fluorescent probes for mercury detection in contaminated aqueous media: chemistry, fluorescence probing, cell line patterning, and liver tissue interaction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40327-40339. [PMID: 36609970 DOI: 10.1007/s11356-022-25068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023]
Abstract
A precise nano-scale biosensor was developed here to detect Hg2+ in aqueous media. Nitrogen-doped carbon nanospheres (NCS) created from the pyrolysis of melamine-formaldehyde resin were characterized by FESEM, XRD, Raman spectra, EDS, PL, UV-vis spectra, and N2 adsorption-desorption, and were used as a highly selective and sensitive probe for detecting Hg2+ in aqueous media. The sensitivity of NCS to Hg2+ was evaluated by photoluminescence intensity fluctuations under fluorescence emission in the vicinity of 390 nm with a λexc of 350 nm. The fluorescence intensity of the NCS probe weakened in the presence of Hg2+ owing to the effective fluorescence quenching by that, which is not corresponding to the special covalent liking between the ligand and the metal. The effects of the fluorescence nanoprobe concentration, pH, and sensing time were monitored to acquire the best conditions for determining Hg2+. Surprisingly, NCS revealed excellent selectivity and sensitivity towards Hg2+ in the samples containing Co2+, Na+, K+, Fe2+, Mn2+, Al3+, Pb2+, Ni2+, Ca2+, Cu2+, Mg2+, Cd2+, Cr3+, Li+, Cs+, and Ba2+. The fluorescence response was linearly proportional to Hg2+ concentration in 0.013-0.046 µM with a limit of detection of 9.58 nM. The in vitro and in vivo toxicological analyses confirmed the completely safe and biocompatible features of NCS, which provides promise for use for water, fruit, vegetable, and/or other forms of natural-connected materials exposed to Hg2+, with no significant toxicity noticed toward different cells/organs/tissues.
Collapse
Affiliation(s)
- Soheil Sojdeh
- School of Chemistry, College of Science, University of Tehran, P.O. Box, Tehran, 14155-6455, Iran
| | - Ali Banitalebi Dehkordi
- School of Chemistry, College of Science, University of Tehran, P.O. Box, Tehran, 14155-6455, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, P.O. Box, Tehran, 14155-6455, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Pooyan Makvandi
- Centre for Materials Interfaces, Istituto Italiano Di Tecnologia, 56025, Pisa, Italy
| | - Milad Ashrafizadeh
- Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Av. Bento Goncalves 9500, Postal Box, 15003, Porto Alegre, ZIP, 91501-970, Brazil.
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, New South Wales, 2109, Sydney, Australia
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tijian, 300130, China.,School of Engineering, Saveetha University, Chennai, 602105, India.,Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program, Federal University of Piaui, Teresina, 64049-550, Brazil
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, 6150, Australia
| |
Collapse
|
4
|
Nurzynska A, Piotrowski P, Klimek K, Król J, Kaim A, Ginalska G. Novel C60 Fullerenol-Gentamicin Conjugate–Physicochemical Characterization and Evaluation of Antibacterial and Cytotoxic Properties. Molecules 2022; 27:molecules27144366. [PMID: 35889237 PMCID: PMC9317625 DOI: 10.3390/molecules27144366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to develop, characterize, and evaluate antibacterial and cytotoxic properties of novel fullerene derivative composed of C60 fullerenol and standard aminoglycoside antibiotic–gentamicin (C60 fullerenol-gentamicin conjugate). The successful introduction of gentamicin to fullerenol was confirmed by X-ray photoelectron spectroscopy which together with thermogravimetric and spectroscopic analysis revealing the formula of the composition as C60(OH)12(GLYMO)11(Gentamicin)0.8. The dynamic light scattering (DLS) revealed that conjugate possessed ability to form agglomerates in water (size around 115 nm), while Zeta potential measurements demonstrated that such agglomerates possessed neutral character. In vitro biological assays indicated that obtained C60 fullerenol-gentamicin conjugate possessed the same antibacterial activity as standard gentamicin against Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Escherichia coli, which proves that combination of fullerenol with gentamicin does not cause the loss of antibacterial activity of antibiotic. Moreover, cytotoxicity assessment demonstrated that obtained fullerenol-gentamicin derivative did not decrease viability of normal human fibroblasts (model eukaryotic cells) compared to control fibroblasts. Thus, taking into account all of the results, it can be stated that this research presents effective method to fabricate C60 fullerenol-gentamicin conjugate and proves that such derivative possesses desired antibacterial properties without unfavorable cytotoxic effects towards eukaryotic cells in vitro. These promising preliminary results indicate that obtained C60 fullerenol-gentamicin conjugate could have biomedical potential. It may be presumed that obtained fullerenol may be used as an effective carrier for antibiotic, and developed fullerenol-gentamicin conjugate may be apply locally (i.e., at the wound site). Moreover, in future we will evaluate possibility of its applications in inter alia tissue engineering, namely as a component of wound dressings and implantable biomaterials.
Collapse
Affiliation(s)
- Aleksandra Nurzynska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (A.N.); (G.G.)
| | - Piotr Piotrowski
- Department of Chemistry, University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland; (J.K.); (A.K.)
- Correspondence: (P.P.); (K.K.)
| | - Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (A.N.); (G.G.)
- Correspondence: (P.P.); (K.K.)
| | - Julia Król
- Department of Chemistry, University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland; (J.K.); (A.K.)
| | - Andrzej Kaim
- Department of Chemistry, University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland; (J.K.); (A.K.)
| | - Grazyna Ginalska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (A.N.); (G.G.)
| |
Collapse
|
5
|
De Santis D, Carbone K, Garzoli S, Laghezza Masci V, Turchetti G. Bioactivity and Chemical Profile of Rubus idaeus L. Leaves Steam-Distillation Extract. Foods 2022; 11:foods11101455. [PMID: 35627025 PMCID: PMC9140405 DOI: 10.3390/foods11101455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
The leaves of Rubus idaeus L., a by-product of the fruit food industry, are a known source of bioactive molecules, although the chemical composition has only been partially investigated. The main objective of this study was to examine the biological activities and the chemical composition of the extract of leaves of R. idaeus (RH), obtained by steam distillation (SD). The antioxidant capacity; the total phenolic content (TPC); the cytotoxic activity against tumor cell lines; and the antibacterial activity, in addition to the study of the chemical fingerprinting, carried out by Gas/Chromatography-Mass-Spectrometry (GC/MS) and Headspace (HS)-GC/MS, were established. The extract showed a strong antioxidant capacity and a modest antibacterial activity against two bacterial strains, as well as significant cytotoxic activity against tumor cell lines (Caco-2 and HL60) and being proliferative on healthy cells. Many of the GC-identified volatile molecules (1,8-cineol, β-linalool, geraniol, caryophyllene, τ-muurolol, citral, α-terpineol, 3- carene, α-terpinen-7-al, etc.) can explain most of the biological properties exhibited by the extract of R. idaeus L. The high biological activity of the RH and the high compatibility with the various matrices suggest good prospects for this extract, both in the food and cosmetic fields or in dietary supplements for improving human health.
Collapse
Affiliation(s)
- Diana De Santis
- Department for Innovation in the Biological, Agrofood and Forestry Systems, University of Tuscia Via S. C. de Lellis, 01100 Viterbo, Italy; (V.L.M.); (G.T.)
- Correspondence:
| | - Katya Carbone
- CREA Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy;
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, Square Aldo Moro 5, 00185 Rome, Italy;
| | - Valentina Laghezza Masci
- Department for Innovation in the Biological, Agrofood and Forestry Systems, University of Tuscia Via S. C. de Lellis, 01100 Viterbo, Italy; (V.L.M.); (G.T.)
| | - Giovanni Turchetti
- Department for Innovation in the Biological, Agrofood and Forestry Systems, University of Tuscia Via S. C. de Lellis, 01100 Viterbo, Italy; (V.L.M.); (G.T.)
| |
Collapse
|