1
|
Van der Ley P, Schijns VE. Outer membrane vesicle-based intranasal vaccines. Curr Opin Immunol 2023; 84:102376. [PMID: 37598549 DOI: 10.1016/j.coi.2023.102376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023]
Abstract
Delivery of vaccines via the mucosal route is regarded as the most effective mode of immunization to counteract infectious diseases that enter via mucosal tissues, including oral, nasal, pulmonary, intestinal, and urogenital surfaces. Mucosal vaccines not only induce local immune effector elements, such as secretory Immunoglobulin A (IgA) reaching the luminal site of the mucosa, but also systemic immunity. Moreover, mucosal vaccines may trigger immunity in distant mucosal tissues because of the homing of primed antigen-specific immune cells toward local and distant mucosal tissue via the common mucosal immune system. While most licensed intramuscular vaccines induce only systemic immunity, next-generation mucosal vaccines may outperform parenteral vaccination strategies by also eliciting protective mucosal immune responses that block infection and/or transmission. Especially the nasal route of vaccination, targeting the nasal-associated lymphoid tissue, is attractive for local and distant mucosal immunization. In numerous studies, bacterial outer membrane vesicles (OMVs) have proved attractive as vaccine platform for homologous bacterial strains, but also as antigen delivery platform for heterologous antigens of nonbacterial diseases, including viruses, parasites, and cancer. Their application has also been extended to mucosal delivery. Here, we will summarize the characteristics and clinical potential of (engineered) OMVs as vaccine platform for mucosal, especially intranasal delivery.
Collapse
|
2
|
Mba IE, Sharndama HC, Anyaegbunam ZKG, Anekpo CC, Amadi BC, Morumda D, Doowuese Y, Ihezuo UJ, Chukwukelu JU, Okeke OP. Vaccine development for bacterial pathogens: Advances, challenges and prospects. Trop Med Int Health 2023; 28:275-299. [PMID: 36861882 DOI: 10.1111/tmi.13865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The advent and use of antimicrobials have played a key role in treating potentially life-threatening infectious diseases, improving health, and saving the lives of millions of people worldwide. However, the emergence of multidrug resistant (MDR) pathogens has been a significant health challenge that has compromised the ability to prevent and treat a wide range of infectious diseases that were once treatable. Vaccines offer potential as a promising alternative to fight against antimicrobial resistance (AMR) infectious diseases. Vaccine technologies include reverse vaccinology, structural biology methods, nucleic acid (DNA and mRNA) vaccines, generalised modules for membrane antigens, bioconjugates/glycoconjugates, nanomaterials and several other emerging technological advances that are offering a potential breakthrough in the development of efficient vaccines against pathogens. This review covers the opportunities and advancements in vaccine discovery and development targeting bacterial pathogens. We reflect on the impact of the already-developed vaccines targeting bacterial pathogens and the potential of those currently under different stages of preclinical and clinical trials. More importantly, we critically and comprehensively analyse the challenges while highlighting the key indices for future vaccine prospects. Finally, the issues and concerns of AMR for low-income countries (sub-Saharan Africa) and the challenges with vaccine integration, discovery and development in this region are critically evaluated.
Collapse
Affiliation(s)
- Ifeanyi Elibe Mba
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | | | - Zikora Kizito Glory Anyaegbunam
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria, Nsukka, Nigeria
| | - Chijioke Chinedu Anekpo
- Department of Ear Nose and Throat, College of Medicine, Enugu State University of Science and Technology, Enugu, Nigeria
| | - Ben Chibuzo Amadi
- Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria, Nsukka, Nigeria
| | - Daji Morumda
- Department of Microbiology, Federal University Wukari, Wukari, Taraba, Nigeria
| | - Yandev Doowuese
- Department of Microbiology, Federal University of Health Sciences, Otukpo, Nigeria
| | - Uchechi Justina Ihezuo
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria, Nsukka, Nigeria
| | | | | |
Collapse
|
3
|
Li Z, Niu L, Wang L, Mei T, Shang W, Cheng X, Li Y, Xi F, Song X, Shao Y, Xu Y, Tu J. Biodistribution of 89Zr-DFO-labeled avian pathogenic Escherichia coli outer membrane vesicles by PET imaging in chickens. Poult Sci 2022; 102:102364. [PMID: 36525747 PMCID: PMC9791172 DOI: 10.1016/j.psj.2022.102364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/04/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a serious systemic infectious disease in poultry infections, causing severe economic losses to the poultry industry. Previous studies have shown that secretion of virulence proteins was required for the pathogenicity of APEC through the secretion system. Outer membrane vesicles (OMVs) are a generalized secretion system of Gram-negative bacteria that play a key role in the long-distance delivery of virulence factors, but whether they are associated with the pathogenic mechanism of APEC has not been determined. In this study, OMVs were purified and characterized from AE17 (O2 serotype) by ultracentrifugation and density gradient centrifugation and their protein cargo was identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). In addition, 89Zr was labeled after chelating AE17 OMVs by DFO and positron emission tomography PET imaging was used to track 89Zr-DFO-OMVs in chickens and to pathologically analyze the distribution sites. This study showed that AE17 OMVs were membrane vesicles ranging in size from 20 to 200 nm and proteomic analysis revealed the presence of virulence proteins, including adhesion proteins OmpA, OmpC, OmpF, OmpX, FimH, FimC and FigE, and serum resistance proteins OmpT and MliC and immune response regulator proteins (FliC). In addition, in vivo PET imaging to track the biodistribution of AE17 OMVs showed that AE17 OMVs were taken up by the lung region and the gastrointestinal and renal regions but were not detected in other areas. Pathological analysis of the tissue sites where AE17 OMVs were ingested showed inflammatory responses and damage. These findings suggested that AE17 OMVs not only contained a group of virulence proteins associated with AE17 infection but can also deliver these virulence proteins over long distances and caused tissue inflammatory damage. Our study revealed a previously unidentified causative microbial signal in the pathogenesis of APEC that could aid in the development of vaccines and antibiotics effective against APEC.
Collapse
Affiliation(s)
- Zhe Li
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, China
| | - Lulu Niu
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, China
| | - Lizhen Wang
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi, Jiangsu 214063, China
| | - Ting Mei
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, China
| | - Wenbin Shang
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, China
| | - Xi Cheng
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, China
| | - Yuqing Li
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, China
| | - Feng Xi
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, China
| | - Xiangjun Song
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, China
| | - Ying Shao
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi, Jiangsu 214063, China
| | - Jian Tu
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
4
|
Mu J, Lei L, Zheng Y, Li D, Li J, Fu Y, Wang G, Liu Y. Comparative study of subcutaneous, intramuscular, and oral administration of bovine pathogenic Escherichia coli bacterial ghost vaccine in mice. Front Immunol 2022; 13:1008131. [DOI: 10.3389/fimmu.2022.1008131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022] Open
Abstract
Escherichia coli is one of the most common bacterial pathogens in cattle. Prophylactic vaccines are considered promising strategies with the potential to reduce the incidence of colibacillosis. Some studies suggested that bacterial ghosts may serve as a novel approach for preventing bacterial infections. However, the roles of administration route on vaccine immunogenicity and efficacy have not been investigated. In this study, the efficacy of vaccination via different immune routes in generating humoral and cellular immune response was compared through subcutaneous (SC), intramuscular (IM), and oral (O) administration in female BALB/c mice with bacterial ghosts prepared using wild type Escherichia coli isolates CE9, while phosphate buffer saline (PBS) and inactivated vaccines containing aluminum adjuvants (Killed) were used as control. Our results showed that the plasmid pBV220-E-aa-SNA containing E. coli was efficiently cleaved at 42°C with 94.8% positive ratio as assessed by colony counts. Transmission electron microscopy (TEM) confirmed bacteria retained intact surface structure while devoid of cytoplasmic component. We found that total IgG titers in killed, IM and SC groups showed significant increase on 7, 14, 21 and 28 days post-immunization. The IgA level of the IM group was higher than that of all other groups on the 28th day. Meanwhile, four experimental groups showed a significant difference in IgA levels compared with PBS control. In the IM group, an increase in the relative percentages of CD3+CD4+ T cells was accompanied by an increase in the relative percentages of splenic CD3+CD8+ T cells. In comparison with the inactivated vaccine, intramuscular CE9 ghosts immunization elicited higher levels of IL-1β, IL-2, IL-6 and IL-12. Subcutaneous and intramuscular immunizations were significantly associated with improved survival in comparison with oral route, traditional vaccine and the control. Pathologic assessment revealed that less severe tissue damage and inflammation were found in lung, kidney, and intestine of IM group compared with other groups. The results above demonstrate that immunization of Escherichia coli CE9 ghosts via intramuscular injection elicits a more robust antigen-specific immune response in mice to prevent the Escherichia coli infection.
Collapse
|