1
|
Sguizzato M, Martini P, Ferrara F, Marvelli L, Drechsler M, Reale G, Calderoni F, Illuminati F, Porto F, Speltri G, Uccelli L, Giganti M, Boschi A, Cortesi R. Manganese-Loaded Liposomes: An In Vitro Study for Possible Diagnostic Application. Molecules 2024; 29:3407. [PMID: 39064985 PMCID: PMC11280348 DOI: 10.3390/molecules29143407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The present study investigates the possible use of manganese (Mn)-based liposomal formulations for diagnostic applications in imaging techniques such as magnetic resonance imaging (MRI), with the aim of overcoming the toxicity limitations associated with the use of free Mn2+. Specifically, anionic liposomes carrying two model Mn(II)-based compounds, MnCl2 (MC) and Mn(HMTA) (MH), were prepared and characterised in terms of morphology, size, loading capacity, and in vitro activity. Homogeneous dispersions characterised mainly by unilamellar vesicles were obtained; furthermore, no differences in size and morphology were detected between unloaded and Mn-loaded vesicles. The encapsulation efficiency of MC and MH was evaluated on extruded liposomes by means of ICP-OES analysis. The obtained results showed that both MC and MH are almost completely retained by the lipid portion of liposomes (LPs), with encapsulation efficiencies of 99.7% for MC and 98.8% for MH. The magnetic imaging properties of the produced liposomal formulations were investigated for application in a potential preclinical scenario by collecting magnetic resonance images of a phantom designed to compare the paramagnetic contrast properties of free MC and MH compounds and the corresponding manganese-containing liposome dispersions. It was found that both LP-MC and LP-MH at low concentrations (0.5 mM) show better contrast (contrast-to-noise ratios of 194 and 209, respectively) than solutions containing free Mn at the same concentrations (117 and 134, respectively) and are safe to use on human cells at the selected dose. Taken together, the results of this comparative analysis suggest that these liposome-containing Mn compounds might be suitable for diagnostic purposes.
Collapse
Affiliation(s)
- Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (F.F.); (L.M.); (G.S.); (R.C.)
- Biotechnology Inter University Consortium (C.I.B.), Ferrara Section, University of Ferrara, 44121 Ferrara, Italy
| | - Petra Martini
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (F.F.); (L.M.); (G.S.); (R.C.)
| | - Lorenza Marvelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (F.F.); (L.M.); (G.S.); (R.C.)
| | - Markus Drechsler
- Bavarian Polymer Institute Keylab “Electron and Optical Microscopy”, University of Bayreuth, 95447 Bayreuth, Germany;
| | - Giovanni Reale
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.R.); (F.P.); (L.U.); (M.G.)
| | | | | | - Francesca Porto
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.R.); (F.P.); (L.U.); (M.G.)
| | - Giorgia Speltri
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (F.F.); (L.M.); (G.S.); (R.C.)
| | - Licia Uccelli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.R.); (F.P.); (L.U.); (M.G.)
| | - Melchiore Giganti
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.R.); (F.P.); (L.U.); (M.G.)
| | - Alessandra Boschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (F.F.); (L.M.); (G.S.); (R.C.)
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (F.F.); (L.M.); (G.S.); (R.C.)
- Biotechnology Inter University Consortium (C.I.B.), Ferrara Section, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Gooran N, Tan SW, Yoon BK, Jackman JA. Unraveling Membrane-Disruptive Properties of Sodium Lauroyl Lactylate and Its Hydrolytic Products: A QCM-D and EIS Study. Int J Mol Sci 2023; 24:ijms24119283. [PMID: 37298235 DOI: 10.3390/ijms24119283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Membrane-disrupting lactylates are an important class of surfactant molecules that are esterified adducts of fatty acid and lactic acid and possess industrially attractive properties, such as high antimicrobial potency and hydrophilicity. Compared with antimicrobial lipids such as free fatty acids and monoglycerides, the membrane-disruptive properties of lactylates have been scarcely investigated from a biophysical perspective, and addressing this gap is important to build a molecular-level understanding of how lactylates work. Herein, using the quartz crystal microbalance-dissipation (QCM-D) and electrochemical impedance spectroscopy (EIS) techniques, we investigated the real-time, membrane-disruptive interactions between sodium lauroyl lactylate (SLL)-a promising lactylate with a 12-carbon-long, saturated hydrocarbon chain-and supported lipid bilayer (SLB) and tethered bilayer lipid membrane (tBLM) platforms. For comparison, hydrolytic products of SLL that may be generated in biological environments, i.e., lauric acid (LA) and lactic acid (LacA), were also tested individually and as a mixture, along with a structurally related surfactant (sodium dodecyl sulfate, SDS). While SLL, LA, and SDS all had equivalent chain properties and critical micelle concentration (CMC) values, our findings reveal that SLL exhibits distinct membrane-disruptive properties that lie in between the rapid, complete solubilizing activity of SDS and the more modest disruptive properties of LA. Interestingly, the hydrolytic products of SLL, i.e., the LA + LacA mixture, induced a greater degree of transient, reversible membrane morphological changes but ultimately less permanent membrane disruption than SLL. These molecular-level insights support that careful tuning of antimicrobial lipid headgroup properties can modulate the spectrum of membrane-disruptive interactions, offering a pathway to design surfactants with tailored biodegradation profiles and reinforcing that SLL has attractive biophysical merits as a membrane-disrupting antimicrobial drug candidate.
Collapse
Affiliation(s)
- Negin Gooran
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sue Woon Tan
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Joshua A Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
3
|
Guan X, Zhang L, Lai S, Zhang J, Wei J, Wang K, Zhang W, Li C, Tong J, Lei Z. Green synthesis of glyco-CuInS 2 QDs with visible/NIR dual emission for 3D multicellular tumor spheroid and in vivo imaging. J Nanobiotechnology 2023; 21:118. [PMID: 37005641 PMCID: PMC10067196 DOI: 10.1186/s12951-023-01859-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/15/2023] [Indexed: 04/04/2023] Open
Abstract
Glyco-quantum dots (glyco-QDs) have attracted significant interest in bioimaging applications, notably in cancer imaging, because they effectively combine the glycocluster effect with the exceptional optical properties of QDs. The key challenge now lies in how to eliminate the high heavy metal toxicity originating from traditional toxic Cd-based QDs for in vivo bioimaging. Herein, we report an eco-friendly pathway to prepare nontoxic Cd-free glyco-QDs in water by the "direct" reaction of thiol-ending monosaccharides with metal salts precursors. The formation of glyco-CuInS2 QDs could be explained by a nucleation-growth mechanism following the LaMer model. As-prepared four glyco-CuInS2 QDs were water-soluble, monodispersed, spherical in shape and exhibited size range of 3.0-4.0 nm. They exhibited well-separated dual emission in the visible region (500-590 nm) and near-infrared range (~ 827 nm), which may be attributable to visible excitonic emission and near-infrared surface defect emission. Meanwhile, the cell imaging displayed the reversibly distinct dual-color (green and red) fluorescence in tumor cells (HeLa, A549, MKN-45) and excellent membrane-targeting properties of glyco-CuInS2 QDs based on their good biorecognition ability. Importantly, these QDs succeed in penetrating uniformly into the interior (the necrotic zone) of 3D multicellular tumor spheroids (MCTS) due to their high negative charge (zeta potential values ranging from - 23.9 to - 30.1 mV), which overcame the problem of poor penetration depth of existing QDs in in vitro spheroid models. So, confocal analysis confirmed their excellent ability to penetrate and label tumors. Thus, the successful application in in vivo bioimaging of these glyco-QDs verified that this design strategy is an effective, low cost and simple procedure for developing green nanoparticles as cheap and promising fluorescent bioprobes.
Collapse
Affiliation(s)
- Xiaolin Guan
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China.
| | - Liyuan Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Shoujun Lai
- College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou, 730000, Gansu, People's Republic of China.
| | - Jiaming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Jingyu Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Kang Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Wentao Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Chenghao Li
- Key Laboratory of Traditional Chinese Medicine Prevention and Treatment, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Jinhui Tong
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Ziqiang Lei
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| |
Collapse
|
4
|
Sguizzato M, Martini P, Marvelli L, Pula W, Drechsler M, Capozza M, Terreno E, Del Bianco L, Spizzo F, Cortesi R, Boschi A. Synthetic and Nanotechnological Approaches for a Diagnostic Use of Manganese. Molecules 2022; 27:molecules27103124. [PMID: 35630601 PMCID: PMC9146667 DOI: 10.3390/molecules27103124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
The development of multimodal imaging techniques such as positron emission tomography (PET) and magnetic resonance imaging (MRI) allows the contemporary obtaining of metabolic and morphological information. To fully exploit the complementarity of the two imaging modalities, the design of probes displaying radioactive and magnetic properties at the same time could be very beneficial. In this regard, transition metals offer appealing options, with manganese representing an ideal candidate. As nanosized imaging probes have demonstrated great value for designing advanced diagnostic/theranostic procedures, this work focuses on the potential of liposomal formulations loaded with a new synthesized paramagnetic Mn(II) chelates. Negatively charged liposomes were produced by thin-layer hydration method and extrusion. The obtained formulations were characterized in terms of size, surface charge, efficiency of encapsulation, stability over time, relaxivity, effective magnetic moment, and in vitro antiproliferative effect on human cells by means of the MTT assay. The negatively charged paramagnetic liposomes were monodisperse, with an average hydrodynamic diameter not exceeding 200 nm, and they displayed good stability and no cytotoxicity. As determined by optical emission spectroscopy, manganese complexes are loaded almost completely on liposomes maintaining their paramagnetic properties.
Collapse
Affiliation(s)
- Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.)
- Biotechnology Interuniversity Consortium, Ferrara Section, University of Ferrara, 44121 Ferrara, Italy
| | - Petra Martini
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
- INFN—Laboratori Nazionali Legnaro, National Institute of Nuclear Physics, Viale dell’Università, 2, 35020 Legnaro, Italy
| | - Lorenza Marvelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.)
- Correspondence: (L.M.); (R.C.)
| | - Walter Pula
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.)
| | - Markus Drechsler
- Key Lab “Electron and Optical Microscopy”, Bavarian Polymer Institute (BPI), University of Bayreuth, 95440 Bayreuth, Germany;
| | - Martina Capozza
- Molecular & Preclinical Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Torino, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Enzo Terreno
- Molecular & Preclinical Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Torino, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Lucia Del Bianco
- Department of Physics and Earth Science, University of Ferrara, 44122 Ferrara, Italy; (L.D.B.); (F.S.)
| | - Federico Spizzo
- Department of Physics and Earth Science, University of Ferrara, 44122 Ferrara, Italy; (L.D.B.); (F.S.)
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.)
- INFN—Laboratori Nazionali Legnaro, National Institute of Nuclear Physics, Viale dell’Università, 2, 35020 Legnaro, Italy
- Correspondence: (L.M.); (R.C.)
| | - Alessandra Boschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.)
| |
Collapse
|