1
|
Huang P, Wen F, Wang X. Case report: Pyrotinib and tegafur combined with radiotherapy achieved notable response in HER2-amplified rectal cancer with multiple metastases after multiline treatments. Front Pharmacol 2024; 15:1431542. [PMID: 39193330 PMCID: PMC11347432 DOI: 10.3389/fphar.2024.1431542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Metastatic colorectal cancer (mCRC) is characterized by significant phenotypic heterogeneity at the molecular level and presents a poor prognosis. Chemotherapy is commonly employed as the primary treatment option. Nevertheless, the advantages of chemotherapy are constrained, underscoring the critical necessity for novel treatment protocols aimed at enhancing patient outcomes. Human epidermal growth factor receptor 2 (HER2) has been recognized as a promising therapeutic target in mCRC. Pyrotinib, an innovative irreversible dual tyrosine kinase inhibitor targeting HER2, effectively inhibits cancer progression in various types of human cancers. Here, we present a case of a 39-year-old female with metastatic rectal cancer showing amplification of HER2. Despite resistance to multiple therapies, including trastuzumab and pertuzumab, the patient exhibited a remarkable therapeutic response to pyrotinib, tegafur combined with radiotherapy. This case provides evidence for the feasibility and potential efficacy of deploying pyrotinib in the salvage treatment of mCRC patients with HER2 amplification even though resistant to other anti-HER2 drugs.
Collapse
Affiliation(s)
- Peng Huang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Wen
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Wang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Braun M, Piasecka D, Sadej R, Romanska HM. FGFR4-driven plasticity in breast cancer progression and resistance to therapy. Br J Cancer 2024; 131:11-22. [PMID: 38627607 PMCID: PMC11231301 DOI: 10.1038/s41416-024-02658-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 07/10/2024] Open
Abstract
Breast cancer (BCa) is a complex and heterogeneous disease, with different intrinsic molecular subtypes that have distinct clinical outcomes and responses to therapy. Although intrinsic subtyping provides guidance for treatment decisions, it is now widely recognised that, in some cases, the switch of the BCa intrinsic subtype (which embodies cellular plasticity), may be responsible for therapy failure and disease progression. Aberrant FGFR4 signalling has been implicated in various cancers, including BCa, where it had been shown to be associated with aggressive subtypes, such as HER2-enriched BCa, and poor prognosis. More importantly, FGFR4 is also emerging as a potential driver of BCa intrinsic subtype switching, and an essential promoter of brain metastases, particularly in the HER2-positive BCa. Although the available data are still limited, the findings may have far-reaching clinical implications. Here, we provide an updated summary of the existing both pre- and clinical studies of the role of FGFR4 in BCa, with a special focus on its contribution to subtype switching during metastatic spread and/or induced by therapy. We also discuss a potential clinical benefit of targeting FGFR4 in the development of new treatment strategies.
Collapse
Affiliation(s)
- Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Lodz, Poland
| | - Dominika Piasecka
- Laboratory of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Gdansk, Poland
| | - Rafal Sadej
- Laboratory of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Gdansk, Poland.
| | - Hanna M Romanska
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
3
|
Krzyscik MA, Porębska N, Opaliński Ł, Otlewski J. Targeting HER2 and FGFR-positive cancer cells with a bispecific cytotoxic conjugate combining anti-HER2 Affibody and FGF2. Int J Biol Macromol 2024; 254:127657. [PMID: 38287563 DOI: 10.1016/j.ijbiomac.2023.127657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 01/31/2024]
Abstract
Breast cancer remains a significant global health challenge, necessitating the development of effective targeted therapies. This study aimed to create bispecific targeting molecules against HER2 and FGFR1, two receptors known to play crucial roles in breast cancer progression. By combining the high-affinity Affibody ZHER2:2891 and a modified, stable form of fibroblast growth factor 2 (FGF2), we successfully generated bispecific proteins capable of simultaneously recognizing HER2 and FGFR1. Two variants were designed: AfHER2-sFGF2 with a shorter linker and AfHER2-lFGF2 with a longer linker between the HER2 and FGFR1-recognizing proteins. Both proteins exhibited selective binding to HER2 and FGFR1, with AfHER2-lFGF2 demonstrating simultaneous binding to both receptors. AfHER2-lFGF2 exhibited superior internalization compared to FGF2 in FGFR-positive cells and significantly increased internalization compared to AfHER2 in HER2-positive cells. To enhance their therapeutic potential, highly potent cytotoxic agent MMAE was conjugated to the targeting proteins, resulting in protein-drug conjugates. The bispecific AfHER2-lFGF2-vcMMAE conjugate demonstrated exceptional cytotoxic activity against HER2-positive, FGFR-positive, and dual-positive cancer cell lines that was significantly higher compared to monospecific conjugates. These data indicate the beneficial effect of simultaneous targeting of HER2 and FGFR1 in precise anticancer medicine and contribute valuable insights into the design and potential of bispecific targeting molecules for breast cancer treatment.
Collapse
Affiliation(s)
- Mateusz A Krzyscik
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Natalia Porębska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Łukasz Opaliński
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
4
|
Guney Eskiler G, Kazan N, Haciefendi A, Deveci Ozkan A, Ozdemir K, Ozen M, Kocer HB, Yilmaz F, Kaleli S, Sahin E, Bilir C. The prognostic and predictive values of differential expression of exosomal receptor tyrosine kinases and associated with the PI3K/AKT/mTOR signaling in breast cancer patients undergoing neoadjuvant chemotherapy. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:460-472. [PMID: 36181664 DOI: 10.1007/s12094-022-02959-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/16/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE Cancer cell-derived exosomes are the mediator of the tumor microenvironment and the molecular content of exosomes presents a promising prognostic or predictive marker in tumor progression and the treatment response of cancer patients. The aim of this study was to identify the expression levels of receptor tyrosine kinases (RTKs) and AKT1 and mTOR before and after neoadjuvant chemotherapy (NACT) in the exosomes of BC patients compared with healthy females. METHODS After isolating exosomes in the serum of 25 BC patients and characterization by flow cytometry, the mRNA levels of FGFR2, FGFR3, PDGFRB, AKT1 and mTOR in the exosomes were analyzed by RT-PCR. RESULTS Our preliminary findings showed that FGFR2, PDGFRB, AKT1 and mTOR levels were significantly upregulated in BC patients before NACT compared with the healthy group (p < 0.05). Furthermore, the mRNA levels PDGFRB and AKT1 were significantly down-regulated after NACT compared with control. PDGFRB expression level could predict pathological non-response and significantly correlated with tumor size after NACT. CONCLUSION Therefore, especially FGFR2, PDGFRB and AKT1 could be a therapeutic target as a prognostic marker, whereas PDGFRB may be a promising predictive indicator of therapy response in BC patients. However, the prognostic or predictive role of RTKs and PI3K/AKT/mTOR signaling in the exosomes should be further investigated in a large patient population.
Collapse
Affiliation(s)
- Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, 54290, Sakarya, Turkey.
| | - Nur Kazan
- Department of Medical Biology, Institute of Health Sciences, Sakarya University, Sakarya, Turkey
| | - Ayten Haciefendi
- Department of Medical Biology, Institute of Health Sciences, Sakarya University, Sakarya, Turkey
| | - Asuman Deveci Ozkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, 54290, Sakarya, Turkey
| | - Kayhan Ozdemir
- Department of General Surgery, Nevsehir Urgup State Hospital, Nevsehir, Turkey
| | - Mirac Ozen
- Department of Medical Oncology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Havva Belma Kocer
- Department of General Surgery, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Fahri Yilmaz
- Department of Medical Pathology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Suleyman Kaleli
- Department of Medical Biology, Faculty of Medicine, Sakarya University, 54290, Sakarya, Turkey
| | - Elvan Sahin
- Department of Histology and Embryology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Cemil Bilir
- Department of Medical Oncology, Faculty of Medicine, Istinye University VM Medical Park Pendik Hospital, Istanbul, Turkey
| |
Collapse
|
5
|
HER2 and BARD1 Polymorphisms in Early HER2-Positive Breast Cancer Patients: Relationship with Response to Neoadjuvant Anti-HER2 Treatment. Cancers (Basel) 2023; 15:cancers15030763. [PMID: 36765720 PMCID: PMC9913086 DOI: 10.3390/cancers15030763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
The addition to chemotherapy of anti-HER2 drugs such as trastuzumab or pertuzumab has improved outcomes in HER2-positive breast cancer patients. However, resistance to these drugs in some patients remains a major concern. This study examines the possible association between the response to neoadjuvant anti-HER2 treatment in breast cancer patients and the presence of 28 SNPs in 17 genes involved in different cell processes (PON1, CAT, GSTP1, FCGR3, ATM, PIK3CA, HER3, BARD1, LDB2, BRINP1, chr6 intergenic region, RAB22A, TRPC6, LINC01060, EGFR, ABCB1, and HER2). Tumor samples from 50 women with early breast cancer were genotyped using the iPlex®Gold chemistry and MassARRAY platform, and patients were classified as good responders (Miller-Payne tumor grades 4-5) and poor responders (Miller-Payne tumor grades 1-3), as assessed upon surgery after 6 months of treatment. Proportions of patients with the HER2Ala1170Pro (rs1058808) SNP double mutation were higher in good (58.62%) than poor (20%) responders (p = 0.025). Similarly, proportions of patients carrying the synonymous SNP rs2070096 (BARD1Thr351=) (wv + vv) were higher in patients showing a pathological complete response (46.67%) than in those not showing this response (15.15%) (p = 0.031). The SNPs rs1058808 (HER2Ala1170Pro) and rs2070096 (BARD1Thr351=) were identified here as potential biomarkers of a good response to anti-HER2 treatment.
Collapse
|
6
|
Association Studies in Clinical Pharmacogenetics. Pharmaceutics 2022; 15:pharmaceutics15010113. [PMID: 36678742 PMCID: PMC9867244 DOI: 10.3390/pharmaceutics15010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
In recent times, the progress of Clinical Pharmacogenetics has been remarkable [...].
Collapse
|